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ABSTRACT

We study recursion in normal functionals of type n+2,
as formulated by Kleene, with particular emphasis on the
case n > 1.

In section 0 we recall several definitions of "recursive
in F" where F is an object of type n+2: we give first Kleene's
definition and then, assuming from there on that F is a normal
object, we describe Sacks' definition, a hierarchical defini-
tion due to Harrington and a set theoretical definition due,
also, to Harrington. In section 1 we show that, under the
assumption that F is normal, all these definitions are
equivalent.

Let n > 1. Letting o be the order type of the ordinals
having a notation of type n-1 (for recursion in a fixed
type n+2 normal object F) we give two versions of the minimal
pair problem for all n. In section 2, we use a notion of
recursion on a, given by neighbourhood conditions and
"F-finite" subsets of a. In section 3, we consider the
Structure described by Harrington, using only the parts of
that structure which correspond to ordinals o < . We give
then a construction which gives two (countable) objects of
type n+2 forming a minimal pair for objects of type n+l
corresponding to sets of ordinals. We also mention a partial
result for two uncountable objects of type n+2 forming a
minimal pair. This result is partial because it does not
necessarily hold for all n.

Thesis Supervisor: Gerald E. Sacks
Title: Professor of Mathematics
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0. Introduction

In [10] Kleene gave a definition of recursive functionals
of finite type. His notion of recursion in a functional of
finite type is certainly not the only possible one, not even
the only notion which would reasonably generalize what is
already known about integers and reals. Nevertheless,
Kleene's definition survived. One of the main reasons
for this survival is probably the fact that recursion, for
Kleene, is actually defined in terms of an iﬁductive defini-
tion. This introduces automatically the notions of ordinal
and of prewellordering inside Kleene's frame. One can find
in [20] an example, among many, of the precious properties
of this inductive definition.

In [24], Sacks gave a definition of recursion in
normal functionals of finite type (i.e. functionals which
among other things have the appropriate equality recursive
in them). This definition uses a hierarchy of sets Sc"
for all "possible" o¢'s. Sacks uses also a lot of induction,
including induction on the type. He has shown how to use
forcing in the frame of his definition (e.g. in [24] he
generalizes a well known result of Kleene about the l-section

of °Ej.
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In [8] Harrington gave twowapparently different
definitions of recursion in normal functionals of finite
type. One of the definitions seems to be purely
set-theoretical, while the other uses a hierarchy (which
is here obviously a hierarchy of sets Ho’ for all
suitable o's, and a lot of model theory. This "universe"
is not based on induction on the type.

In the two first sections we will prove that as far

as normal objects are concerned, all these definitions

are equivalent. In the first section we will only give

the first definitions and Prove some important lemmas in
one of these frames only. The equivalence which.we shall
prove later will allow us to use these lemmas in all the

definitions.

Definition 0.1

Tp(j), the set of objects of type 3 (3 € w) is

defined as follows:

Tp(0) = w

Tp(n+1) = TP(n)

Convention

aJ, bJ, cJ, -». Vary over Tp(j)

k, 2, m, n, vary over w

w = the set of functions from Tp(n)tow
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A real is a subset of w. ft,can also be viewed
a function from w to w. We will identify the two
notions and let “u = R = the set of all reals. There

is an cbv.ous correspondence between R and Tp(l).

g is the equality for objects of type £ < m: we

define the function with 2 arguments "E as follows

mE(x,y) = 0 if x =y
1 if x #y
[ with x, y e U Tp(k)
k<m
It is easy to see that we conld equivalently use the
function with 1 argument, which we shall ambiguously

denote also by mE, cdefined as follows:

"ga®) = [0 if (3b e Tp(k-1)) (a“(b) = 0)
1l otherwise

with k < m

Clearly, if m > 1, mE epitomizes the quantification
over objects of type 2 £ < m-1.
An object F of type m is normal iff Tg  is

"recursive" in F.
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Remarks (for all k < w)
1) Ah object of type k can always be viewed as an
object of type &, for all & >k
2) A finite sequence of ;bjects of type k can be
coded by one single object of type k. The coding operator
will be represented by < >. Conversely an object a of
type Kk can be viewed as coding a finite sequence; in
this case (a)o, (a)l, ooy (a)m represent the projections.
3) Any subset of Tp(k) can be coded by one single
element of Tp(k+l). If k > 1, then an w-sequence of

elements of Tp(k) can be coded by one single element of

Tp (k).

Notation
Fix n >0

The objects of type k < n are called individuals

and the objects of type k < n are called subindividual,

I

]

UG{Tp(k) | k < n} = the set of all individuals

SI

U{Tp(k) | k < n} = the set of all subindividuals

The objects of type n+l are called functions or sets

and the objects of type n+2 are called functionals.

F, G, H, ... will denote functionals
£, 9, h, ... will denote functions
R, S, T, ... will denote sets

a, b, ¢, ... will denote individuals

¥, s, t, ... will denote subindividuals
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Definition 0.2 (Kleene-recursive functionals)

Part I: Kleene's schemas

The function ¢ on the left hand side (LHS) of the
= sign will have n, arguments of type i for each i < r
(it is understood that n_ > 0) where r 1is the highest
type mentioned as argument of &. We shall simultaneously
define an index for ¢® and ¢ itself. a, b, c stand
for appropriate list of arguments; x 1is an integer;
e; and e, are the indices of the auxiliary functions y

and X respectively.

S1 o(x,b) = x + 1 ‘<l,<no,....,nr>>

S2 ¢ (b) = k <2,<ngys...,n.>, k>

S3 ¢(x,b) = x <3,<no,...,nr>>

S4 ‘I)(_k_)_) = lP(X(P_) IP_) <4l<nol"'lnr>lelle2>

S5 {@(O,Q) = P (b) <5,<ng ... np>ceg 0,0
¢ (x+1,b) = x(x,%(x,b),b)

S6 ¢(a) = Y(c) <6,<n0,...,nr>,j,k,el>

where ¢ 1is obtained from a2 by moving the k+1 st .
type j arguments to the front of the list. (nj > k+1)

S7 ¢(x,é',g) = a'(x) <7,<n0,...,nr>>

s8 @(ad,b) = al(acI"?|x(ad,cI7?,p)) <8,<ny,...,n_>,3,e,>

S9 ¢(x,b,c) = {x}k(b) <9,<n0,...,n >p<Mp 0. Mg >>

r 3
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where {x}k is the function (partial) Kleene-recursive

with index x, s 1is the maximum type of b and b has

‘mi arguments of type i for i < s.

Part II: An inductive definition

S1 through S9 are the clauses of an inductive

definition of a set of triples:

K = {<e,b,2> | {e}, (b) = 2}

® is partial k-recursive via e iff graph (o)

= {<b,2> | <e,b,2> g K}

® is k-recursive iff ¢ is total and partial k-recursive

® is k-primitive recursive iff & can be defined

using S1-S8, but not S9

¢ is (partial) k-recursive in a type m'object F (where

F is a total object) iff ¢(b) = Y(b,F) with  (partial)

k-recursive.

Remark

. In presence of S9, clause S5 is superfluous.

Part III: Envelopes and sections

W e Tp(m) is k-semirecursive iff

m

W= {b" | ¢(d™ is defined} for some o, partial k-recursive.
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W € Tp(m) is k-semirecursive in F (where F is a given
total object) iff W = {b € Tp(m) | ¢(b,F) is defined} for
some ¢ partial k-recursive.

R ¢ Tp(m) is k-recursive (in F) iff its characteristic

function is k-recursive (in F) iff R and Tp(m)-R are
k-semirecursive (in F).

The m-envelope of a total object F is the collection

of objects of type m, k-semirecursive in F. The m-section

of a total object ¥ is the collection of objects of type m,
k-recursive in F. Similar definitions would define the
envelopes and sections in the frame of Sacks' and Harrington's

definitions.

Definition 0.3 (Sacks-recursive functionals)

Fix n > 0

Part I definition of the hierarchy

Fix F and g

We shall define a hierarchy {Si'g} of sets, defined
by induction on o; this is designed to define "G is

<n+2

s—-recursive in E,F,g> via c¢" by induction on the

type.

1) Induction hypothesis

The following predicate: "f is recursive in <n+lE,R,a>
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via GOdel number e" has already been defined and we write

n+l
<
f = {e}s

~N

E,R,a>

If n =0, Then £ plays the role of a functional

for the case "-1" and this definition coincides with

Turing's reducibility.

2) Definition of {Sg'g} for all a's (a € I) simultaneously.
We will define the Sg'g's in such a way that they

contain codes for all ordinals T < ¢ and for certain

values of F and g.

Stage 0

Sg’g contains <1,a> for all a € I and <1l,a,k>
whenever ga = k.

<l,a> is an s-index for Sg’g (for all a € I)
. &
and is associated to the ordinal [<l,a>]'S = 0.
Convention

In this thesis we will always assume that a GOdel number

is different of 0.
Stage o+1
e . s F,g .
<27,a> 1is an s-index for Sc+l if

(1) <2%,a> ¢ si/9



and (iii)

+
< 1

14.

.. . . F
(ii) <m,a> is an s-index for SO'g for some m g w

E,Sg’g,a> via the Godel number e .

there is a function f recursive in

(This clause makes sense by induction hypothesis)

The function f of clause (iii) is denoted by

the eth

Ab | {e}g(b) where G = <P
function s-recursive in G.
If <2%,a> is s-index for SF’g
fackeed & an nae o+l

for

for

Then we associate to it the ordinal

F _ F e e
Let 80;% = SO’g v {<2%,a> | <2%,a>

s¥r9}

for o+l

v {<3%,a,b,k> | <2

E,Sg’g,a> and {e}g is

]<2e,a>]S = o+1

is an s-index

L} . .
;2> 1s an s-index

F,g G _ _ _n+1 F,qg '
S0+l & {e}s(b) =k & G =< E,S0 ,a>}
v {<5%,a,k> | <2%,a> is an s-index
F,g G, _ _ _n+1 F,9 _
Sgi1 & F({e}s) =m &G = < E,S; ,a>}

Stage A (A limit)

<7e,a> is an s—-index for Si’g if

e .
<27,a> is an

s-index for some &+1 < A and Ab | {e}g(b)



(with G = <

n+1

15.

E,Sg'g,a>) is the .characteristic function

of a set T of s-indices such that

N
A =sup {|b] | be T}

If b is an s-index for Si’g, we associate to it
the ordinal ]b]S = A

Let s''9 = sfr9 {b | b is an s-index for sFr93,

A ) A
<A

3) Let «'9 = 2.u.b.{o | o is the image by | |  of an
s-index} and Sz’g = {Si'g | o < «F 19y
Part II: definition of G is <n+2E,F>
1) a function f 1is said to be s-recursive in

n+2 . 1] .
G =< E,F,g,a> with Godel number e iff

e . . e
<2%,a> is an s-index, say |[<2 ,a>[S =0+ 1
1]
and f = {e}g where G' = <n+lE,S§’g,a>.
. G
f is denoted by {e}s.
. . . . n+2
f is said to be s-recursive in G = < E,F,g>

iff there is an integer e such that

n+2

<" “E,F,g,0> via e iff £ = {e}g for some e.

f is s-recursive in
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<n+2

G 1is said to be s-recursive in H = E,F,g>

via e, and this is written G = {e}g, iff
*
G(h) = {e}g h(0) for all functions h (with

<n+2

H*h = E,F,g*h,0> where g*h is the function

coding the pair (g,h)).

. . . . + .
G is said to be s-recursive in <® 2E,F> via e,
n+2
. . . < > .

and this is written G = {e}s E,F iff G = {e}g
with H = <™2g,r,0>.
Part III

Let R Dbe a set.

. . . . n+2 .

R €I 1s s-semirecursive in < E,F> 1iff

3e € w)[R = {a [ <2e,a> is an s-index}]

. . . + . .
R & I is s-recursive in <N 2E,F> = G 1§f its

characteristic function is s-recursive in G iff R and
I-R are both semirecursive in G iff there is an integer e
such that R = {e}g i.e. <2e,0> is an s-index, say

<n+lE’S§,g>

e - =
|<2%,0>| =0 +1 and R = {e}g

Envelopes and sections are defined as in definition 0.2.

Definition 0.4 Harrington's recursive universe.
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Let I =<I, €, ...> Dbe a structure such that
(1) T 1is closed under coding and decoding of finite

sequences and (2) w < I (e.g. let I be <Rm+n'€>)

n+2E is the equality for subsets of I (or for

elements of Iw) and thus introducts the quantifiers for
elements of I.

Let F : Im + w be, from now on, a fixed functional.

Convention: as we want to work with F and the equality

we may as well assume that F is <F3,n+2E> where F°

is a fixed functional.

Part I: definition of a jump

Let X< Tp(n) =1
X th . . '
Let {e}p be the e function (via some natural
Godel numbering of the formulas) which is first order

definable over <I,X>
Let WX = {a ¢ I | {e}®(a) = 0}

Let jX (the "jump"” of X) be defined as follows:

<X,a>

b ) = yl.

jX = {<e,a,0> | a ¢ Wz} v {<e,a,y+1> | F({e}
Note that JjX € w x I x w

j is defined in such a way that 3jX tells us which

subsets of I can be defined from X in a first order way
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and Jj gives for each such subset of I its image by the

fixed functional F.

Part II: the h-hierarchy

! We define now, inductively and simultaneously
1) a subset oF cwxI

2) a function | IF : 0F > on
3) for each ordinal ¢ in the range of | IF
a subset Hg cI

’

1) for all a eI ' <l,a> ¢ oF

[<1,a>]F =0

2) If <e,a> e 0 (say |<e,a>|F = o)

Then <2e,a> € oFf

e,a>|F =0 + 1

<2
F .

Hoep = 3

F
(H)

3) If <m,a> € OF (say ]<m,a>[F = @g)

<H§'a> F
we <0

Then <3m-5e,a> € 0F

|<3m-5e,a>lF = A = first limit ordinal strictly
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bigger than any ordinal having a notation in the set

<HF,a>

{<m,a>} v We = ux € On [X is a limit ordinal & X > o

<, a>

& (Vb emw, Ty > |n]

F

: F F }

H. = {<b,c> e I | be OF & [b]" <A & ceH
|b|”

[When there is no risk of confusion, we shall sometimes

F F
H <Ho,a>

write We o instead of We ]

Remarks

i) We defined OF as a subset of w x I, but by a previous
remark this can be identified with a subset of I

. c e m .e )

ii) The definition of [<37+5%,a>]| in clause 3)

makes sense because by hypothesis each member of

<HF,a>

{<m,a>} v W, o is already known to be a notation for

an ordinal

iii) Remember that we decided that 0 is not a Godel

number.

Part III definition of G <

“n F

The function f is said to be h-recursive iff there
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is an integer e such that f = {e}ﬁ where {e}i(a) = X

is defined as follows:

F . F
{e}h(a) = x iff e = <eprey> & <eg,a> € 0
/ .

F
F
(say ]<eo,a>| = 0) & {el}pg(a) =X & X € W.
. F
i.e. {e}h(a) ®* X means

1) e = <egseq>

2) <e_,a> ¢ oF (say l<e0;a>lF = o)

3) <I,H§> says that the elth function first order

definable over <I,H§> "takes the value x for the argument

a & x is an integer.

Notation
F F )
{e}h(a) ¥ means {e}h(a) = x for some X £ w

{e}i(a) 4+ otherwise.

Let G € Tp(n+2)

. . . . . ]
G 1is said to be recursive in F via Godel number e

iff (V£€ Tp (n+1)) (G(f) = {e};F'£>(O))

A partial function &: Tp(n+2) -+ w is recursive in

F iff for some integer e and for all G ¢ Tp(n+2),

8(G) = {e};F'G>(O).
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A subset R of Tp(n+2) is semirecursive in T

iff it is the domain of a partial function recursive in F.

A subset R of Tp(n+2) is recursive in F iff

its characteristic function is recursive in F iff

R and Tp(n+2)-R are semirecursive in F.

We would like now to prove a few lemmas in Harrington's
frame. When we are sure that it will not lead to confusing
statements we will drop the subscript h or the superscript F.

In this section, {e}G should thus be read as {e};F'G>

We will also from now on adopt an anthropomorphic
attitude: e.g. ordinals will be able to see, realize,
say, tell us, ..., whatéver can be deduced from them, or
better from their level of the hierarchy {Hc}’ We will
prove the following lemma to show how elegant this method

can be.

Lemma 0.1
There is a recursive function f : w -+ w such that

for every integer e and individual a, if
{e}F(a) = X & <x,a> ¢ oF  then

. F

(1) <f(e),a> ¢ 0

(ii) [<f(e),a>]| 3 |<x,a>
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Proof
Assume {e}F(a) * X & <x.,a> ¢ OF
.'.(by definition)' e = <eo,el> & <eo,a> € OF
(say |[<ejy,a>| = o)

Let A=1{beI | <I,HG> = e (b,a,...)} where

1
Hy
¢ is the graph of {e.}
e, 1'p
Note that 1) x e A (by definition of {e}F(a) = x)
2) x. e w (by definition of {e}F(a) = x)

3) x 1is the smallest integer y such that

y € A
If A ¢ oF
e e e e
then <3 O-5 l,a> € OF . say |<3 95 l,a>l = A

.7o A > Jul for all u e A, hence 1} > | x|

But this does not give us any information about <x,a>
and A might have as element some beI- OF. To solve

this problem we define A' as follows:

A' {<y,a> | y is the smallest integer in A}

* Al {<x,a>} (a is fixed of course)

By hypothesis A < OF.
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As e = <egseq> gives us all the information
needed to compute A, and as we can ideﬁtify the
integers among the element of I, we can find effectively

a Godel number e, such that

A' = {be I | <I,H_> ¢e2(b,a)}
e e
e <3052 45 ¢ oF
eo e2
and [<3 Te5 “,a>| = A > |<x,a>
e e

Let f(e) = 3 Q.5 2 , I

Definition 0.4

l) derived notation

We define a function fO : I - I as follows:
fo(a) = [ a if a =<1,b> for some b e I
<n,b> 1if a = <2n,b> ‘ (n € w)
<n,b> if a = <3n5e,b> (n,e € w)

| undefined otherwise.

fo(a), if defined, is called the derived notation of a.

A derived notation fo(a) is not necessarily a member of

OF, but an object which might be able to say that a is

a member of 0F
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2) If a = <3".5%p> (n,e gaw) and

if e is a Godel number

ii) <n,b> e OF (say |<n,b>| = 1)

Then we call the set {i e I | <I,HT>#= ¢e(i,a)}

the set defined by a.

3) If b e OF and b = <n,b'> for some n e w, b' & I

Then b 1is called a notation from b' for [b|

and |[b| is said to have an index from b'.

Definition 0.5

1) «F = L.u.b. {0 € On | ¢ has an index from some individual}

2) For each ordinal o < KF, we define the set
Og ={ceI | ceof & le] < o}

3) It is convenient to adopt the following notation:

if a ¢ 0F, we let la] = =,

Lemma 0.2

If ace 0F & be of & la] < |p]

Then

i) Hl is primitive recursive in <HTbl,a,b>
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ii) OTal is primitive reﬁﬁ;sive in <HTbl'a'b>

(Remember that "primitive recursive in X" means “"first

oréer definable over <I,X>")

Proof (by induction on |a])

Case 0: J|a| = 0, |b| is any ordinal ¢ < k'

F _ F _
Then H, = 00 =g

and ={xeI |1 x#x}

Case 1 la] = o+1 < |b] < «F

e

Then a 1is of the form <27,a'> and <e,a'>

is a notation for ¢

|<e,a'>] < |b|

¢ o

. e e . < < 's b
U H|<era'>l is primitive recursive in Hlbl' e,a'>,b

. e
and as e can obviously be recovered from 2 we have:

H_is primitive recursive in <H|

e
ol Il<2 la'>lb>

b

and also 00 1s primitive recursive in <H ,<2e,a'>,b>

Ib]

But <k,x> ¢ Ogﬂ <=> [k=1]v [(@c € w) (k = 2 &

<c,x> e 05)]v [@c e w @me w(k = 3"5% & <mx> e of

Hl<m,x>‘

& (Vy)(y € W,

=> v e Og)].
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By hypothesis a is a notg%ion for o+1l, hence

f,a gives us effectively a notation for ¢ and member-

0
ship of Og is primitive recursive in <Hlbl,a,b>. But

then <m,x> is a notation for some ordinal T < ¢ and

H
Yy € WeT is a relation primitive recursive in <H]b|'a’b>'
We can now give a definition for Hc+l:

H

<k,y,m> ¢ H0 <=>[m=04s&yc¢ WkGJV'[m >0

+1
<H_,y>

&F({k}p ) =m - 1.] -

As before f.a 1is an index for g, we have H0

0

primitive recursive in <Hlb]’a’b>' Thus we have a
first order definition for Hc over <I'<H]b!’a'b>>'

Using this definition wherever needed, we obtain a

first order definition of H0+l over <1’<H|bl’a’b>>

Case 2 |a] = A, with A a limit ordinal

m

Then a is of the form <3 °5e,a'> and foa = <m,a'>

is a notation for an ordinal T < A, such that

<H ,a>
T

< 0

We - A

We can then define 0§ as follows:
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<H_ ,a>

c € Oi <=> (3k € w) @x)(x ¢ W T’ v {foa})(c e 0F

where fl P w X w->w 1is defined as follows:

fl(O,d) =d

fl(z,d)
f1(2+l,d) = 2

This definition of Oi is simply using the fact that,

<Hp,a> F
by hypothesis, We < OA' The function %_is such that

if <m,d> is a notation for o, then <fl(k,m),d> is a
notation for o+k. We can thus reach all "finite successors"
of ordinals having notations in W;HT,a>U {foa}. A is
precisely the first limit ordinal bigger than all these

ordinals.

It is then easy to define HA as follows:

y

F
<b,c> ¢ Hy <=> Db ¢ OA & c € Hlbl

Remark

In the proof of lemma 0.2 we had to solve simultaneously
OF

the 5

and the H;, parts. This will happen again and

again ...

Corollary 0.3

If b and c¢ are notations for ordinals and a is

an individual

| <€ (k, () )4 (x) >
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Then the relations "b is a notation from a" and
"b and ¢ are notations from the same individual"

are primitive recursive.

(Corollary 0.3 would be false without the "if" part!)
We will now give an "anthropomorphic" version of

lemma 0.2.

Fact 0.4 (Fact G)

F

If ae 0 and Ja] <1 < F

F . .
Then HT can recognlize it as such

(i.e.: 1if T < KF (thus we have an index for T), and
|a] < T, then we can build HT and check in the structure

<I,HT> whether a is, or is not, a member of Oi.)

Note that if HT does not recognize a (as a
‘member of Oi), then either a is a notation for an
ordinal o > T or a ¢ OF; but H_~ does not tell us
which is the case. (Note also that, when we use fact G,

it is important to get effectively an index for T!) !

—

To make the proof of the following theorems easier

Notation

to read (and write), we will somctimes use -*- gg

coding operator: <k,a*b> should thus be read <k,<a,b>>,
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We want now to show that ipmis possible to compare
notations ("stage comparison theorem"). This theorem, due
to Gandy, implies the existence of a selection operators
for integers:

"there is a recursive function Xe | e' (e,e' ¢ w)
such that, if T is a non empty subset of w, semirecursive
in F with Godel number e, then {e'}F(O) is defined and
belongs to T."

We will prove the following result with many .details

because we want to use this proof to prove further results.

Theorem 0.5 (Gandy)

There is a recursive function f : I x I - w such

F

that if a e 0 or b ¢ OF, then f(a,b) is defined,

say f(a,b) = k, and the following hold
. F
(i) <k,a*b> € 0

(ii) [<k,a*b>| > min {|a]|,|b]|}

Proof

The proof is by induction on the min:

Induction hypothesis: (hfa',b' e I)
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If min {|a'|,[b'[} < min {|a|,|b]|}

Then @Fk' € w)(<k',a'*b'> ¢ 0F &

\ |<k',a'*b'>| > min {]a'|,|b'|})

This k' 1is f(a',b') (and thus can be found effectively).
Case 1 foa =a or f b =>DO
(i.e. Jal =0 or |b| =0)

lét f(a,b) =1

My Ty
Case 2 a =<2 ",a'> and b = <2 ~,b'>

We assume that at least one of a and b in OF

(otherwise there is nothing to prove)

. F F
. fhae 0 or f b e 0

But min {}foa], lfobl} < min {|a|,|b]|}

@

¢ ¢ by induction hypothesis, we can find effectively a
notation <m,c> for an ordinal o¢ such that

g

|v

min {|£jal,[£b|}, with m = £(fja,fb) and

= *
c foa fob.

Let m' be such that m' . carries all the information
needed to go from a*b to ¢, and also the information
contained in m.

§
Let f(a,b) = 2™ .



Case 3 assume a = <2

assume also a ¢ OF or b g OF

F F
\foa e 0 or fob e 0

oo by induction hypothesis, we get effectively

F
d = <p,fqa*f b> ¢ 0

We would like to_get_hold_of an ordinal 1, big enough
to recognize (as in fact G) whether (foa > OF) or

(fob £ OF) holds [Remember that it must be the case for
at least one of them] and such that 1 has an index
directly from a*b. |d] can only try to do the first
part of this, but from d we can get effectively p' € o
such that p' carries all the information needed to go

from a*b to foa*fob, and the information contained in P-.

Let d' = <p',a*b> and 1t = |4'].

We do not know whether 1 is > min {|a|,|b|}, but
we have an index for T, hence we can build HT and we
can compute from it. Hence we can recognize whether:

(t > lfoal) or (1 > lfob]) holds.

Case 3.1

H_ "says" T > ]foa[

¥
Then a is in 0Y: let f£(a,b) = 2P

* I<ZP',a*b>l =T+l > |[foa| + 1 = |a].
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Case 3.2

This is not the case
‘e H_ "says" T > [fobl
e’ T 1is big enough to compute the set B defined by b.

Does this mean that b e 0OF & [b] < 72

Everything would be fine if

B={xel]|<I,n >kF ¢ (x,b")} was a subset of O0F,
]fob[ ey

But lfob] might be too small to show this and anyway,

this might be false. Luckily, as 7t is big enough (and

as we got effectively an index for T) we can compute
effectively from e, a Godel number e, which carries the
information needed to go from T to ]fobl (i.e. from
the index_we got for T to fob) and the information

contained in ey, such that

B={xel| <I,HT>G= ¢e2(x,b')}

We have now a definition of B over <I,HT> from b',

thus we can find effectively a Godel number ey such that

B={xel | <I,H>& ¢ (x,a*b) }.
T e,

We will not compare each member of B with foa:
OF

it could be the case that foa and fob are both in
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. F F
but that [foa] > T > [fobl, with a e 0° and b ¢ 0°.

Let g : I >+ I be defined as follows:

glc) =| 1 if c ¢ B
<k,f0a*c> if ce B

with k = f(foa,c)

(By induction hypothesis k is well defined)

—

Clearly, g is recursive in B, thus in H

(together with a and b).

Note that ¢[B] & oF

We can now find effectively a GOdel number e, such

that g[B] = {x e I | <I,HT>t= 9 (x,a*b) }
] e4 4
Let then q = 3P 5 (remember that <p',a*b> is

an index for T)

Then <qg,a*b> ¢ OF and

T' = ]<q,a*b>] = 15t limit ordinal strictly
bigger than all members of {lge| | ¢ € B} v {1}

STt > T > ]fob]

and T' 1is big enough to check that B ¢ 0F or, if this

is not the case, 1t' > ]foa]

Let f(a,b) = 29
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@

Then <2q,a*b> is a notation from a*b for an

ordinal ¢ > min {|a],|b|}.

Case 4 assume a = <3 “e§

and assume that at least one of a or b is in 0°.

(1) By induction we know that f(foa,fob) is defined,

say f(fja,f,b) = k and that <k,f.a*f.b> ¢ OF

0 0

Let 1 = |<k,f a*f b>| = |<k',a*b>| where k'

0 0
carries as usually the information contained in k and

the instructions needed to go from a*b to foa*fob.

Remark: we have obtained effectively an index for

and thus, we can use fact G without problem.

F
T+1

(by fact G), if one of them ‘is in oF. But by hypothesis

(2) 1T knows which one (of foa and fob) is in 0

we know that this must be the case,

Claim 1

a, £f.b as a

T can recognize at least one of f 0

0
notation for a smaller (or equal) ordinal.

Proof of the claim: by definition of k = f(foa,fob)

claim (1) |
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>

Assume T recognizes foq. ‘Then 1 is big enough
to let us define correctly the set A defined by a

(over <I,HT>).

If A E.OF, we are done; but this might be false.
So look at every member a; of A and compare it to

fob. We know that either A < OF (»% a; € OF for all i)

or b ¢ OF (.°% fob € OF). [Tt is of course possible to

have A c 0¥ and £.b e 0F]. Thus for all pairs

0

' F
(ai,fob) € A X {fob} we have: at least one of a; ., fob e 0

and hence min {Iail,]fob[} is defined and strictly

smaller than min {|al|,|b]|}.

‘s by induction hypothesis, we will be able to use the

function f to compare each a; € A and fob.

We get thus a set of ordinals T = {Ta | a, € A}
i

corresponding to the set T of notations for ordinals

which. we get effectively by induction hypothesis.

Clearly we have a first order definition, say ¢e p
~ 2
of T over <I,H£> from a*b.

Let 1t1' be the least limit ordinal strictly bigger

than all members of T u {t}. It is also obvious that

v e
we get 1' effectively and that <3k *5 2,a*b> is a

\
notation for T'.
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Claim 2
T' must either recognize fob as a member of OF

(while 1 did not do so) or recognize A as a subset of

OF. T' must be such that for one of the two facts mentioned,

no ordinal ¢ obtained effectively, such that, o < 71°

can give the same conclus%on as T1' (i.e.: if there is

still something new to mention, T' mention such a thing.)

" Proof of the claim

T' > 1 (and we have an index for t')

.’ T' recognizes foa as a notation.

Assume 1' does not tell us that Ac OF. By
hypothesis Ac_:OF or b ¢ OF. If 1' does not say

that A < OF, then for some x € A, we have: either
x ¢ 0F or xe oF g x| > 1'.

e« s« When we compare x and fob, as we know that at
least one of X and fob is a member of OF and that
min {[x],]fobl} < min {|a|,|b|}, we have (by induction

hypothesis):

1) <E(x,£,0), x*£,b> & OF

0

2) |<f(x,fob), x*f0b>l =0 < T'

3) "a > min {lx],lfob[}
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Thus if f' does not idenﬁify A as a subset of
0", we know that T' must recognize fob as a notation
for a smaller ordinal.

T' is the first limit ordinal strictly bigger than
all members of T v {1}, thus (by definition of OF)
the first ordinal strictly bigger than all the members of

T v {1} for which we can expect to get (effectively) a

notation, whatever the sets A and T are.

claim (2) ’

(3) If 7' says "Aae 0¥ holds”
Then we "are done

but if 1' does not tell us that A < oF
Then 1' says that fob € oF

.« T' 1is big enough to let us define correctly the set B

defined by b over <I,HT,>

Clearly we get then effectively (remember: we have

an index for 1') a definition ¢e of B and a
3

definition ¢e of A over <I,HT,> from a*b.
4

By induction hypothesis we can compare, without
problem, all the members of A with all the members of B

(remember that at least one of A and B 1is a subset of

oF)



38.

This will give us effectivéiy (notation for)

ordinals Taibj for all (ai,bj) € A X B. We have
notations for these ordinals, for T and for T':

hence we can define a formula satisfied only by these

notations. All this can be done effectively because

we took all possible pairs (ai’bj) € A X B, Thus we

get a notation from a*b, for t™, the first limit
ordinal strictly bigger than T, T' and all the

Ta.b 's [Note that we got a notation for 1' wvia a
i73

similar argument, taking all possible pairs

(ai,fob) € A X {fob}]

(4) If 1" says "a S.OF holds”
Then we are done
Now assume that 1" does not say "A‘E.OF“
Then for some a; € A we have
la; ¢ 0F1 v [a; e oF & Iail > t"].
As t" > min {lail,lbj[} where a; is the "bad one"
we just described, and bj is any member of B, it must

be the case that

T" tells us that every member of B is in OF

“ be o anga oo > |b]|

® 8
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®

Assume <q,a*b> is the notation we got for T".

Let then ' f(a,b) = q. l

Remark 0.6 l

It is obvious that we can generalize this result

and prove by induction on the number of (candidate)

notations taken in consideration that for every integer k,

there is a partial recursive function £ IX w such

- that if at least one of al,...,ak € OF, then

f(al,...,ak) is defined, say _f(al,...,ak) = 1€ w and

(1) <i,a *...%a > ¢ of  ang

1

(2) ]<i,al*...*ak>] > min {]al],...,[ak]}.

Nevertheless we would like to note here that the
proof of theorem 0.5 can be rewritten in order to get a
proof of this remark, for every k, not using the induction

mentioned a few lines earlier.

In this new proof, the only interesting modification
comes from case 4: in theorem 0.5 we used "at most 3 ordinals"”
to compare 2 notations, we shall now need at most k+1 ordinals

because of the following claim:

Claim (3)

If 2% < k, and we have already obtained (effectively)
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an ordinal 1t (i.e.: we have an index for T) such
. : F

that T shows that foal,...,foal e 07, but does

not say anything about the sets Al,...,A2 defined

respectively by S RARRRLTE

Then we can (effectively).get an ordinal !
(i.e. an index t for 1') such that T' > T and either
T' tells us that one of the sets Ai is a subset of
oF (L <i< &) or t' tells us that one (at least)

F
of f0a£+l""'f0ak e 0.

Proof of the claim

1) We get 7T' (and t) as in theorem 0.5 by comparing

all possible k-tuple in Alx...xAzx{f0a2+l}X...x{foak}

2) Assume that T1' does not establish that Ai E.OF

for any 1 < 1 < &, then for some choice of xl,...,xl
in Al"”’Az respectively we shall have
(1) f(xl""’xl'f0a2+l""’foak) is defined

(say f(Xl,.--,Xz,foa2+l,...,f0ak) = i)

¥,..%x _*f g > g OF

* *
1 2 to%g4y ¥ E

(2) <i,x 02k

2 * * * —
(3) |<:L,xl .o xz*foa2+l ...*foak>] =qa < 7'

(4) o > min {]xll""lxll’lf0a2+1"""lf0akl}
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o o

*, T' must recognize one of! xl"'"Xl’f0a2+l""’f0ak

as a member of OF; but t' 1is unable to say whether

X)re-1%) € oF or not. Hence it must be the case that

T' 1is able to tell us that one of f.a f € OF

0%g+17 " r*o%
claim (3) }
¥

The proof of case 4 of remark 0.6 is then (nearly)

identical to that of case 4 of theorem 0.5 after replacing
claim 1 and claim 2 by claim 3 (for 2=0 and L#0 res-
pectively). Thus when we start, we get an ordinal «t°

and T1' must tell us that something (say foal) is a

notation. Then 12 will either say that Ay E;OF,

and then we are done, or only establish that another

candidate (say foa is a member of OF.

5)

Assume the worst happens: we must go up to Tk.

Then we know that all the foai's (1 < i < k) are

notations but we still do not know anything about the

sets Ai's (1L <1 < k). Then we can get Tk+l and, by

. k+1 . . .
claim 3, T must give us some new information: hence

k+1
T

the only possibility for is to establish that one

of the A.,'s (1 < i< k) is a subset of oF.
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We are now ready to prove the next theorem, first
announced by Grilliot in [7] and whose first correct proof

is due to Harrington and MacQueen (see [15])

Theorem 0.7 (Grilliot)

If " (1) g c¢ I is recursive in F

(2) Y

I=1{f] £ is a function from J to I}

is a subset of I

(3) JI is recursive in F
Then there exists a partial recursive function

f: JI > W such that, for every a ¢ JI if a(j) € OF

for some j € J, then fa is defined, <fa,a> ¢ oF

and |<fa,a>| > min {la(3)] | 5 ¢ a}.

The proof uses (heavily) the recursion theorem, an
effective transfinite induction and the proof of Gandy's

theorem given in remark 0.6.

Remark 1
This theorem needs a little bit of choice. From now
on we will always assume that AC holds. (AC has not

been used in the proof of 0.5 or 0.6).

Remark 2

We assume that J is recursive in F and I <1
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J -
e I is a subset of I recursive in F (i.e. (3) in

the hypothesis follows from (1) and (2)) and the power

set of J 1is recursive in F.

Look at all the subsets of J which are prewell-
orderings (no choice needed here); partition this subset
of 2J using the equivalence relation "... is of same
length as...". This gives a recursive prewellordering

of I [namely the sup of all ...] of length (card J)+

Proof

The proof is by induction on the min:

induction hypothesis (a, b ¢ JI)

If min {[b(3)] | 3 € 3} < min {|a(§)]| | § e I}
Then fb is defined, <fb,b> ¢ 0F and

|<fb,b>| > min {|b(3)| | j e J}

Remark 3

In theorem 0.5 we tried to compare two (candidate)
notafions for ordinals, in remark 0.6 we extended the
proof to k notatipns, for any k € w. Here we shall extend

the result to "J-many" notations.

Case 1 One of the a(j)'s is of the form <l,a'>

Then let f(a) = 1.
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@

n,
Case 2 All the a(j)'s are of the form <2 J,a'(j)>

We assume that at least one of the a(j)'s 1is
in OF, hence we have: at least one of the fo(a(j))'s

’

is in 0Y and
min {|£,(a(3))] | j € I} < min {lat3)]| | 3 € 3}

Let b ¢ JI be defined as foliows:
b(j) = fo(a(j)). Thus by induction hypothesis, fb is
defined and <f£b,b> e 0. Say |<fb,b>| = 7
®

oo HT will recognize at least one of the fo(a(j))'s

as an element of OF
«'¢ We can get effectively a notation from a for T+1,
say it is <p,a>. Let f+ta) = pP.
[Note that p must be an integer of the form 29

where g carries all the information contained in f(b),

together with the instructions needed to go from a to b].

Case 3 For some 3j € J (perhaps many), a(j) looks like
a notation for a successor ordinal and for some jl e J
(perhaps many), a(jl) looks like a notation for a limit

ordinal. Assume that for some i, a(j) e oF,

Then, take 1 as before, by looking at the derived

notations. .
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Claim (4) '
T must recognize at least one of the derived

notations as an element of OF.

Proof of the claim

By induction hypothesis, 1t > min'{lfo(a(j))l | 3 ¢ J}

and by hypothesis (33 ¢ J)(fo(a(j)).e OF). Apply fact G.

claim (4)!

If one of the derived notations recognized by T is
derived from a candidate notation for a successor, then
we are done (by case 2). So let's assume that we deal
only with candidate notations for a limit ordinal, which

is case 4.

Case 4 Assume that all the a(j)'s are of the form
n. e. P

<3 J.5 J,a'j> and that, for some j e Jd, a(j) e 0.

(x,a'.)}
3 j

(5) Let Ay =d{xer1 | Trlleng,an > F o

[Ncte that this definition (5) has a meaning iff

<nj,a's> = £0(a(3)) € 0F1.

Stage 0 by induction hypothesis we can get a notation
for an ordinal t° > min {lfo(a(j))] | 3 ¢ 3}. Hence

TO must recognize at least one fo(a(j)) as a member



46‘

of OF. For each fo(a(j)) recognized by TO, develop-

the set Aj. (It is possible, because To is big
enough to use (5): this works as in the proof of

remark 0.6)

-

Stage a+l

Assume that up to stage o, we have got hold (effectively)

0 1 which

of ordinals T , T ,...,Ta (with TO < Tl <.o.¥ Ta)
have, each in his turn, recognized some fola(3)) as a
member of OF. (say 1% does it for all j e JO). Assume

also that we are still unable to say anything about the
fo(a{j))'s with j e J - JO’ but that we have developed
all the sets Aj for j e JO’ not knowing whether

Aj < OF or not.

We know that one of the a(j)'s, j € J, is a notation
(by hypothesis).

Define Ta+l as follows: pick in all possible ways

-one element in each set Aj (7 € JO) and complete the

0" By induction

hypothesis, for each "picking".p, we get (effectively) an

sequence by the fo(a(j)) for jeJd -J

ordinal 1t(p). Take (effectively) a notation for the

first limit ordinal strictly bigger than all 7t(p) and

. . . +
% it is a notation for t°% l.
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(1) This procedure is effective (i.e. Ta+l has a

notation) because we took all possible "pickings".

(2) As we want to be able to "pick", we need choice.
This does not mean that we will be able to get a recursive

well ordering of I.

Claim (6)
Either Ta+l identifies (at least). one of the
Aj's (3 € JO) as a subset of OF (which % could not
do) or Ta+1 recognizes (at least) one fo@a(j)),
jed - JO’ as a member of OF (which could not be

done by Ta).

Proof of the claim (as in remark 0.6)

Assume Ta+l does not identify any Aj (7 ¢ Jo)

as a subset of OF. Hence there is 'a "picking" of members
of the Aj's (3 € JO) such that for each element b'

chosen in, say Aj, we have [b' ¢ OF]\/ [b € oF & Y| > Ta+l].

Hence, by induction hypothesis, Ta+l must be bigger or

equal to some [f (a(j))| for some j e J. - J, and thus,
- . . .

oL recognizes this £,(a(j)) as a member of oF.

claim (6)
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Stage A , A limit , A < (card!j)f

Here appeérs the main difference with remark 0.6:
let TA be the first limit ordinal strictly bigger than
the effective supremum of {tP | B € A}. Remember that
for each such TB we have a notation. Here we need the
fact that JI is recursive in F, thus that there is a
recursive preﬁellordering of I of length (card J)+ to

Justify the fact that we can go effectively as far as TA.

As Ta+l is always doing something new

(o < (card J)+) by claim (6), we will eventually (as

in remark 0.6) establish that some Aj is a subset of
OF, or (in at most (card J)-steps) that all the fo(a(j))
are in OF: at the next step we must then show that some

a5 (3 e J) is a subset of OF,

Hence we proved that a(j) is a notation and we have
an ordinal T, and a notation from a, <g,a>, for 1t (all

obtained effectively) such that 1 = [<q,a>] > |a(3)].

Let then £(a) = q.

Note that Tp(n-1) has all the properties required

for J in theorem 0.7.

Grilliot's theorem has as immediate consequence the

following results:



49.

Corollary 0.8

The relations semirecursive in F are closed under

existential quantification over Tp(n-1) . ‘

Corollary 0.9 l

Let R be a non empty set of subindividuals
semirecursive in F. Then there exists a non empty set
S & R recursive in F. We can éven compute S uniformly

from an index (h-index) for R. {

The following thecorem summarizes the most interesting

properties of the sets semirecursive in F.

Theorem 0.10 (Assume n > 0)

Sets semirecursive in F are
a) closed under universal quantification over I
b) not closed under existential quantification over I

c¢) closed under existential quantification over Tp(n-1)

(hence over w) a

Definition 0.6

[Remember that we are still in Harrington's universe.
Similar definition (see definition 0.5) could be given for

Kleene's or Sacks' frame].

The following ordinals are naturally associated with F':
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(i) Kp = sup {[<m,0>l | <m,0> ¢ OF}

sup of the prewellorderings of I which are

recursive in F

= sup of the ordinals having an integer as notation.

(ii) For j 2 n, we have more generally:

K? = sup {[<m,a>] | a € Tp(j) & <m,a> ¢ 07}
<F,a> .
= sup {KO | a e Tp(g)}

It is easy to see that, for n > 0 and for all j < n,
there are ordinals o < K? which do not have a notation
from a type j-object (although they have notations).

This motivates the definition of another ordinal:

(iii) A? = sup of all the prewellorderings of Tp(3)

which are recursive in <F,a> for some a ¢ Tp(3j)
= the order type of {|<m,a>| | a € Tp(j) & <m,a> ¢ oF}

We will now present a set theoretic frame for a

definition of recursion in F.

Definition 0.7 (Harrington)

The L(F)-hierarchy

For an ordinal o, define LU(F) by:
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LO(F) =1
Loy (F) = {x S L (F) | X is first order definable with

parameters over the structure Mc(F)}

LA(F) = LG(F) for A 1limit
§<A

with M_(F) = <L_(F), €, F P (Tp(n+1l) N L (F))>

Let L be the first order language appropriate

to the structures MO(F).
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l. A few equivalences

The L(F)~- hierarchy is in fact very similar to the
hierarchy used to define "h-recursive in F". We shall
show later that these two frames are (more or less)
equivalent.

In fact we dispose now of 4 frames: the L(F)-hierarchy
and the three "universes" of, respectively and chronogically:
Kleene, Sacks and Harrington ([10], [24], [8]). The first
and the last one seem to be equivalent: we want to state
precisely, and prove, what this means. We will also show
that, if we assume that F = <an+2E> where' F' 1is some
fixed object of type n+2, the definitions of "h—récursive
in F", "k-recursive in F" and "s-recursive in F" are
equivalent (We assume n >.1).

We would like first to use the setting of the
L(F)-hierarchy to define a (fourth) notion of "recursive
in F". The main problem is due to the fact that the three
other frames yield to a collection of "interesting ordinals",
we have even for each of these universes a top-ordinal,
the biggest interesting ordinal, which we ambiguously
denoted always by KF; but the L(F)-hierarchy does not

give us the least indication about the height of this KF.

—————e e
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Assume (provisionally) that we know the exact value

<
of KF and of the ordinals KOF'G> for all G e Tp(n+2).

We might want to give now the following definitions, in

the frame of the L(F)-hierarchy.

Definition 1.1

{e}<F'G>

For all G € Tp(n+2), (0) ¥+ (converges)

. . . th
iff MK<F'G>(<F,G>)E= ¢e where ¢e is the e——-zl sentence
0

over M (<F,G>).

K<F,G>
0

For a e I, Mc(<F,a>) is essentially the same as

MG(F). Thus fixing F, we define now:

Definition 1.2

ACI is semirecursive in F 1iff there is a

Zl formula ¢(x) in L such that for all a e I

[a € A iff Ma(F)Ffb(a)]
o

Luckily, if we want to define in a natural way a

recursion theory in the L(F)-frame, we do not need to give

<F,G>
K °

all the KF and 0 : it is enough to translate the

definition of h-recursion. We will show first that

for o < KF:
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1) MU(F) can be coded by a subset of I primitive recursive

F

in Ho+2 and
2) Hg is first order definable over MO(F). (and this

can be done uniformly).

We will then prove the equivalence between the other

definitions as follows:
3) s-recursive is equivalent to h-recursive.
4) h-recursive implies k-recursive

5) k-recursive implies s-recursive.

Proposition 1.1

. r .
For each notation a € 0, say la]F = g, we define

uniformly in a 5 subsets of I: X_, E_, F_, =_, P_ and
a a a a a
one subset of w x I: S, all primitive recursive in

<H§+2,a> such that the structure MO(F) will be coded

by these sets and relation where Xa will code the universe
Lg(F), with Pa as equivalence relation (two different

individuals could denote the sa@e member of LO(F)), Ea
will code the € relation and Fa the relation "Fx = y".

Finally = will code the equality and Sa the satisfaction

predicate.

In fact, for each a ¢ OF we will define a code Ma

for a model of M

| F). We must thus keep track inside
a

!
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each of these M_'s of the different "names" given to the
same object and of the parallel development of all the

Ma's coding the single MI lF(F).
a

We will define a coding in such a way that if a set
X 1s constructed in the L(F) - hierarchy at level
o < &t (say o = la]F), then x will be coded by a pair

of the form <a,m>.

As for each a ¢ 0F we will define a model ‘Ma

to encode M p(F), if a, b e 0F & lalF = ]blF = 0o,
a v

then for each member of LO(F), M, and M, will have
different codes. This explains why we need an equivalence
relation to keep track of these different codes for a given
element of L(F). As we wish to take unions over ordinals

(hence over all possible notations for such ordinals) at

the limit stages, we will have inside a given model Ma

(say la]F = wtw) many different codes for the same object
of L(F). It is thus clearly a necessity to keep track of
the relation "x and Y are codes from a for the same object

of L F(F)".
la]

As earlier, we will use the * notation to make some
formulas more readable: <a,b*c> must be read as <a,<b,c>>

where < > is our "universal® coding operator.
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Notations.

1) If x a code (x € xa for some a ¢ OF)

Then x is the element of Ll l(F) coded by x
a
and x 1is said to be a code from a

(a)o
,(a)l> so that

2) If a e OF, then a' = <2

" a' e 0F ana Ia']F = ]a[F + 1

3) If be 0 and |b|f = 141
Then b-1 is an abreviation for <log2 (b)o,(b)l>

i.e. b-1 represents a notation for T from (b)l.

Proof of proposition 1.1

The proof is by induction on lalF

Case 0 ]alF =0
’ a is of the form <1,b>

(4 @

MO(F) = <I, ¢, F rI>

Let (i) x ¢ xa <=> (x)0 = a & (x)l e I

~

[here x

(x)l]
(ii) (x,y) € Ea <=> x ¢ Xa & Yy € Xa & (x)l € (y)l
(iii) (x,y) € Fa <=> X ¢ Xa &y ¢ Xa & (y)l E W

& @c)@e)le € w & ¢ is a finite sequence of individuals

<H§,c>

& (x)) = (e} & <e,c, (y)+1> ¢ HI)
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(iv) (x,y) e P <=> (3b)(30)[(x)0 = <1,b> &
(Y)g = <l,c> & (x)l = (y)l]

(v) (x,y) € =, <=>xeX &yce Ya & (x)l = (y)l

(vi) Satisfaction

Let e be the Gbdel number of 4.

Let b be a finite sequence of members of Xa'

14

By (i), (ii), (iii), (iv) and (v) we know that Xa’ Ea’ Fa

Pa and =, are first order definable over <I,H§>.'

Let ¢O’ ¢l’ ¢2, ¢3 and ¢4 be the formulas which,

respectively, define them. Then

_ . F
<xa, Ea’ Fa’ = Pa>&= ¢e(b) iff <I,Hl>§= ¢e*((b)l),

where e* carries all the information contained in e
and the instructions needed to translate ¢e using
F
0gr ¢y 954 63 and ¢,. But <I,H;>F ¢ ,((b);)
P e
Hyo *
e W iff <e ,(b)l,0> € H
e

F

iff (b) 5

1

Remarks (Remember that [aIF = 0)

*(i) means that x will be a code from a for an

individual b iff x = <a,b>
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*(ii) means that to know whether a pair of individuals is
in Ea (which attempts to code g) we simply lock at the
objects which are coded: since we are at level 0, this can
be done easily.

~

*(iii) means that if x 1is a code from a for x and

if y 1is a code from a for vy, then Fx =y holds iff
Y € w and x, viewed as a primitive recursive function,
argument of F, yields to y. Here again we use the fact

~

that x = (X)l'

*(iv) means that if x is a code from <1,b> and y is
a code from <1,c> (with b, ¢ € I), then "laIF knows

whether they code the same element of I, F(F), or not":
a

again we just need to look at (x)l and (y)l.

* (v) means that if x and y are both codes from a,

~ ~

then la]F knows whether x =y or not: again we simply

look at (x)l and (y)l.

Case 1 a e 0 ana [alF = o+l
a 1is of the form <2e,u>-
e
b = <e,u> 1is an index for g, a' = <22 ,U> 1s an
. 525
index for o+2 and a" = <2 +u> 1is an index for o+3.

But (a)l = (b)l = (a')l = (a")l = u.
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Let

(1) (x,y) € B <=> [(x,¥) € EJJV [xy) ¢ E &
X e X, &Y ¢ X, & 3k e w) @c) (y = <a,k*c> &

c is a finite sequence of members of Xb &

k is the least GOdel number of some formula ¢ &

k defines a new set & Sb(k,x*b)]
i.e.: (x,y) € E, <=> (x,y) was already in Eb’ the
"preceding" code for the e-relation, or this was not the

case, but x was in X, ¥ = {u e Xy | ¢, (u,c) holds in Mb}

for some formula and ¢ a finite sequence of elements

Py

of Mb) and Mb = ¢k(x,c).

(i) y e X, <=> [y e X lv [y ¢ X, & (3x)
(x € Xp & (x,¥) € E)]
i.e.: X is the field of E_
(1ii) (x,y) € F <=> [(x,y) e Fylv [(x,¥) ¢ Fy

& xe X &Y€ X & (y)l e w & Bk £ w) Bc € Xa)

F

— *
((x), = <k,c> & <k¥,c,(y){+1> € HO+2)]

(i.e.: (x,y) € Fa iff (x,y) was already in Fb or this

was not the case but x 1is in Xa' defined using the

formula ¢k and the parameter(s) ¢, Yy is also in Xa

~

and codes an element of w and F(x) = y. To express
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°

this last relation, we would like to use immediately
<u¥,a>

F o]
P

. F .
R iff <I,H0>i= F({i}

H but <i,d,m+l> ¢ H§+ ) = m,

1
so we must first use the definition that we have of
X, Y and ¢ to translate the formula. This explains

why we use k* instead of k. We must then use Hg+2

because we started with ]alF = o0+1, thus: we have

F "

*
"<k 1Cy) +1> € H .,

(1v)  (x,y) € B, <=> [(x,y) € P1V [0e,y) 4 Py & (x)g ¢ 08,
F F F .

& (x), € Oc+2 & (), ¢ 00+l & (y), e 00+2 & (Ik,k' € w)

(c,c' € I) (x = <(x)o,k*c> &y = <(y)o,k*c'> &

Vu ¢ X(x)o_l)(gv € X(y)o_l)(s(x)o_l(k,u*c) =>

*
S -1k ,<v¥*c',u>)) & Mv e x

(¥) (¥) g-1’

Au e Xy L)) 8y L (Kvren) =8 6T are,ve))

* "
where' k is a Godel number for "(u,v) ¢ Pb & ¢k.(v,c')"
* * . "
and k is a Godel number for "(v,p) € Pb & ¢k(u,c)"
i.e. (x,y) € P (or in other terms: lalF sees that

-~

X and y are equal, even if they are not codes from the

same individual) iff they are already considered as such

before ]a]F, or this was not the case (because they are
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.

both new) and (x)o, (y)0 are Poth\notations for o+1,

and for all wu satisfying the definition of x, there is

a v satisfying the definition of y (in their respective
models) and lblF says that this v 1is equivalent to

the given u ("equivalent" for lb]F is already defined);
and conversely.;;

e every element of x(x) satisfying the definition
0

.0of x_.in M( has a "perfect" copy (at least one,

x)o

probably many) in X(y) . satisfying the definition of y
0. :

in M and conversely: every...

(¥),
SV (x,y) € =, <> [xe X &y e X &'(xfyf e =l
VvV [x ¢ X, & x € X_ &y ¢ Xp &y € X & (3kl, k, € w)
(gcl, c, € I) (x = <a, ki*c;> & y = <a, ky*c,>

& Sb(<kl*k2>, cy*e,))]

where.<kl*k2> is a Godel number for the formula

"<V%>(¢kl<u,cl) <=> ¢, (a,e,))".
2 .

i.e. (x,y) ¢ =2 iff both x and v are in Xa and either

they are already in Xb and " (x,y) € =b"_holds or none
of them is in Xb, in which case x is defined via some

Godel number kl and the parameter (s) ¢ and y is
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-

defined via some Godel number 32 .and parameter (s) C,-

1 and k2 have been chosen to be the smallest Godel

number for the formula defining x from cq (respectively

k

y from c2), but this does not imply that ¢k and ¢k

1 2
are the same (e.g.: let ¢k be (u = 2+2) and ¢k
1 2

be (u = 22). ¢k and ¢k define the same set). The

1 2

'Only thing we must say is that the same elements of Xy

satisfy ¢kl(u,cl) and ¢k2(u,c2) in Mb; this can be
done using a Godel number obtained effectively from k,

and k and the satisfaction predicate Sp (which is

2'

C e . . . F
primitive recursive in o+2 = |a| +1).

(vi) Satisfaction

¥ = o+1, |b|F

We know that |a =0 and (a); = (b),

Let e be the G8del number of ¢ and let d be a

finite sequence of members of Xa.

, P_, =_ are first

We know already that Xa’ Ea’ F a a

a

. F
order definable over <I’Ho+2>' Let ¢0, ¢l' ¢2, ¢3 and ¢4
r

define respectively these sets over <I,H0+2

>. Let ¢,

define d.
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Then <X,, E,, ...>E ¢e(d)’\ (i.e. S_(e,d))

: . .F
iff  <I,H_ > #‘¢e*(d)

* . N . . .
where e carries all the information contained in

e and the instructions needed to translate ¢e using

¢Ol ¢il ¢2’ ¢31 ¢4 and ¢5'

F
H

+

But <I,H ,.>F ¢ ,(d) <=> d e w 0+2

o+2
e e
* : F
<=> <e ,d,0> ¢ H0+3
Case 2 IaIF = A, X 1limit ordinal

a nm

e'e a is of the form <3%.5 ,a'>
At this stage we will attempt to glue together all

the Mb's for b ¢ OF, such that |blF < A

(1) x e X <=> db e Oi)(x € X))

. . _ F

icee: x_=Utx, | Ip]¥ <)

(i1)  (x,y) € P_<=> @b e 0})[(x,y) ¢ P]

i.e. A says that x and y are code for the same object

iff it has already been said before.

(iii) (x,y) € E_ <=> Jb ¢ 01;) Gu,v)(ueX &veEZX &

b b

(u,v) € E & (x,u) € P_ & (y,v) ¢ P,)

b
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®

i.e.: (x,y) € E_ iff somewhere before some [b]F said
that x is equivalent to some u, y is equivalent to some v,

~ ~

u and v belong both to X, and u e v is true in Mlbl(F)

(iv) (x,y) € Fa iff (gb € Og)(gu,v)(u € Xb &ve X &

b
(u,v) e Fb'& (x,u) ¢ Pb & (y,v) ¢ Pb)

(v) (x,y) € =_ iff (x,y) € P

(vi) Satisfaction

Let e be a Godel number of ¢ and d a finite
sequence of members of Xa. (
We know already that Xa’ Ea’ ... are first order

. F .
definable over <I,HA+1>. Let ¢O”"’¢4 define

respectively these sets over <I,H§+l>. Let ¢5
define d.

Then S,(e,d) <=> <X_,E_,...>kE ¢_(d)

F

- F *
<=> <I,HA+1>3= ¢e*(d) <=> <e ,d,0> ¢ H>\+2

*
where e 1s obtained as in the successor case.

[In fact as A is limit, and as we only want to

quantify over all b e 0F such that [b]F < A, we could

start with sets first order definable over <I,H§? and end

§+l' We chose to start with definitions
F

over <I’Hi+l>’ to have for all o < k : Mo(F) can be

with <e*,d,0> ¢ H

coded by a set primitive

—
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. . F
recursive in Ho+2 and a notation for o.]

Thus at the limit stage, either we want to look at
some previous stage, and to do this we may want to replace
everything we have by equivalent copies, all in the same
model (where the equivalence is vouched for by some Pb)
and we do not add anything new to the set considered,
or (case of =a) we take all equivalent objects using
l F

all P 's (for |b|® < laIF) in this definition. As

b
we introduce at the limit level many equivalent objects
in the same model (previously they were in completely
different ones) we must enlarge considerably the relation

coding the equality.

The satisvaction is defined in the obvious way.

Remark ’
The proof of proposition 1.1 uses constantly lemma 0.2,

corollary 0.3 and our fact G!1!!

Proposition 1.2

For each o < KF, given a notation for ag, Hg and

06 are first order definable over MU(F).

In fact we shall prove (by induction) that there

are functions f and g such that:
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If <e,a> 1is an h-index for o

Then f(<e,a>) 1is defined and is the GOdel number of a

formula ¢f(<e,a>) of L such that ¢f(<e,a>) defines

Hg over MG(F) and g(<e,a>)- is defined and is the

Godel number of a formula ¢ of L such that

g(<e,a>)

¢g(<e,a>) defines 0  over M (F) (where 0_ 1is as usual

e oF | |b]F < oh

Case 0 Let <1l,a> Dbe an h-index for 0
Let e, be a Gddel number for x # x

Then, let f(<1,a>) = g(<l,a>) = ey

Case 1 Let <Ze,a> be an h-index for o+l

e <e,a> 1is an h-index for ¢ .
F ' H§ <H§’b>
Then H o, = {<i,b,0> | b ¢ LA }u {<i,b,x+1> | F({J.}p )

b' & H§+l <=> @i,y e w)@b e I)(I(y = 0 &

B <Hf ,b>

{i}pc(b) =0V @x € w)(y = x+1 & F({i}, Ty = x)]

& b' = <ilbly>)
But 1) H < Lc (F) and we have an index for ¢

H

a4 Qt

is first order definable over MG(F) by

induction hypothesis

= x}
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®

L4

. F .
¢ o ¢f(<e/a?)_ defines H0 over Mc(F)

F
[ 4
v e Hc € Lo+l(F)

and 2) By definition {e}; is the e function which

is first order definable over <I,X>

F
H
¢ {i} © is first order definable over M _(F)
& @ p o
. H
P {l}p € LO’+1(F)

Hence we can express the relation "b' ¢ H§+l"

by a formula of L (in a first order way over Mo+l(F))

and by (1) and (2) this can be done effectively.

Let £(<2%,a>) be a Gddel number for such a formula.

Now 0§+l = {<n,b'> € I | <n,b'> ¢ of & ]<n,b'>|F < o}
. F 3 F F F _
,.b800+l<—>[b500]\/[b80 & |b|® = 0]

1) by induction we know that 0§ is first order definable

over Mo(F)' It is thus enough to show that (as <2%,a> is

an h-index for o+l) the relation [b' € 0F & |b'lF = g]

(F))

can be expressed in a first order way (over M0+1

2) But [b' e OF & [b‘IF = g] means "b' looks like a
notation but b’ ¢ Oi and b' 1is of the form <2°,a'>

with <c¢,a'> a notation in 0§ or b' 1is of the form
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F

‘ Hl<m,a'>]

<3c-5m,a'> with <m,a'> ¢ 05 and We F

g;Oc and

g is a limit ordinal or b' = <1,->."

ice. Gxewddaenip =<k,a> &b § 0

& (k=11 v [@m e w) (k = 2" & <m,@> e 0] v [@Am,2 € 0)
F
H F
J<m,a>|
)

m %

. F F
(k = 375 &<m,d>800& SOO

s o ewMa e n<par> e Og => <2P,q'> ¢ 05))])

Thus we get effectively (because we know already

that we have first order definition for

F

H F
0§, Wﬂ’l<m’d>l s+++) a formula of L and hence we let

g(<2%,a>) be a G8del number for it

Remark

We assume that we know the rules of formation of
notations for ordinals and then we say: either b ¢ OE
or b ¢ Og: in the first case, as we have an h-index
for o, we‘use the induction hypothesis and in the second
case, and if b 1looks like an index (b is of the form

<l,...> or <21,.°.> or <3c-5m,...>), then one of the

four following cases can arise:

o F
0, OObaol

(1) b=<1,b'>, then be 0F & |b|¥
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(2) b = <2m,b‘> and we know that <m,b'> ¢ Og ’

F 1

Q@
e o b E 00+l

(3) b = <3%5M,b'> and we know that

F

(1) <m,b'> ¢ Og (say |<m,b>[" = a)
o
and (ii) W~ < 0 -

¢ e b 1is a notation for a limit ordinal

and (iii) o 1is a limit ordinal.

by b ¢ Oi, we have lblF = A

|v
Q

by (i) and (ii), we have |b

. F _ F
.« |P|" =0 and b e 041

(3) otherwise: b 1is not a notation for o

Case 2 Let <Be-5m,a> be an h-index for A, A 1limit.

2 T = |<e,a>|F o<

F

Hy

_ F F
= {<b,c> | b ¢ 0, & ce Hlbl}

We have (1) b' ¢ Oi <=>b' ¢ OF & lb‘]F < A
F

H
<=> ac) (Bd) (c € (WmT V {<e,a>})
F
0
la|®

where "d 1is a finite successor of c¢" is defined as

)

& d is a finite successor of ¢ & Db' ¢
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in case 2, lemma 0.2.
This works by induction hypothesis: as <3e°5m,a>

is an h-index for A, A limit we know that

(1) <e,a> ¢ oF & l<e,a>[F < A

H F
(2 wl<e ™ o oF

b4

H

W I<era>lF

where is first order definable over

M (F). So this gives us a formula defining OF
I<ela>lF A

over MA(F).

Let g(<3e'5m,a>) be a Gb6del number for that formula.

F

: _ F F
(2) b e Hy <=> abo, by € I)(by e 05 &b

€ H
F
b, |

1

& b' = <b0'bl>

by (1), b, e Oi is first order definable (effectively)
and by induction hypothesis and the fact taht bO is now
F

F is first
0

known to be in Og, the relation bl € H

.order definable (effectively) over MA(F).

This gives a formula defining HE. Let f(<3e-5m,a>)

be a Godel number for this formula. l
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Before we leave the wonderful frame of h-recursion,
we want to point out a few consequences of propositions 1.1
and 1.2 (and of the properties of the h-recursive

functionals)

Corollary 1.3 (Harrington)

There is a 1l-1 recursive correspondence e <> ¢e

between integers e and Zl sentences ¢e in L such

that, for all G & Tp(n+2)

- <F,G> . .
{e} (0) ¥+ iff MK<F’G>(<F,G>) = o,

0

(see definition 1.1) l

Corollary 1.4

(1) M F(F) is not admissible
K

(ii) M F (F) 1is admissible with gaps i.e. the part of
K
n-1

M P (F) which uses subindividuals as notations for
n-1

ordinals is an admissible structure.

For the last part of this chapter we assume that

n(> 1) is a fixed integer and that F = <F',n+2E> where

F' is some fixed object of type n+2.
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Proposition 1.5

*

h-recursive => s~-recursive
Proof: it is enough to show that there are s-recursive
functions £ and g such that
If <k,a> is an h-index for o

Then f(<k,a>) and 4g(<k,a>) are defined and

(1) Hg is s-recursive in <S§,n+2E,a> via Gddel
number £ (<k,a>)
(ii) Oi is s-recursive in <S§,n+2E,a> via Godel

number g(<k,a>)
The proof is by induction on I<k,a>|F

Case 0 <l,a> 1is an h-index for 0

Let e, be the smallest Godel number for @

Let £(<1,a>) = g(<1l,a>) = e,
Case 1 <2e,a> is an h-index for o+l
e <e,a> is an h-index for o
Let £f(<e,a>) = e and g(<e,a>) = e,
e Hg is s-recursive in <S§,n+2E,a> via e

. H
But <i,b,x> ¢ Hc+l <=> [x =0 & b ¢ Wi 1l v
F
<Ho_,b>

[x > 0 & F({i}p ) = x]
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F . ) . . F- n+2_ . .
¢ H is s~recursive in <S8 E,a> via some
é .

* Yo+l o+l’ -
Godel number e,
Let f(<2e,a>) = ey

Now OF, 1 = {be 0} "{bedf | |b|f =0

By an argument similar to that used in proposition 1.2,

F . . . n+ .
we can show that 00+ is recursive in <S§+l, 2E,a> via

1
some Godel number e,.

Let g(<ze,a>)'= e,

Case 2 <3m°5e,a> ~is an h-index for A, A limit.

e . .
¢ ¢« <m,a> 1s an h-index for some o < A
F

<Hysa> F F +2
and: We c 0 and is s-recursive in <Sc+l’n E,a>,
thus in <S§,n+2E,a> let £f(<m,a>) = e and
g(<m,a>) = e,

We have:
(1) b' 0] <=>b' ¢ 0% & [b'|F <2

as in proposition 1.2, case 3, we can prove that
. . . n+2 . :
0 1s s-recursive in <SF E,a> via some Gddel
A A' 7

number e4.
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Let g(<3m-5e,a>) =e,

e 1 & b' = <b

'F
I, |

as in proposition 1.2, we can prove that Hi is

. : F__ F
(ii) b' ¢ 3A <=> (ibo,bl)(b0 e 0y & by 17bg>)

s-recursive in <S§,n+2E,a> via some Gbdel number es.
Let £(<3™.5%,a>) = e, |
Proposition 1.6
s~recursive => h-~recursive
To simplify the notations, assume that
1 n+2 ' " n : .
F = <F , E> and F' = <F",g> where F is a fixed

(type n+2) functional and g is a fixed (type n+l)
function.
It is enough to show that there is an h-recursive

function £ such that
If <n,a> is an s-index for o

Then £(<n,a>) 1is defined and S§ is h-primitive

F

G+1 and

recursive, with Godel number f(<n,a>), in H

<n,a>.

Case 0 <1,a> 1is an s-index for 0

F

x € 8y <=> Ay € I)[(x = <1,y>) v @Bn € w)(x = <1,y,n> &

gy = n)l
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Let f(<1l,a>) be a Godel number of a formula

defining Sg -over <I,H§> (note that we need Hi
because Hg = @ and does not give information about
the values of g, while HE gives all indications

concerning the values of g P I).

Case 1 <2e,a> is an s-index for o+l

1) for some i e w, <i,a> is an s-index for o
F

2) <2e,a> $ s
o

3) there is a function h s-recursive in

<SF'n+l

p E,a> via Godel number e (by induction on the type

in the definition of s-recursion). Now <i,a> -is an
s-index for o¢ iff f(<i,a>) is defined, say €£f(<i,a>) = k,

and k is the Godel number of a set T h-primitive

recursive in H§+l & <2%,a> ¢ T & <i,a> e T &
g, 7, a5

n
{f'(e)}; is total (where the function f' is

obtained from the function used for the previous type)

F

& T =Sl<ila>ls'

The first part of this expression gives a definition

of "<i,a> is an s-index for 1T"' if T = Sf, and the
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last part (T = ST<i a>| ) is h-primitive recursive in
14
s
H§+1 (and <Ze,a>) because we assume by the first part

of this sentence that <i,a> is an s-index.
[

o'e {i ]| ie w & <i,a> is an s-index for o} is

. . . e . .
h-semirecursive in <F,<27,a>> (a is fixed) and not

empty.

°e By Gandy (0,5) we can select effectively an io

é ©

such that <i0,a> is an s-index for o.
+‘c we have now <io,a>, an s-index such that
[<i0,a>]S = 0.
But X ¢ SF <=> [X ¢ SF] V [X 4is an s-index for
o+l o)
o+l] V [X = <3c,d,v,m> & <2c,d> is an s--index

for o+l & {c}g(b) =mly [X = <5%d,m> &

<2°,d> is an s-index for o+l & F"(Ab | {c}S(b)) = m)
where G = <S§,n+lE,d,<2e,a>>
o gF is first order definable over <I.H' .> if
e o o+1 5+2

"X 1is an s-index for o+l1" is also first order

definable; but this is obvious (because we start

with an s-notation for o+1).
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. Thus the only things that we must say are:

(1) X 1is of the form <2e;a> (e € w, e # 0)
.. F
(ii) X ¢ S
<n+lE,S§,a>
(iii) {e}s is total.

(1) and (ii) are trivial (by induction on the

ordinals) and (iii) also (by induction on the type)

Let £(<2%,a>) be the smallest Gddel number for

.. F P
the formula defining Sc+l over <I’Hc+2>

Case 2 <7e,a> is an s-index for X, X limit

) . . F
¢ o <Ze,a> is an s-index for some So' g < A

@ . . G . .
o%e £(<2%,a>) 1is defined and {e}s is an s-recursive

set of s-notations for ordinals (with G = <Sg,n+lE,a>).

By induction on type and ordinals, it is clear that

Si is first order definable over <I,H§+l> . Let

f(<7e,a>) be the smallest Godel number for the formula

F

over <I,HA+1>

defining Si

SORP—

Remarks

1) Obviously when we say recursive in ... we usually

g

mean, but sometimes "forget" to write, recursive in ceeg
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and a notation for o. It is also obvious that most of
the proofs we gave here use the recursion theoren,

although we carefully "forgot"” to mention this fact.

2} We use, in the proof of 1.6, Gandy's theorem (0.5):
the proof of this theorem was given in Harrington's frame.
We use it in this frame to show that we have a selection
theorem for integers (for h-semirecursive sets) and we

apply this result to the set {i e w | --.} which we

consider in the proof of proposition 1.6 (case 1).

Corollary 1.7

By propositions 1.5 and 1.6, it is now obvious that
h-recursion and s-recursion coincide. Hence that Gandy's
theorem (0.5) and Grilliot's selection theorem (0.7) hold
in both Harrington's settings as well as in the frame

of Sacks' definition.

Remark

We did not need to prove proposition 1.5: propo-
sition 1.6 shows that s-recursive => h-recursive; 1.8 will
show that h-recursive => k-recursive and 1.9 will show
that k-recursive => s-recursive.

Nevertheless, our proof of 1.9 requires the use of
Grilliot's result in Sacks'® frame, but the proof of

Grilliot's result itself is not as easy in that situation
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as in Harrington's universe. Mbreover, this proof (in
Sacks' frame) is not as similar to that of the Gandy
selection theorem as we could expect it to be. This is
why we preferred to prove both theorems inside Harrington's
universe; and why we had to use proposition 1.5 to show

that all these results were also true in Sacks' frame.

Proposition 1.8

h-recursive => k-recursive .
It is enough to prove that for each a ¢ OF, OF }F
|a

and HF

are k-recursive in F, uniformly in a. Thus
la]

P
it is enough to show that there are k-recursive functions
£ and g such that:
if <m,a> is an h-index for o,
then g(<m,a>) and £f(<m,a>) are defined and
ut = {f(<m,a>)} ana oF = {g(<m,a>)}? . The proof is
o] Xk o Xk

. . F
by induction on |al”.
Case 0 <1l,a> 4is an h-index for 0

Let £f(<1l,a>) = g(<l,a>) = ey be the least k-index

for ¢

e . .
Case 1 <27,a> 1is an h-index for o+1

@ o .
¢ o <e,a> is an h-index. for o
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and by induction hypothesis H§.=~{f(<e,a>)}§

F
HG

F
(1) <e,y,m> ¢ Ho+ <=> m=0 & y ¢ We ]

1

<HF,y>

Vin >0 & F(lel, 97y = m-1]

¢ o There is a formula describing H§+l in Kleene's

universe. Let f(<2e,a>) be the smallest k-index for

this set:

F

_ F  F
G+1 <S> b e 00 & |bj" < o+l

(2) be 0

<=> [b ¢ Og] vV [b ¢ oF & lb[F = 0]

<=> [b ¢ of;} V [k € w) 34 ¢ I)

(b =<k,d> & b ¢ 0. & [(k=1) V @m e v) (k = 2"

& <m,d> ¢ Og) V'(am,z e w)(k = 3m-52 & <m,d> ¢ Og &
HF F
W2‘<m’d>l @Og & (VP € w) (Vd' e I)(<p,d'> ¢ Og =>

<2P,a'> ¢ 05))])]-

HF

F
as 0F F | <m, a>]|

H ; W have k-indices by

induction hypothesis, this gives us again a formula

‘o . . . F
describing, in Kleene's universe, the relation b ¢ 00+l'

[

, . F
¢ ¢ We can get a k-index for Oo+l'
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Let g(<2e,a>) be the smallest such index.

Case 2 <3m-Se,a> is an h-index for A, A limit

) . .
P <m,a> 1is an h-index for some o < A and

€0, . (with o = |<ma>|F)
F
(1) Then b ec7§ <=> @e)Ba)c e W v {<ma>}

& d 1is a finite successor of c & b ¢ OT lF)
d

By induction hypothesis, it is easy to see that this

gives us a k-index, eqs for the relation b € Oi. Let

g(<3m°56,a>) = e,-

F F F
(2) <b,c> ¢ Hk <=> b ¢ OA & ¢ € H[b]

By induction hypothesis and (1) this gives us a

k-index ey for the relation <b,c> ¢ Hg. Let

£(<3™.5%,a5) = e;

For the next proof we assume that a codes a finite
list of objects of finite type, that 2 1is the highest
type used as argument of @ (the function being defined),
that n. is the number of objects of type i arguments

of ¢ and that (a)i codes the objects of type exactly i,

arguments of ¢&.
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Proposition 1.9

k-recursive => s-recursive
It is enough to define recursive functions f and g

such that:
If  @m)(<e,F*a,m> & K)  (i.e.: if {ell(a) 4)

Then <fe,a> is an s-index, say l<fe,a>[s= ¢ and

{e}i(a) = {ge}g with G = <S§,n+lE,a>

The proof is by induction on the schemas
Sl) e 1is <1, <n0,...,nr>>

Then d¢(a) = g'(a)0,0+l if n, # 0

L 4 otherwise

(Note that if ng = 0, then e 1is not a k-index for a
recursive functional, thus é%m}(<e,?*a,m> ¢ K) and there

is nothing to prove).

Let ey be a Godel number (in Sacks' universe) for

the following set of instructions: "look at n. & if n, # 0,

0
take (a)O 0 and add 1".
4

Let fe = 1.% <fe,a> 1is an s-index for O

Let ge = e0

<SF n+1l

E,a>
.-F - 0' 7
Then {e}k(a) = {eo}s
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S2) e is <2, <no,...,nr>,q>

Then ¢(a) = ¢g

Let e, be a G8del number for the following set of

instructions (in Sacks' universe, of course!): "let ¢(a)
be g".

Let fe =1 o <fe,a> is an s-index for 0

Let ge = e

- <Sg,n+lE,a>
Then {e}k(a) o~ {el}s

S3) e 1is <3, <no,...,nr>>

Then &(a) = ;(a)O,O if n, # 0
[ + otherwise
(Same remark about n, as for S1)

Let e be an s-Gdédel number for the following

3
set of instructions: "look at n, & if n, # 0, then

take (a)0 O"
7

@ . .
~Let fe =1 e ¢« <fe,a> is an s-index for 0

Let ge = €5

<SF n+lE,a>

Then f{elj (a) = {e;} O

S4) e 1is <4, <no,...,nr>,u,v>
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Then {ell(a) = {uly ({v}}(a),a)

Let b = <{v}£(a),a>

By induction hypothesis, <fu,b> is an s-index, say

|<fu,b>|_ = o, and {ulp(0) = {gu}i®) witn

F n+1 . .
G(o) = <Sc' E,b> and also <fv,a> is an s-index, say
[<fv,a>{S = t and {v}i(a) = {gv}g(r) with

G(T) = <sf,n+lE,a>.

G(T)

So compute first x = {gv}s

Then, the set {<fv,a>, <fu,x*a>} 1is s-recursive in

F F

St~ S[<fv,a>[s

(note that by induction hypothesis <fu,b>

is an s-index, but <£fv,a> is "big enough" to compute

G(T)

s and <fu,b> = <fu,x*a>!)

x = {gv}

Expand the set {<fv,a>, <fu,b>} by taking all
successors. This gives us a new set T from which we can

*
get an s-index <7% ,a> for the first limit ordinal

strictly bigger than max {1,0} where we get e® effectively
from e. (i.e. we expand the first set of ordinals to
another one having a limit as least upper bound; this

"expansion part" would not be needed if we were still in

Harrington's setting).



85.

*

e . .
Let fe =7 Lo <fe,a> is an s-index.

Let then ge be an s-Godel number for the following

set of instructions: "Get T = l<fv,a>[s and Sf from
G(T)
. +
st * , compute X = {gv}s with G(t) = <SE,n 1E,a>
[<7% ,a>|
s
F F
get o = l<fu,x*a>ls and S  from S " and

<7 L2,

compute {gu}g(c) with G(o) = <SE!|<fu b> | ,n+lE,b>
4
s |
and b = x*a.
<SF ,n+lE,a>
F |<fe,a>|
Then {e}k(a) = {ge}s .

S5) It is possible to give a direct proof in this case,
but as we will later prove that proposition 1.9 holds for
scheme S9 we do not need S5. Hence we will not give a

proof for this case.

S6) e 1is <6, <no,...,nr>, 3, k, u>

Then {e}i(a) = {u}i(;)

~

where a 1is obtained from a by moving the k+15E
type J argument in front of the list of type j arguments

(we assume nj > k+1)
*
Let fe = (fu) where * means: "go to the successor"”

N by induction hypothesis <fe,a> is an s-index sa
8 @ I

l<fe,a>ls = g+l = ]<fu,a>ls+l.
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Let u' be an s-Godel number such that u' describes

the permutation giving a from a and carries all the

information contained in gu.
Let ge = u'.

Then {e}i(a) = {ge}s o+1’

S7) e 1is <7, <no,...,nr>>

Then &(a) = (a) if ng > 0 & n, >0

1,0((a)0’0))
4 otherwise.

(Note that if ng = 0 or n, = 0, then e would not be

a k-index and there would be nothing to prove).

Let e' be an s-Godel number for the following set
of instructions: "look at ng and ny., and if both are
different of 0, take q = (a) and k = (a) and

l,o 0'0

compute a(k)"

4 o s
Let fe =1 e <fe,a> is an s—-index

Let ge = e'.

F n+1l

|<fe,a>|’" E,a>

Then {e}i(a) = {ge}s

S8) e 1is <s, Npreee n >, jrus
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-

: j-2 " j-2
Then & (a) = (a)j'o(ksj l X((a)j,O’BJ ,a)

4 otherwise

where ¥ is {u}i .

(Note that @(a) diverges if {u}i is not total; same

remark as previously about nj)

Part 1 j < n+2

Then the result is a trivial consequence of the
closure properties of the relations semirecursive in F
under quantification (both existential and universal)

over Tp(n-1).
i.e. @(gj) = k <=> dc € Tp(j-1)) (c = Abj_z | x(a,b)
& (@3 =X

where gj tcodes a finite sequence as one type j
object and (3)8 is the first object of type j of that
sequence.

Let fe and ge be the appropriate integers.
This proof, however, does not work for j = n+2,
because semirecursive in F relations are not closed

under existential quantification over Tp(n) = I:

Part 2 j = n+2°
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Then

{e}p(a) = F(™ | {u}} (8",a))

Thus by induction hypothesis:

n

{<fu, s *a> | 8" ¢ I} is a recursive set of s-notations

for ordinals; as previously we expand this set to a limit
*

*
and get an s—-notation <7¢ ;a> (where e has been

obtained effectively from e).

*

e . .
Let fe =7 o <fe,a> is an s-index say

*
[<7¢ ,a>]|_ = a.
S

Let ge be an s-~Godel number for the following set

of instructions:

"l) compute from A (and <fe,a>) the ordinal o < A

such that Sg gives us the value of

F8™ | {guS®))

where G(B) = <SF ,n+1E,Bn*a> and

[<fu’3n*a>]s

2) take the value given there.™"

Then {elj (a) = {ge}?

F n+l

where G = <Sl<fera>ls'

E,a>
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S is < Naseee,N_ >, <Ma,e..,m0 >>
9) e 1 9, OI 7 I.al OI 7 r‘

Then @ (x,b,c) = {x}L(b)
(We assume here that a is of the form <x,b,c>, and
that n, # 0 ... otherwise, there is nothing to prove.)
e {elitxb,0) = (x)E (b)
°s by induction hypothesis fx is defined and

<fx,b> is an s-index, say [<fx,b>ls =T

*
Let fe = (fx) where * means: "if we want to
compute the ordinal |[<fe,x*b*c>|, then we first forget
the X and c¢ parts of X*b*c, we compute the ordinal

|<fx,b>| and finally we get an s-index for its successor."
»°c <fe,x*b*c> is an s-index, namely for
|<fx,b>| _+1 = T+1.

Let ge be an s-Godel number for the following set

of instructions: "get x and b from <X,b,c>; compute
<s§,n+lE,b>
from 1+1 the value of {gx}s and assign it

as value of ¢ at <x,b,c>"

Then
B atlp capwes

(el (x,b,c) = {ge} T’
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It is obvious that all the definitions of recursive
functionals that we have considered here are generalizations

of the Ordinary Recursion Theory: the easiest way to

notice this fact is probably to look at the definition of

"k-recursive in".
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2. A minimal pair of individuals

The problem of the minimal pailr has first been
solved (independently) by Lachlan [12] and Yates [32]
in Ordinary Recursion Theory. It can be stated as
follows: "Is it possible to find two semirecursive sets
of integers, A and B, such that neither is recursive
in the other one and such that every real D recursive
in both A and B is recursive?" The answer to this
question 1s yes. Lachlan and Yates use both, somewhere
in their proof, a priority argument. This priority
argument is more complicated than the usual "Post-problem=~
type" argument: to solve Post problem, one must consider
at each step of the construction one candidate for member-
ship in A (or B) and then make a decision. This cannot
be the case in a minimal pair construction: in this

construction we want to preserve equalities of the form

{e} = {£}B 45 far as possible, i.e. on an initial

segment of ®w as long as possible, Hence we must consider
at each step a set of candidates for A (or B) and when we
"think"™ that the equalities mentioned above have been
satisfied on an initial segment of w of maximal length,

then, but not earlier, we commit ourselves to put (possibly)
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one of these candidates in A (or B). The main advantage
of Ordinary Recursion Theory is that in this case, every-
thing is finite. If we try to generalize these proofs

to a=-recursion theory, for every Zl-admissible o, we
might have problems because of the existence of (many)
1imit ordinals A < a. Suckonick made a first step
towards the solution of this problem: he constructed [30]
two meta-r.e. subsets of me such that none of them

was meta-recursive in the other one, but such thdt every-
thing meta-recursive in both was meta-recursive. Lerman
and Sacks [14] gave later a proof of the existence of a

minimal pair of a-r.e. sets for each Zl-admissible O,

provided that o 1s not refractory; i.e.: provided

that the following is false: p2a = gca < tp2a < o,
(Where p2a 1is the I, projectum of a, gca is the
greatest cardinal of La (1f there is one and o otherwise)

and tp2o 1is the tame I, projectum of a).

The solution of this problem seems thus to exist in
a~recursion theory. Unluckily the main ordinal we get
when we do recursion in a normal object F of tyﬁe n+2
(F and n fixed), KF, is not admissible as soon as n > 0,

It is easy however to see that ki-l has then all the
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nice properties we expect to find in a Zl-admissible
ordinal., We will use this fact to construct a minimal
pair of sets of subindividually, semirecursive in F,
Another useful fact is the following: there are only
countably many functionals recursive in F: this is of
course easler than in a-recursion theory. We will work
in the frame of Kleene's definition and use reducibilities
defined by MacQueen in [15]. This will allow us to give

a proof for every n (n > 0),

From now on we assume that n > 1 1s a fixed integer
and that F 1s a fixed normal type n+2 object (e.g.
P = <F',n+2E> where F' 1is a fixed object of type n+2).

F

Let S ©be the set of all the ordinals o < Kn_l

such that o¢ has a notation from a subindividual.

F F
Khel = SUP S and Anol = order type of S. Let

P 1-1 F

t ¢ An—l IHE3> Kol be the unique order preserving
isomorphism between AF and S,

n=-1

Our construction will be based on type n-l notations

(in fact when we mention an ordinal o < Ai_l, we actually

mean the set of all subindividual notations for t(¢)).
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Convention

F
We write a for An-l

Definition 2.1

A subindividual a 1s called a notation from F,

and we write Notn_l(F,a) iff

{(a)o’o}[(a)l*F] + iff (3kew)(<(a)0{0,(a)l*F,k> e K)
If Not _,(F;a), then we write

lal, = [{(a)y o}[(a);¥F]| = the length of the computation
{lal, | Not__,(F,a)} = s

(Remember: we showed in the frame of Harrington's

definition that M - (F) . was an admissible set with

Kn-l

gaps; we collapse now this structure to get Ld(F) which

is admissible.)
By convention Iaic = o if a 1is not a notation.

By Gandy's theorem (0.5) we can compare two notations
and hence we can define |a] to be the height of the
prewellordering defined by this comparison on the set
{b € 51 | lblc < Ialc}. In other words |al = t'l(lalc)

and
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o = sup {|al| | Not . (F,a)}

Let Not ,(F) = {a e SI | Not  ,(F,a)}

If Notn_l(F,a), then level (a) denotes the set

{b € SI | [b|] = |al}. Any set of this form is called a
level. It 1s easy to see that any level is recursive in
F and any of i1ts members, uniformly (use our Fact G in
the proof and compare this fact with the numerous uses

we made of "0§ is recursive in ,.."in chapter 15.

If o < a, then level (o) denotes the set

{a € ST | |a] = 0}, 1In the construction we will mostly

use (tacitly) levels.

Definition 2.2

" A set A c a 1s said to be F-finite (F-subfinite

respectively) iff there is a set SA c Notn_l(F) such
that

1) SA is recursive in F (recursive in F and a
subindividual)
2) A= {]la] | ace Sy}

An index for A 1is then a number e (a subindividual

<e,a>) such that Ab™t l {e}F(0) (APt | {e}¥(a®b))

is the characteristic function of SA
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A set A<« a 1is said to be semirecursive

(semirecursive in a subindividual) in F iff there is

a set SA g:Notn_l(F) such that

1) SA is semirecursive in F (semirecursive in F and

a subindividual)

2) A={la]l | ace S,}

An index for A (as a semirecursive set) is

then defined in the obvious manner.
Remark

We can always assume;without loss of generalityj

that S is well defined with respect to levels.

A
Definition 2.3

' An operator A : o -+ 2% taking ordinals o < ¢«

to subsets of o 1s said to be F-partial recursive

iff there is an index e, such that for all a € SI,

A
<é,,a> 1s an index for A(c) whenever |a| = .

A partial function f : a - a is said to be

F-partial recursive iff there is an index € such

that for all a e SI, f(o) = t iff <ep,a> is an

index for {7} whenever J|a| = o irf ApP~l l {ef}F(a*b)
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is the characteristic function ofhlevel T whenever

la] = o.

This shows clearly that we are not interested in
all the a~recursive functions but only in those functions

which can be indexed by integers.

If A 1is an operator, then A% = ‘{a(7) | T < o},
* & o]
Let A Dbe the operator such that A (o) = A",

We will need now a few facts, some of them Have been
introduced by MacQueen [15] when he defined his notion

of reducibilities,
Fact 2.1

#
If A 1is an P-partial recursive operator, so is A ’

Fact 2.2

If A 1is an F-partial recursive operator defined
on all of a, then A ={{A(c) | 0 < a} is semirecursive

in P,
Proof

Let e, be an index for A as an Fepartial

recursive operator. Then define SA by:
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@

beS,<=beSI& (@ac SI)(Not _,(F,a) & {e,} (a*p) = 0)

A

<=>Db ¢ SI & (3a €-SI)@@k e w)(<(a)y ,,F*a,k> € K
3

& <e, ,F¥a¥b,0> ¢ K)

S, 1s clearly semirecursive in F (by Grilliot)
and A =VU{A(o) |0 < a} = {[b|] | b e S,} is semi-

recursive in F.

Fact 2.3 (Boundedness)

If B c oais F-finite and A 1s an F-partial
recursive operator defined on all of o, such that

Bc {A(9) | o < al.
Then B < Ao for some O < G
Proof

Let e, be an index for A as an F-partial

recursive operator.
For every a e SI N SB’ define the set Sg of
all subindividual notations for the first level at

which a 4is put in S as follows:

A

a ._ Foig -
b e S;<=>b e SI & Notn_l(F,b) & {eA} (b¥a) = 0

¢ (Ve e sT)(Je] < |o] => {e,} (c*a) =

__{

1)



99.

For every subindividual a ¢ SB’ Sg is not empty

v

and semirecursive in <F,a> uniformly in a.

Hence (by Grilliot) we can find a recursive in F
subset of sg uniformly in a. Then (after filling the
gaps in the levels, if needed) we have an index e such

that for every a e SB’

At l {e}F(a*b) 1s the characteristic function

of level (ca) where o, = wollal ¢ a(o)].

Let f Dbe F-partial recursive function with index e.

Then f 1is defined on B and (1t € B => ft = yolt € A(o)]).
If ¢ ' B were unbounded in a, then we could define

Notn_l(F) recursively in F by:

&

aec Notn_l(F) <=> a € SI & (3b € SI)(b ¢ SB

(Fc e SI)({e}(b%c) = 0 & |a] < |c]))

But Notn_l(F) is not recursive in F (by the
usual diagonal argument)., Hence f )} B must be bounded

below a. This implies that B < A° for some o < a. i

- mae m e am v @ o~ e e o
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Definition 2.4

Ind (a) <=> a is an index for a set A < a

F-finite in a subindividual (namely (a);)

<=> a ¢ SI & ap"~t | {(a), O}F((a)i*b)'is total
b€ s | {(a)g o} ((a);*0)=0} & Not__, (F)

If Ind (a) holds,

Then let K = {|b] | {(a)O’O}F((a)l*b) = 0}

i.e. Ka i1s the subset of « having index a.

Fact 2.4
(1) The predicate Ind is semirecursive in F

(ii1) B ¢ o 1s F-subfinite iff there is a subindividual
& such that Ind (a) holds and B = Ka.

Proof

(1) SI is a set recursive in F and NOtn—l(F) is

semirecursive in F

(a € Not, (F) <=> a ¢ SI & (3k ¢ m)(<(a)o,o,(a)l*F,k> e K))

Now b1 | {(a)g o} ((a);%b) 1is total irs

(Vo e SI)(Ek € w)(<(a)y 5,(a),*b*F,k> & K)
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«» this part of the definition is also semirecursive
in F and under this assumption

B={be SI | {(a), O}F((a)l%b) = 0} is recursive in F,
3

° Ind (a) is semirecursive in F.

(11) The proof of part (i) gave us: K, = {|p] | b e B}
where B 1is recursive in a subindividual and F. Thus

Ka is F-subfinite,

Assume B' 1is F-subfinite. Then B' = {|b] | b ¢ B}
where B 1s recursive in F and a subindividual.
Hence 1t 1s easy to get an index for B!, ,
Thus, the predicate Ind gives us a way to get, as in
usual a-recursion theory, all the "finite" subsets
of a. The temptation to use these "finite" sets in

neighbourhood conditions begins to become irresistible.

The following facts will increase this temptation,
Fact 2.5

If e 1s the integer such that Ind (a) <=>'{e}F(a) +

Then (i) Ind (a) => <e,a> ¢ Nofn_l(F)

(11) Ind (a) => sup {0 | o ¢ K.} < |<e,a>] g

Proof

Assume that Ind (a) <=> {e}F(a) v
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Then, to check whether a subindividual b € Ind,

‘we must check two things:
n-1 \ F "
1) Is Ac | {(®)y o} ((b);¥e) total?
3
B .
and 2) Is C = {ce SI | {(b)y o3 ((b) ¥e) = 0} g Not,_, (F)?

This involves carrying out each of the computations
{(c)0 0}F*((c)l) (for ¢ € C) to check whether there is
3
an integer k such that <(e), O’(c)l*F’k> e K.
3

Hence assuming that Ind (a) holds, we have a
computation which verifies this (hence <e,a> ¢ N°tn-l(F))

and this computation must clearly contain subcomputations

of height ]blc for each b such that |b] e K, . l

Definition 2.5 (Reduction procedures)

For each e € w, let R (a,b,c,k) be the predicate

which holds iff

(1) a,b,c e ST ¢ ke w

(i1) ¢ € Not _,(F)

(iii) Ind (a) & Ind (b) & K. n XK, =0 and

(1v) {e}F(a*b¥cik) +
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Then Re is semirecursive in F, uniformly in e

*, there exists a recursive function g : w + w

4 9@

such that Re(a,b,c,k) <=> {ge}F(a*b%c*k) ¥

If ¢ < a, then the relation Rg(a,b,c,k) is

defined as follows:

Rg(a,b,c,k) <=> I{ge}F(a*b*c*k)l < t(o)

F

where ¢t : > K
e o -1

is the natural injection defined

at the beginning of this chapter (with t(o) = Id]c

for any d € SI a level (o)).

Rg(a,b,c,k) 1s clearly recursive in <F,d> for any

d € level (¢), uniformly.
If A c a, then we define a partial function

el : 0+ w by:

[e]A(c) =y <=> (3a,b,c ¢ SI)[Re(a,b,c,y)

EK,chAEK ca-4c& |e| = 0]
For any <t < a we define similarly:

[e]f(c) = y <=> (a,b,c ¢ SI)[R;(a,b,c,y)




104,

Remark

In general [e]A and {elf are many valued.

Definition 2.6 (Weakly recursive in)

Let A,B ca

We say that B is weakly recursive in A and

write B Sur A iff there exists an integer e such

that B = [e]A. B 1s said to be recursive iff

B = [e] for some e,
Fact 2.6

If A 1s P-finite, then the relation [eli(e) = y
is recursive in <F,a,b> where a and b are respectively

notations for ¢ and T, uniformly.

Fact 2.7 J

1f RO(a,b,c,y) holds ¢
Then Kagc and K <o

Proof

This is an immediate consequence of fact 2.5 . ’

We are now ready to state (and prove) the main

result of this section:
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Theorem 2,8

Let n > 0, There are two sets A, B¢ a,
Fmsemirecursive,such that A i1s not recursive and
B is not recursive and such that any set recursive in

both is recursive,

The proof requires a priority argument. We shall
construct sets A and B by stages. We need « stages,

By fact 2.2 these sets will be F-semirecursive,

We will try to save as long as possible equalities
of the form [e]A = [f]B (e;f € w) and we will destroy
them only when we cannot resist the temptation, There
will be only countably many requirements., We will use
this fact to be able to well order the requirements in
advance. The construction will be such that [e]A, [e]f3

will be single valued for all e g w (A,B will be "regular").

Definition 2.6’

There will be positive requirements (to make sure

fhat neither A nor B is recursive) and negative require-

ments (to preserve the equalities).

The positive requirements are {[e] # A | e ¢ w}

v {[e]l] #B | e e w} and, after being interlaced, are

denoted by {R; | 1 ¢ wl,
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The negative requirements are {[(e)olA = [(e)l]B | e € w}

and are denoted by {Q | 1 e w},

If Ry 1s [el] # A, then it is associated with 3e+l
If Ri is [e] # B, then it is associated with 3e+2

If Q 1is [(e)o]A = [(e)l]B, then it is assoclated
with 3e

Let po(i) 3e+l irf Ry is [el # A

3e+2 if R is [e]l # B

i
Pp(1) = 3e  ir Q@ is [(e)g]* = [(e),1P

Let a, E' be two requirements, o assoclated

with p(a) and B assoclated with p(g). We say that

9 has higher priority than B iff pQg) < p(g).

-Followers are appointed for the sake of Ri at

certain stages; they are subject to cancellation at

later stages. At every stage a follower is either

realized or unrealized and each Ry has at most one

unrealized follower.
p follows Re iff p is appointed to follow Re

and 1is never cancelled, p follows Re at stage 0 (6 < a)

if p was appointed prior to stage ¢ and was not cancelled
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prior to stage o: a cancelled follower may never be
reappointed! p has higher rank than q (at stage o) if

p follows Ry (at stage o), q follows RJ (at stage o),
and R; has higher priority than Rj (i.e, poi < poj)

P has higher order than q (at stage o) if p and g
both follow Ry (at stage o) and p was appointed before q.

Definition 2.7

Assume R, 1s [e] # A, p satisfies R; at stage o
if p follows R; at stage o, [e]c(p) is defineqd,

[el,(P) # A%(p) and

either A%(p)

1l and p was realized at stage o

0 and p ¢ {aY | v < g}

or A%¢(p)

(A is the set of ordinals put into A prior to stage o
and 1s identified with the characteristic function of this

set; A%p) = 1 means p ¢ A%, A%(p) = 0 means p e A9).

Re is satisfied at stage o if there is a2 p sueh

that p satisfies Re at stage ¢

R, 1s satisfied (before stage o) if there is a

T €t9<70) such that R, 1s satisfied at stage T.
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Definition 2.8

' We need now two auxiliary functions, L and M

defined as follows:
~ . g
L(o,e) = least x < ¢ such that either [(e)ojg (x) +
BY A% *
or [(e)llc (x) 4 or (Sp,q)(t(e)o]c (x) = ¢q
50
& [(e)l] (x) =p & q # p)
o]

if there is such an x

= ¢ otherwise

M(o,e) = sup L(t,e)
T<o0

Definition 2.9

A follower p is associated with Q (at stage o)
if there is a stage T (Tt < ¢) such that p 1s associated
with Qi at stage T of the construction and the association

is not cancelled at any subsequent stage (and prior to o).
Assume Q, 1is [(1),1% = [(1).15. ¢ satisries Q
i 0 1- ¢ — i
irf L(o,i) = M(o,i).

Definition 2.10

Let Re be [i]J # A4 or [i] ¥ B.
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Re requires attention through p at stage o iffr

p follows Re at stage o, Re is not satisfied prior to

stage o, e S 0 and at least one of the next three clauses

holds:

1) p 1is a realized follower of R, at stage o and

P i1s not associated with any QJ at stage 0.

2) p 1s a realized follower of Re at stage ¢ and
P is associated with some Qj and o satisfies QJ.
3) p 1is an unrealized follower of R, at stage ¢

and [i]c(p) is defined.

R requires attention at stage o if for some P
R requires attention through p at stage o; or if

e <o, Re is not satisfied prior to stage o, and Re

has no unrealized follower at stage o,

Construction

The construction of & and B is by stages, We

need o stages,

Stage 0
0 0

Let A" = B” = g

URER—
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Stage 0 > 0

Case 1

No Re requires attention at stage o

Do nothing: A% =U{a® | s < o}

B =U{B% | 5 < o}

Go to stage o+l

Case 2
Let Re be the positive requirement of
highest priority which requires attention at stage o.
Let PV = {x | R, has lower priority than Ry}
Cancel all followers of R, for all x € PV, and all

association of such followers with negative requirements.

Re is said to receive attention at stage ¢

If there is no follower p such that Re requires
attention through p, then consider subcase b; if there
is such a follower, then let P Dbe the follower of Re
of highest order at stage ¢ such that Re requires
attention through p as defined earlier in definition 2,10,

case 1, 2 and 3.

Assume such a p exists, cancel all followers of

Re of lower order than p at stage o and all associations
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of such followers with negative requirements. Re is

sald to receive attention tﬁrough p at stage o, Adopt

subcase 1, 2 or 3 respectively if Re requires attention
through p at stage ¢ and case 1, 2 or 3 of definition 2.10

holds,
Subcase 1
Let T = {<y,n> | y < pole) & n < w}

Wellorder Te by <y,n> < <u,m> iff n<m or

(n=m&y <u)
Let Vg(p) = {<y,n> | <y,n> ¢ T, & for some z, T, u

and m, T < ¢ and p is associated with Qz at stage T
through <u,m> and <y,n> < <u,m>} (The association of
a follower with a negative requirement will always go

through some <u,m> as specified below).
Let <¥gsNy> be the least element of Te—Vg(p)
such that @Fz ¢ w)[z < o & pl(z) = Yo & no q, follower

of Re of higher order than p is associated with QZ 3
0

where 1z, = '1( ) = ig]
r 0 = Py Wo) = 3

If <y,,n,> 1s well defined, then associate p
== 00 s 2ot

with Qz through <yo,n0>.

0
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Let A% = {a% | 6 <o} ana B9 = (8% | 6 < o}’
Go to o+l

Ir <¥gsng> 1is not well defined, then

8

it R, is [1]1# A, let A% = {a° | 6 < o} v {p}
and B® = {B% | § < g}
if R, is [1]1 # B, let A% = {a% | 5 < o}

e
and BY = {B% | § < 0} y {p}

Cancel all followers of R_ at stage o, save for
P and all assoclations of such followers with negative

requirements.
Go to o+l
Subcase 2

Assume p 1s associated with QJ at stage o,
Cancel the association of p with . Q'j and proceed

as in subcase 1.
Subcase 3
p 1s now realized.

If [1](p) # 1, add nothing to A or B and
cancel all followers of Re at stage o, save for P,
and all associations of such followers with negative

requirements, and go to o+l.
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If [1](p) = 1, proceed as in subcase 1.
Subcase 4

Define p ¢to be ¢. Re receives attention through
p at stage 0. Make p an unrealized follower of Re.

Add nothing to A or B.
Go to o+l.

End of the construction.,

Definition 2.11

R, 1s discharged (at stage o) if R, does not

receive attention at stage v, for any 7t > 0.

R, 1s discharged by p (at stage o) if R, does

not recelve attention through p at stage T, for any

T>0
Lemma 2,9

Each Re is discharged.
Proof

Assume all Ri's, i < e, have been discharged prior

to stage o,
Suppose that Re is not satisfied at any stage,

Each realized follower of Re at stage v > ¢
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>

1s assoclated with a different Qu at the end of stage =t > o,
Consequently Re has at most po(e) realized followers
(at the end of stage T > 0) and at most one unrealized

follower at stage 7.

Let qq be the first follower of Re of order O
at any stage after o. Then dq 1s never cancelled and
Re is never satisfied. If Qg 1is always unrealized,
then Re is discharged, otherwise Qg is associated
with some Qw(3w < pyle)) for all sufficiently large
stages. Let %, be the stage at which dg 1s last
associated with Qw' At stage oo+l a follower aq of
R of order 1 is appointed, never to be cancelled. And

e

S0 on until termination with at most q Either

po(e)+l’

Re 1s satisfied or some q; is never realized

(1 < pyle) + 1). In either event R, 1s discharged.

Lemma 2.10 ‘

Neither A nor B is recursive.

Proof
Assume that A = [e] for some e

If p 1is an unrealized follower of [e] # A, at
stage 0, then p is either cancelled or eventually

realized (If p remains eternally unrealized, then
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[e]J(p) would diverge while A(p) = 0 or 1 according
to pe A or pi¢ A, . AF# [el%).
By lemma 2.9 "[e] # A" 1is discharged.,

«‘+ There is a stage o such that "[e] ¥ A" does not

require attention at stage T, for any T > o,

"[e]l # A" does not have an unrealized follower
at stage o (otherwise it would not be satisfied at
stage 0, hence never satisfied and either p would be
cancelled or [e]T(p) would be defined for some T > ¢
and so "[e] # A" would require attention after stage o),
Since "[e] # A" has no unrealized follower at stage o
and does not require attention at stage o, "[e] # A"

must be satisfied prior to stage o,

‘e There is a p that follows "[e] # A" such that

¢ @

P e A <=>[el(p) =1

e [ellp) # A(p) e ’

Lemma 2.11

Let p follow Ri at sﬁage o]
Let q follow RJ at stage ¢

(. p and q are both in existence at stage o)

Assume that p,q e (Av B) - (A9 y B9)
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Let cl be the first stage at which P enters Av B,

and o, be the first stage at which q enters A y B.

L oy < o

Then py(1) > py(4)

Proof

As q 1is put in A B at stage o, > 015 Q is
still in existence (i.e. appointed and not cancelled) at
stage 0., Since a cancelled follower can never be reappointed,
and q 1is not cahcelled at stage o1

@

P Rj must have higher priority than Ri

This can be reformulated as follows: i

If pe AvB and p is put in A v B before
q is put in Awv B or is cancelled, and p, q are
both followers at some "early" stage.
(.% p enters A Y B at a”stage o such that q is
still in existence at the-end of stage o but not yet in
A v B) '
Then p has been appointed for the sake of 1 positive

irequirement of lower priority than the positive requirement

for which q has been appointed.
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Definition 2.12

A set A c o 1s said to be F-regular iff for all
0 <a, An ¢ 1is F-subfinite (namely A nn ¢ is given
by a set of subindividuals which is recursive in F and

a notation for o).

Lemma 2.12

A and B are F-regular.
Proof (for A, similar for B) g

Fox o < a. To see that A a ¢ has the required

2

properties, it is enough to show that there are only

finitely many ordinals 2z < ¢ which can enter A at some

stage T > 0. But if zZz e Ano, then z ¢ A° or =z

is a follower at stage o.

Let Og 20 be the least stage such that some
2 < 0 1s placed in A aﬁ stage Tge For each 1 £ w,

let 0341 be the least stage > 03, such that some
Z < ¢ 1s placed in A at stage Os41+ Suppose that

is well defined for all i € w. Let Rk be the
i

91
requirement satisfied at stage 012 As all these z's
where existing followers at stage o, by lemma 2,11 we

get:
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If 0y 1is not defined, then ze An o <=>z¢ % ¢

If Gn is the last welldefined Gi

(and by the
previous observation there is such a cn), then

Gn
Z2eAno<=>2¢A"An g

It is now obvious that [e]A and [e]B will be

single valued functions, for all e ¢ W

Lemma 2.13

_ A _ B
IL C = [(1)y]" = [(1),]
Then C 1is recursive.
Proof

Let 0, be the least o such that Ry has been
discharged prior to stage o, for every y such that

PoY < pyi = 31,

The existence of oy follows from the proof of

lemma 2.9.

Any requirement that receives attention at stage 1 > o,

has its followers subject to association with Qi at

stage 7.
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To decide whether or not x ¢ C, search for a

stage ¢, > o, such that L(o,,1) = M(o,,1) > x.
2 = "1 2 2

0y exists by lemma 2.12,

(o] 0'2

2() [¢1).18 ()
= (i -
2x lczx

s [ R

G q for some q.

By regularity we have:

[(1)51% (0

c > o g =+ o

e+ To show that C(x) = q, it is enough to show that
AT BT,
([()1; (x) =q or [(1);17 (x) = q) for all =t > Goe

Part I

o
2
Let ¢, be the computation of [(i)o]g (x) and
2

o
2
d, be the computation of [(i) ]B (x).
0 1 05

g (do respectively) will be invalid at stage Tt > o,

only if some z < 0, 1is put in A (B respectively) before

T but after o Let Tl be the least =« > 02 such that

2.
some z < 0, is put in A or B at stage 1. Let z4 be
a 2z put in A at stage Ty let z4 follow

Ryl (‘.“ po(yl) = 3}'1 + 1).

11 A? Bix) = BY
m [(i)O]c (x) and[(i)ll (x) = 1im “1)130 (x)
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@

Then, the computation d0 ié still valid at
stage Ty + 1,
Claim

If p 1is a follower of R, such that
1) p 1is in existence at the end of stage T,
2) R, 1s not satisfied before the end of stage T,

Then p < ¢

Proof of the elaim

Let Rv be a requirement such that Rv has a
follower p at the end ol stage Tl and is not satisfied

‘before the end of stage Ty

o PO(V) < po(yl) ® (by lemma 2.11)

Assume now that p »> Ty

[N

« « there is a 6 such that o, < § < T, and p 1is

appointed to follow R at stage 6, Since 1z, < ¢
\' 1 22

24 has been appointed before 053 as zq will enter A

at stage Ty 29 is not cancelled at stage §,

.7, po(v) > po(yi) because z; 1s not cancelled

- because of the appearing p. But this contradicts # .
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e

»"» all followers in existence at the end of stage 7.,
for the sake of requirements which are not satisfied

before the end of stage Tys must be smaller than o,

claim ‘

If no z <o, 1is put In B after t,, then the

Part II

computation do is valid forever and: (for all t > Tl)

T
[(i)llg (x) = q. So assume that there is a 1 > T, such

that some 2z < o, is put in B'., Let the least such =

be Tos and let Z5 be such a 2z. Suppose Z5 follows

Ry . Tavo cases occur.
2

Case 1

Z5 is not associated with Qi at any stage T such
that Tl T2 Ts Since Zyg < 05 < Ty, 25 exlsted as
a follower at the end of stage Ty If z, was unrealized
at the end of stage Ty then Z, was eligible for
assoclation with Qi through <3i,0>; and if z, was
associated with some Qj through <w,n> at the end of
stage T1s then Z, was eligible for association with

Q; through <3i,n+l>, But since Z, 1s not associated

with Qi we. have:
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some follower r of Ry of higher order than
2

that of z, Wwas assoclated with Qi at stage p, where
p is the least stage such that Z, was associated with
some Qj through some <u,k> (if there is no such p, let
P =T,

We have <u,k> > <3i,0> if Z, was unrealized
at stage Tys and <u,k> > <3i,n+l> if zZ, was

realized at stage Ty

But since r has higher order than z, at stage p,
r < Z2.

. r was in existence at stage 5.

If r were not associated with Qi at stage Opns

. then Ry must have received attention through r at
2

some stage & (62 < 6 < p) [because r was not assoclated

with Q; at stage 0,, but will be at stage p < 7,].

But Z, would have been cancelled at stage & and
hence could not be a follower at stage Toe

@

« o T 1s associlated with Qi at stage Ooe

But o, 1s such that L(o,,1) = M(o,,1) > x,

2
i.e. Qi is satisfied by Ose
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,« r 1is a follower of Ry which 1s associated to a
2
negative requirement at stage One

e R requires attention through »r at stage o

Yo 2°

There are only 3 possibilities.

1) Ry recelve attention through r
2

L

+'¢ 2, is cancelled o<

2) Ry receive attentidn_through a follower of higher
2

higher order than r

L3

" W*e Z, 1s cancelled ==

3) R, requires attention at stage 0, with py(v) < Py (¥5)

W z, 1s cancelled e

Hence case 1 cannot occur.
Case 2

Z, is associated with Qi at stage 1 for some T

such that Ty 2T 2 Ty let ri be the least such T,

Since Z, enters B at stage T,, there is a first

stage TI, such that Ti < r; S T, and the association

of 2, with Qi i1s cancelled at stage Tye
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"

Since Z5 is still a follower at the end of stage Tys

"

L(T;,i) = M(T;,i) Lotherwise Q; 1s not satisfied by T,
R Ry does not receive attention through z, at stage 1;
2

.’« we cannot cancel the association of Z5 with Qi]

1
Tl

1
and there is a computation ¢, of [(i)o]A" (x) = aq
" Ty
T
A "
(assume [(1),] T;(X) t 5 as x < Lo,,1) < 0y < 7

11 L . 11
we have: M(t,,1i) = L(ty,1) £ x < L(o,,1) < M(T ,1)

which is a contradiction. Hence:
1)

n i : AT 1
L(Tl,i) = M(t,,1) => [(1)p1% (x) )
T
1
If c; were invalid at the end of stage T,, then
some follower x would land in A at some stage A
it
(1, <X <1,)

4
Suppose x follows Rv' x < Ty and x exists as

‘ 11
a follower at stage t,. Also po(v) < po(yz) because

"

R

R has a follower z, which exists at stage Tys y
2

Yo

requires attention through Z,5 but does not cancel x

1
(which enters A after stage Ty and has been appointed

1 11
before stage 1;). x has to be < T,, otherwise it would
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not invalidate Cqe But as Rv receives attention at

stage A, Z5 would be cancelled at stage A < Toe =

Hence ¢y is valid at the end of stage Tye

But all followers in existence at the end of
stage T, are less than P (By the same argument as in

part I, with 1z, for Z2y, T, for 1, B for A)

Let Cy = ¢
If no z < o, 1s placed in A after stage Tos
then the computation s is valid forever. Assume

that some 2z < o, is placed in A after stage Tye
Continue to alternate as above between A and B.

If for some n e w, =z fails to be defined, then

n
the lemma (and thus theorem 2.8) is proved. Suppose Z

is defined for all n € w. z, follows Ry at stage One

n
By lemma 2.11 we have:

Po¥yy) > pyly,) > ... =
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3. A minimal pair of type n+2 objects,

As in section 2 we shall assume that :. ~ 18 a
fixed integer and that P is a type n+2 object of the

1 1
form <F ,n+2E> where F is some fixed type n+2 object.

As in the previous section we denote by o the ordinal
An-l‘

In the previous chapter, we defined reducibilities.
in such a way that the construction of a minimal pair of

subsets of o was easy,

We want now to get two type n+2 objects A and B
such that none of them is recursive in the other and
such that, for every type n+l object D corresponding to
a set of ordinals, the following is true: if D is
recursive in both A and B, then D is recursive., To reach
this result we shall define new reducibilities which in
turn will make our work "easy". This will be done in

Harrington's universe.

Harrington has defined reducibilities [8] which he
used in his thesis to solve, ina Shore-like way (see [27]),
Post's problem. Unluckily such reducibilities require too
many requirements, The success of the construction would

then depend upon the fact that o is (or is not) refractory.
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We do not know whether o is alﬁays non-refractory.

It is easy to see that under V = L, a is projectible
into zén—l < a and o 1is thus not refractory. A similar
result can be obtained under AD (for a suitable value

of n) as shown by Moschovakis in [19], but as we assume

that. AC holds throughout this thesis, (and as we do

not believe in AD) we reject any attempt to use AD.

Nevertheless, Harrington's idea can be used to define
a reducibility (not as fine as his) such that we shall
have only to take care (as in chapter 2) of countably

many requirements,

As in the previous chapter we will be able to list
These requirements "in advance", i.e. the priority of
each requirement will be given by a recursive function
and there will be no problem in proving this version of

the minimal pair. The type n+2 objJects that we shall

F

5 sets (where the

get, will be countable collection of H
Hg are the set used to défine h-recursion). The objects
that we shall build will be such that every computation
from them will stop before Ki_l, thus by corollary 1l.3
(and definition 1.2) it will be enough to solve the

problem for subsets of a.
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-

We must first give a few definitions

Definition 3.1

For 2ae€e I and o < KF, we call ¢ an a-reflecting

ordinal iff for all I, formulas, ¢(X), of L we have

M (F) |z ¢(a) => Ml< ,a(F) F ¢(a)
0

It is easy to see that Kg_i is a~-reflecting
(Grilliot) but that KF is not (Moschovakis)

Definition 3.2

An ordinal o¢ will be ecalled recursive in F

iff Hg is recursive in F

iff there is a prewellordering of I of length o,

recursive in F

An ordinal ¢ will be called constructive in F

iff ¢ has a notation from an integer
F F _
1ff (Em e w)(<m,0> ¢ 0% & |<m,05]|" = o)

An ordinal o will be called subrecursive

(subconstructive) in F if for some ae SI, o

is recursive (constructive) in <F,a>

If the type n+2 functional F is clearly understood,

then for a € I, an ordinal ¢ will be called
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subrecursive (subconstructive) in. a 1iff o is

subrecursive (subconstructive) in <F,a>,

For ael, let P2 = {i¢5SI|1e0Fs2%

Pﬁ-l is a complete semirecursive in F subset of SI.
It is clear that given <F,a> Pi_l and HFa are

K

n-1

recursively equivalent and hence that both epitomize

the structure M a (7).

Kn--l

Theorem 3.1 (Harrington)

= a
Let ae€ I and G <Pn_1,a>

Let o = Kn_l

Then ¢ 1is a-reflecting ,

This can be restated as follows:

Corcllary 3.2 (Kechris)

Let a e I. If B 4s a collection, semirecursive
in <F,a>, of subsets of SI .and if B contains at
. least one subset of SI which is semirecursive in <F,a>,

then B contains a subset of SI which is recursive

in <F,a> . ﬁ_.i
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Note that the limit of a-reflecting ordinals is

also a-reflecting. Let K: be the last a-reflecting
_ .0
ordinal., Let Kn = K,

It 1s clear that metarecursion can be defined in
terms of recursion in 2E: to be more precise a subset A

CK

of wy is meta-r.e. 1ff the type 2 object

{HGE | ¢ € A} 1is semirecursive in °E. Harrington's

l1dea was to 1lift this definition to an arbitrary

(normal) type n+2 object (with, of course, n > 1).

. Definition 3.3

Let S be the set of ordinals subconstructive in F
so s={[31 | 3¢es1n 0%
For AgS,let K= {H | o e Al

K < Tp(n+l) and thus can be viewed as an object

of type n+2,
Note that S is recursive in F

Definition 3.4

Given A, B< S, A will be called F-r.e,
iff A 1is semirecursive in F. A is said to be

F-calculable in B iff A 1is recursive in <F,B>.

. e
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This 1s our main divergence from Harrington's
definition: he required only X to be recursive in

<F §,HF> for some o € S.
»T g

We will show that the main lemmas remain true
(modulo certain new definitions) and that this gives us
the possibility to use at most countably many requirements.
We will try now to reduce this "higher type" problem to

the setting of "a-recursion" theory.

Definition 3.5

As in chapter 2 we have:

F

n-1 - order type of S

a = A

t 1s the unique order preserving isomorphism
between a and S

e« Tforany B < a, t(B) ¢ S and t(B) < Kﬁ_l

t(B) is the BEE ordinal having a notation from 3

subindividual
Define T cw X a x o as follows:

T = {<e,B,0> | e is the G8del number of a L, formula ¢(X)
in L, B < ¢ and M (o) (F) b= ¢(£(8))}

Let OU be the structure <L, (T),e,T>
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@

Definition 3.6 (Reducibilities)

Assume A =S, B, < a, By <a and ecw
Let G = <F,A>

Then [e]A(BO) = B, iff (@p,x ¢ S)({e}G(p) = x

& IplT = t8, & |x]F = t8))

1ff there is an ordinal ¢ < Kg such that

M (G) = ¢el(t60,tsl) where ¢, 1s the I, formula

1
describing the graph of the eEE recursive function
Remark o < Kg but it is not necessarily the case that

F

<
(¢ Kn_l

Let [le(Bo) = B, 1ff @@p,x ¢ S)({e}G(p) = X

& l<eg,p>|® < t(1) 1rr @p < B, (@) = o (880,58))]

Before we go further, we shall need a few facts.

Lemma 3.3 (Harrington)

Acoails I, over (X iff t[A] is F-r.e,

<= If +t[A] < S 1is PF-r.e.

Then there is a I, formula ¢(X) of L with G8del

number e such that for ¢ < a, we have:
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@

to € t[A] iff M r (F) &= ¢(to)
n=1

iff @y € S)(y > to & My(F) = ¢(to))

1

iff <e,o0,t "y> e T

=> Conversely given ¢ € S, Sn ¢ 1is first order

definable over MU(F) uniformly, and thus, letting

) t"lc, the structure <L, (T),e,T N (w x § x §)> -

L}

is first order definable over MO(F) uniformly. Thus

a Zl definition over Ot induces one over M F (F)

Kn--l

F
(Remember: Kno1 = Sup S)

Clearly this implies that (U is admissible,
This lemma will allow us to use-the recursion
theory which OL induces on o, and then to apply the

a=finite injury method.

2efinition 3.7

definable

For A,B ca, let A iatB mean: %A is A

over the structure <o,B>"

We are now ready to state the main result of this

section:

Theorem 3.4

There are two semirecursive in F sets of type n+l

objects such that neither is recursive in the other_and

i
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such that every object, corresponding to a set of ordinals
less than a, of type n+l, recursive in both of them is
recursive in F,

Using the reducibilities that we defined a few

Y4, t718 < q, both

lines ago, we will get two sets ¢t~
Z, definable over OC and such that neither of A, B is
F-calculable in the other and such that every subset

1

t77C of a, with C F-calculable in both A and B, is

such that C is F-calculable in g

The only problem that could arise while we use the
ordinals to solve the problem would be the following:

"the ordinal ¢ that we need fo be able to see that

[eJQ(BO) = Bl, for instance, might be bigger than Ki_l."

In this case, we would not get any interesting information,

inside M p (F), about objects of type n+l. Hence we
n-1l

must try to find some other properties which, if possessed
by A, B £ a, imply that the computations do not become

"too wild" or "too long™.

Definition 3.8

A subset, A, of a 1s 0L-(hyperregular and regular)

if -the structure <O0L,A> 1is admissible,
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A subset B of S if F-subgeneric iff

< K

K<’}§,F> Fo
0 - n-=1

(This is also a place where our definition is

noticeably different from Harrington's: he requires

F

G(o)
that for all o ¢ S KO < Kn_l

where

G(o) = <§,F,H§>, we only require it for ¢ = 0)
Lemma 3.5

Given B ¢ a, 1f B 1is 9Z-(hyperregular and
regular) and if t[B] is F-subgeneric, then for all

A < o we have:
A~iozB iff t[A] 1s f-calculable in t[B]
Proof:

=> This too is fairly easy to see: F-calculable in

t[B] is always at least as strong as ... iazB°

<= If ¢t[A] 1is F-calculable in t[B], then for any
0 & S, the relations o € t[A] and o ¢ t[A] correspond

to Zl (with some member(s) of S as parameter)

G

assertions about the structure MB(G) where B = Ko

and G = <t[BJ,F>. Thus, since t[B] 1is F-subgeneric
we have that t[A] 1is Al (with some member(s) of S
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as parameter) over M F (G). So we just need to show

Kn-l

that the fact that B is ¢t-(hyperregular and regular)
implies that this induces a Q& definition of A over

<o ,B>, _ -

By the proof of lemma 3.3, this will be the case ifr
{<e,8,0> | B<o<a & e is the GSdel number of a
Z; formula ¢(x) in L & M, (<T[BT,F>)  ¢(tB)} 1is
A, over <OT,B>, So given o < a, since <02,B5 is

admissible, o A B ¢ La(T)' Thus for some

6 <a (8 >0), t[B] Ato is first order definable
over Mté(F), say by a formula with Godel number ege

Hence t[B]l n to e M p (F), and thus: Mta(G) eM o (F)

Kn-1 -1

with G = <E[BI,F>

So given B8 < a and given a formula ¢(x) in L,

M (G) & ¢(tB) 1iff (368 ¢ S)(Jey e w)(@X,Y e M o (F))
. Kn-l

[X is first order definable over MG(F> by the formula
with G8del number eg & X = t[Bl nto & Y = M, (<X,F>) &
Y = ¢(tB)]. Using the T predicate of definition 3.5,

this corresponds to a Zl-formula over <O01,B>,
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Remark 3.6

If Bga is I, over or, then if t[B] is

F-subgeneric, B 1s 0z -(hyperregular and regular). 1
Hence it is enough to find some property which
implies that ¢t[A] and t[B] will be F-subgeneric

(we assume that we build them in a Zl way) and which

¢

is suitable for inclusion in a priority argument.

We must also get a property which does not force
us to use more than countably many requirements (so we
will be able to get o type n+2 objects which are a

minimal pair for type n+l objects for all n > 1).

Let B be Zl over Ot, think of B as being
enumerated in « many steps, Let B be the part of B
enumerated prior to stage o. Without loss of generality

we can assume BG‘S ¢, The property we want is following:

Definition 3.9 Property H

For all Z, formulas ¢(X) in Laz there is a

§ < a such that:
if By <o)y > 6 & <L (T),e,T [ v, BY> = ¢(0))

then @y < a)(y > 6 ¢ BY =By & <L, (T),e,T [ v,BY> & ¢(0))
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Property -H means that, giveﬁ some basic fact about our
hierarchy (i.e. ¢(0) with ¢ in Zl), there is a level §
such that 1f that fact happens to become true (because
of some initial segment of B) after that level, then the
same fact must be true at some level y (after §) where
all the relevant part of B is perfectly known (i.e. some
level y such that for all <t < Ys ¥ knows whether v € B
or T ¢ B and no ordinal y' > y will view B~y
differently).

It is easy to work property H into a priority
argument, as we will show later. But we must still prove

that property H implies that t[B] 1s F-subgeneriec.
Lemma 3.7
Assume B is 21 over

If B satisfies property H, then t[B] 1is

F~subgeneric.
Proof

Let B be Zl over (U such that B satisfies

property H, Let C = t[B].

l‘O C is F"'I'.e.

*e there is a Z, formula ¢(x) in L such that for



139.

F we hav
B < Kn-1 ©

BeC<=>MF (F) = ¢(8)
Kn-l

F

For o <k, let ¢ = {g <q | M_(F) &= ¢(8)}

By the proof of lemma 3.3 ¢(X) can be chosen so

that for all o < «a, t[B9] = cto

Let S' = {8 < " | letting § = sup (S N 8), we
have & + B = B}

.'s B e S' iff sup (SN B) .1s small in comparison
with B.

By the proof of lemma 3.5, the fact that B
satisfies property H can be translated as follows:
for any Z, formula ¢(X) 4in L, there is a 6 ¢ S,
such that if (Hy. e S AS')(y > 8 & MY(<-C—Y-,F>) = ¢(0)),
then 3y e S A S")(y > 6 & MY(<€Y-,F>) E¢(0)&cY =cny)
and thus M o (<T,F>) = ¢(0)
n=-1
Now we must show that C is F-subgeneric, i,e.
given m & w such that <m,0> ¢ OG, with G = <C,PF>,

we must prove that |<m,0>lG < Ki_l.
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There is 3.51 formula Y(x) 4in L such that for
any ordinal B8 € S' we have: MB(G) E ¢(0) 4iff

B > [<m,o>|G,

Since <m,0> ¢ OG, there 1s an ordinal B! -such

that MB,(G) = ¢(0); we might as well choose B' such
F R
that B8*' > Kol & B' € S

0 F

¢ @ Kn_l'*'B"—‘B’

e ¢ =P’ and so MB,(<CB',F>) F ¢(0)

By lemma 3.1 (reflexion) we may choose such a Bt
so that B' < Ki and thus, there are arbitrarily large

F ' oY
Y' < k,_, such that y' e S' and .MY,(<C SF>) + ¢(0),

For each such y', let ¥y be the first T member of S,

T
such that t > y', Then y € S' and c¢Y =Y

', there are arbitrarily large Y's members of S » ST,

such that:

M (<CY,F>)  4(0)

‘e the translation of property H implies that

Mo (<T,F>)= ¢(0)

Kn--l
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G G Fo.
, <my0> e 07 & |<m,0>|" < Kool

(with G = <C,F>),

We are ready now to attack the proof of our main
result., This proof will follow the main lines -of
theorem 2.8, But here we must add to the positive and
negative requirements, some special requirement to take
care of the subgenericity, This will force us to S;
more careful in the construction: we need some kind of

seml-cancellation: the prohibition!

Definition 3.10

The positive requirements are

{le]#A]ecwul{lel] #B| ecw and aftep being

interlaced are denoted by {R; | e € w}.
The negative requirements are

{[(e)OJA = [(e)ljB | e € w} and are denoted by

{Qi l ie w}
Let Th={g<aq | <ig(™), e, T } 8, P> E $,(0)}
and TD = {8 < q | <Lg(T), €, T |} 8, B® =g _(0))

The special requirements are

__J
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{"I‘é # @=> Gy ¢ I‘i‘)(AY =ANY)" | e e w}
Vv {"PE # @=>(3y ¢ I‘S)(BY =BA Y)" | e e w}

After being interlaced the special requirements

are denoted by {S; | i € w}
1s [e]l # A, then it is associated with 5e+l
If Ry 1s [e] # B, then it is associated with 5e+3

If 9 is [(e)yI* # [(e);1P, then it is associated
with 5e.

If S; 1s special for B and e, then it is
associated with 5e+2

If S; 1is special for A and e, then it is
associated with Se+4

(Si is speclal for X and e iff S; is

"rz # 0 => (3y ¢ I‘g)(xY =XnY"' (where X 1is A or B))

Let py(1) = [Sesl 1ir R, 1s [e] # A
5e+3 if Ri is [e] # B
(1) = Se  if Q is [(e)y]* = [(e) 1B
pz(i) = |[5e+2 if S; 1s special for B and e

Se+l4 if S; 1s special for A and e
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Let ’g,‘g be two requirements, o associated with

k and B associated with 2(k,2 c w).

We say that & has higher priority than E’

(and write p(a) < p(B)) 1ff k < 2,

Followers are appointed for the sake of Ri at
certaln stages; they are subject to cancellation or

prohibition at later stages.

A cancelled follower remains cancelled forever,

but a prohibition can be lifted.

At every stage a follower is either realized or

unrealized and each Ri has at most one unrealized

follower

p € a follows Re iff p 1s appointed to follow

Re and 1ls never cancelled; p follows Re at

stage 0 (0 < a) if p was appointed prior to stage ¢

and was not cancelled prior to stage o; we say also that

such an ordinal is a follower "still in existence" at’
stage ¢ ‘

p has higher rank than q (at stage o) if p follows
R; (av stage ¢), q follows Rj (at stage o), and R, has

higher priority than Rj (i.e. Pyl < poj).
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p has higher order than q (at stage o) if p and q
both follow Ry (at stage 0) and p was appointed

before q.

Definition 3,11

As usual we denote by A% (B° respectively) that
part of A(B) which has been enumerated prior to stage o

as well as 1its characteristic function.
Assume Ri is [e] # A.

p satisfies Ri at stage o 1if p follows Ri at

stage o, [e]o(p) is defined, [e]o(p) # A%(p) and either

Ac(p) = 1 and p was realized at stage o or A°(p)'= 0 and
p ¢ U{Y | v < 0}

Ri is satisfied at.stage o if there is a p € o,

such that p satisfies Ri at stage o,

Ry 1is satisfied (satisfied before stage o

respectively) if there is a stage T (T < ¢) such that

Ri is satisfied at stage T.
Similar definitions are made if Ri is [e] # B.

Definition 3.12

We need now two auxiliary functions:

L: @ X @ + o and M: a x w + o defined as follows:’
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. o
L(o,e)[; least x < o such that either [(e)ojg (x) 4
BG
or [(e)lJa (x) 4+ or (3p,q € a)

A%, BY
[(e)olc (x) = q & [(e)llc (x) =p &p # q)

if there is such an x

= o otherwise

M(o,e) = sup {L(t,e) | T < o}

Definition 3.13

A follower p € o 1is associated with Qi (at stage o)

if there is a stage o' (o' < 0) such that p is associated
with Qi at stage o! of the construction and the association

is not cancelled at any later stage (and prior to stage o).

Assume Qi is [(e)o]A = [(e)llB: o satisfies
Q iff L(o,e) = M(o,e)

Assume Si is special for B and e

Let I‘ZB={y<a]BY=B°ny&
3

<L (T),e,T | e,B'> 60}

Let vy = nyly ¢ PZ,B]

S; 1s satisfied (at stage o) iff all the ordinals

Y
B < a such that [B <y, & B ¢ B 0 ¢ B is a follower in
0
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o

existence (at stage ¢) for some requirement R with

J’

RJ a positive requirement for B (i.e. PoJ = 5e+3

for some e) and with pod < pZi] are prohibited.,
Remark:

The construction will be such that an ordinal B,
member of a prohibition at stage o, for the sake of some
S; cannot enter A (or B) at some later stage, except

if B follows some Rj of higher priority than Si; but such

an ordinal is not cancelled: it is still in existence,

Definition 3.14

Let Re be [i] # A or [1i] # B. Re requires

attention through p at stage o if

1) p follows R, at stage o

2) R, 1s not satisfied prior to stage o

3) € < 0 and at least one of the next three clauses

hold:

4.,1) p 1is a realized follower of R, at stage o

and p is not associated with any QJ at stage o.

4.2) p 1is a realized follower of R, at stage o
and p 1is associated with some QJ and o satisfies

QJ.
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4,3) p is an unrealized follower of R, at stage ¢

and [i]a(p) is defined,

Re requires atteﬁtion at stage o if for some P,
Re requires attention through p at stage g3 or if
e < g, Re is not satisfied prior to stage o and Re has

no unrealized follower in existence at stage o,
Let Si be special for B and e.

S, requires attention at stage ¢ iff i L0, S, is

i i

not satisfied prior to stage o and
L (T, e, T Mo, B9k ¢_(0)

And similarly for SJ special for A and e,

Definition 3.15 (The Construction)

The construction of A and B 1is by stages;

we need o stages,

Stage 0
A =80-g
Stage 0 > 0

Case 1

No Re or Se requires attention at stage ¢

Do nothing:
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Let A% = Y{aS | 6 < o}
B = (8% | & < o}
Do not change the prohibitions
Go-to step o+l
Case 2

Some Ri or Si requires attention

Look for the requirement of highest priority that

requires attention.

2.1) Say S, 1s this requirement, where Se 1s special

for B and i
Cancel all followers of all positive requirements
of lower priority and all associations of such followers

with negative requirements.

Se is said to receive attention at stage ¢

Prohibit all ordinals B (for membership in B)

G Yo
such that (B < vy = uy[y ¢ Iiygh &(B¢87) &
3

(B follows (at stage o) some positive requirement R

J
(where RJ is [u] #B)) [i.,e.: all B < Yo such that

Y
B ¢'B . and B 1is a follower still in existence of g3

positive requirement mentioning B].
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A similar construction exists if S, 1s special

for A and 1.
2.2) Say R, 1is this réquirement.

Cancel all followers for positive requirement Ry
with Py > Ppe, and all associations of such followers
with negative requirements and 1ift all prohibitions for

special requirements SZ with PyZ > pje.
Re is said to receive attention at stage ¢

If there is no follower P such that Re requires
attention through p at stage o, then consider subcase 4,
If there is such a follower, then let p be the follower
of Re of highest order at stage o such that Re requires
attention through p as defined earlier in (4.1), (4.2)
and (4.3), ©

Assume such a p exists.

Cancel all followers of R, of lower order than p
at stage o and all associations of such followers with
negative requirements. Re is said to receive attention
through p at stage o. Adopt subcase 1, 2 or 3 respectively
if . Re requires attention through p at stage ¢ and

clause (4.1), (4.2) or (4.3) holds, respectively.

T T e e e i e o e e T e e
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Subcase 1

Let T, = {<y,n> | v < pye & n < wi

Well order Te by <y,n> < <u,m> ;ff. n<m or
n=mé&y<u,

Let Vg(p).= {<y,n> ¢ Tq | for some z, c;, u and m

we have [0 < o' and p 1is associated with QZ at stage o!

through <u,m> and <y,n> < <u,m>},
The association of a follower with a negative _—
requirement will always take place through some <u,m>

as specified below,
Let <Y¥psny> be the least member of the set

T, - Vo(p) such that (3z)(z € w & z < 0 & p,(z) = y. &
e e ) - 71 0
no follower of Re of higher order than p (at stage o)

is associated with QZ).

If <¥gsNg> 1is well defined, then associate p with

Q through <y,,n,> where z is the unique 2z such
2 0270 0

that z < ¢ and pl(zo) Yo

Let A% = Y{a® | § < o}

B = U(B® | 5 < o}




151.

Go to stage o+l
If <YgsRg> 1s not well defined and R, 1is
[1] # A, let A% =({a® | 5§ <o} U {p} "and

B =y{e® | 6 <o}; 1f R 1s -[i] # B, let

e

B =U{B% | 6 <o}lu {p} anda A% =U{a% | § < o},
Go to stage o+l

Subcase 2

Assume p 1is associated with QJ at stage ¢

Suspend the associatlion of p with QJ and proceed

as in case 1.

(A suspended association with a negative requirement
can always be reinstated, but not through the same <y,n>

of course!)
Subcase 3
p is now realized

If [1]J(p) # 1, add nothing to A or B and cancel
all followers of Re at stage o, save for p, and all
associations of such followers with negative requirements

and go to stage o+l.

If [1](p) = 1, proceed as in.case 1,
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Subcase U4

Define p to be o, Re is then said to receive
attention through p at stage o. Make p an unrealized

follower of Re.
Add nothing to A or B
Go to stage o+l,

-End of the construction

Remark:

Apparently a follower could be appointed and then
(by Subcase 1) put in A v B while prohibited. The

following lemma proves that this cannot be the case.
Lemma 3.8

If R, receives attention through p at stage o,
Then p 1s not prohibited after the beginning of stage o

(But p may become prohibited (again) at some later stage).
Proof
Case 1

If Re requires attention through p, then as soon
as stage o begins, all prohibitions due to special
requirements of lower priority are lifted. By definition

of the functions Pg and P, a positive requirement and
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a special requirement cannot have‘the same priority! So
assume that p 1s prohibited because of some Sz of
higher priority than Re' But then there is a stage o!
such that p was in existence at stage 6‘ Sep < at)
and o' < 0o, such that p has been prohibited at
stage o', As p was in existence at stage o', it was
already a follower of Re (at stage o'); and as Re

is of lower priority than Sz, p was cancelled at

stage ¢'. Thus Ry does not require attention through

p at stage o. =<=
Case 2
p 1s appointed a follower of Re at stage o. But

then p cannot be member of any prohibition established

before stage o. l

Lemma 3.9 _ i

If p 1is a follower of R,, then as soon as p
is realized, either p enterssr Auvu B or p is

assoclated with some Q,, or p enters a-A or a-B.
Proof

Assume p is created (as a follower) at stage o.

Thus p = o, p is not prohibited (at stage o). Re

recelves attention at stage o,
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If p Dbecomes realized at sfage o' > ¢

Then Re recelves attention again and p 1is still

in existence (at stage o')

»'. P has not been prohibited for the sake of some SJ
of higher priority than Re (otherwise p would be
cancelled) and p is no longer prohibited for the sake
of some Sj of lowef priority than that of Re after
the beginnihg of stage o' (all these prohibitions have

been lifted as soon as stage'o' began),

If [130:(9) # 1, then p enters oa-A or p enters

a-B., ,'s p enters o-A u a-B
If [iJG,(p) = 1, then two cases can happen:

1) R, has already as many realized followers as
possible: then the <¥gshp> mentioned in subcase 1 of
the construction is not well defined (Vg'(p) = @ but if
pl(z) =y and y < po(e), then some q follower of R, of
higher order than p is already associated with Qz

+% wWe cannot associate p with any QZ)

©

®*t <¥gsNg> 1s not well defined and p is not

prohibited

o» P enters AU B without any problem.
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2) Otherwise (i.e. <yy,n,> 1is well defined):

associate p with QZ where 2 is the unique =z
0

such that pl(z) = Vg i

Corollary 3.10 I

If p 4is a follower of R,, realized at stage o,

and 1f p 1is not associated at the end of stage ¢ with

somé Qz,

Then the exact position of p 1is known at the end

of stage ¢
Proof

Assume R, 1is [1] # A (similarly for [i] # B)

.+« Wwe know already-that p ¢ B

Then by lemma 3.9 we must either put p in A or

in a-A at stage o. L
Definition 3.16 :

R, 1s discharged (at stage b), ir R, does not

receive attention at stage o', for any o > o, Re

is discharged by p (at stage o), if R, does not receive

attention through p at stage o', for any o° >0,

Se 1s discharged (at stage o), if S, does not

receive attention at stage o', for any o > g,
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Lemma 3.11

Each of the Si's and Ri's i1s discharged.

Proof
1) Assume all Ri's and - Si's of higher priority than

Se have been discharged prior to stage o. Assume Se

is special for B and x with x € w (there is
obviously a similar argument for the case "Se is
special for A and x") and assume that Se has not

been discharged prior to stage o,
S Se must require attention at some stage o! > o,
@ t .
« « at stage o' we have <LU,(T),e,T A o',B0 > = ¢x(0)

As Se is the requirement of highest priority
that requires attention, Se receives attention at

stage o',

.’ We prohibit all ordinals B8 < Yo sSuch that

Yo

' Yo
(B " =389 A Yo & <Lyo(T),e,T | y,,B > = ¢,(0)

y
88 ¢BQ g Yy 1s smallest such ordinal]

As all requirements -of higher priority are dis-
charged, this prohibition cannot be lifted at any

stage o" such that o" > ¢!
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°

I Se is discharged at stage o',

2) Assume all Ry's and S;'s of higher priority than
Re have been discharged prior to stage o. Assume that

Re has not been discharged prior to stage o.

2.1) Suppose that Re is satisfied at some stage o! > o,
Say Ré is satisfied by p.

At a later stage p could become prohibited but

not cancelled.

4 p will still be in existence and Re remains

e e

satisfied.

e’ R, 1s discharged at stage o',

2.2) Suppose that Re is not satisfied at any stage.

.°. each realized follower of R, at stage o' > g
is associated with a different Qu at the end of
stage o' > ¢ [Re is not satisfied at any stage, ., p,
a follower of R,, cannot "enter" A, B, a-A or o-B
unless 1t 1s cancelled, but as all requirements of
higher priority are discharged prior to stage o, nb
follower of R, can be cancelled at later stages,
‘. if p 1is a follower of R, (at stage o' > o),

as soon as it is realized, it must be associated with

some Q, (by lemma 3.9) and two different followers must be
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associlated with different Qz's (by construction)].

Consequently, R_ has at most po(e) realized

e
followers (at the end of stage o¢') and at most one

unreallized follower at stage o',

Let qy be the first follower of Re of order O
at any :stage o' after stage o, Then qy is never
cancelled. By hypothesis Re is never satisfied., 1If
qy 1s always unrealized, then R, 1s discharged (q0
can only become prohibited, thus remains in existence!!l)
ir 9 becomes realized, then (as Re is never satis-

fied) qq is associated with some negative requirement

(by lemma 3.9) and qy 1s associated with some Q,

(with pl(w) < pyle)) for all sufficiently large
stages, Let 9 be the'stage at which qq is last
assoclated with some "new" negative requirement (i.e.
oq is the first stage such that ) is associated
with Q , say through <¥gsNg>s and this association
will never be cancelled).

@

e o At stage 00+1 a follower q; of R is

appointed, never to be cancelled.

And so on until termination with at worst qpo(e)+1'

Either Re is satisfied or some Q4 is appointed to.
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follow Re and is never realizéd.

In either event Re is discharged.

Lemma 4,12 _

A and B are subgeneric,
Proof

By lemma 3.7, as A and B are clearly Zl over 57}
it is enough to show that both satisfy property H
(definition 3.9),

do It is enough to show that each Speclal requirement

Se is satisfied at some stage o of the construction,

Assume Se 1s special for B and i (similariy
for A and 1) and assume that Se 1s not satisfied
aﬁ any stage prior to stage 0. By lemma 3.11, there is
a o' >0 such that Se is discharged at stage o', By

the proof of lemma 3.11, we know that
if there 15 4 Y such that

<Ly (1),e,T ' v,BY> =4, (0)
then there is gz Y such that BY = B Ny

and <Ly(T),e,T | v,BY> = ¢, (0)
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Remark:

Now that this fact is established, we feel more

comfortable when we use definition 3.6.
Lemma 3.13

Neither A nor B 1s recursive,
Proof

Suppose A = [e] for some e € w

(The proof is similar for B = [e])

If p 1s an unrealized follower of [e] # A,
at stage o, then p 1s either cancelled .or eventually
realized (If p remains eternally unrealized, then
[e](p) would diverge while A(p) = 0 or 1 according to
pehAorptéA,. . A# [e]=>=)

By lemma 3.11, [e] # A 1is discharged
«'. there is a stage o such that [e] # A does not
require attention at stage o', for any o' > o,
. [e]l # A does not have an unrealized follower at
stage o (otherwise it would not be satisfied at stage o,
+'« never satisfied and either p would be cancelled or

[e]au(p) would be defined for some o¢" > o, and so

[e] # A would require attention after stage o.><)
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Since [e] = A has no unrealized follower at stage o,
and does not require attention at stage o, [e]l # A

must be satisfied prior to stage o.

.’ there is a p that follows [e] # A such that

p e A<=>T[el(p) =1

. [el(p) # A(p) =

Lemma 3.14

Assume p follows Ri at stage o

q follows R at stage o

J

(,°, P, are both in existence at stage o)

Assume furthermore that p,q € (Av B) - (a° v BY),

Let oy be the fir§t stage at which p enters
A v B and o, be the first stage at which g enters
AV B,

Assume cl < 02
Then pq(1) > Py (J) -

Proof
. As q 1is put in A v B at stage 0y > 9.5 4q is
still in existence at stage oy (1t might be prohibited

but not cancelled, because a cancelled follower can never
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be reappointed) and q is not cancélled at stage al
(q¢ might be prohibited at stage ol)

o e Ry must have higher priority than R; .

Reformulation

If p and q are both follower "in existence"
at some "early" stage, and ir p € Awv B, éay p enters
A B at stage o, and if q 1is still in existence,
but has not yet been put in A u B, at the end of stage ¢
(1t might be the case that q will never enter A v B),
Then p has been appointed follower for the sake
of a requirement of lower priority than the priority of

the positive requirement for which q was appointed.

Lemma 3.15

(An o) - A° ana (Bno) - B are finite.

Proof
(We give a proof for A, the proof for B is similar)
We want to show that (A A o) - A° is finite
(i.e.: there are only finitely members of A, appointed
before stage o which enters A after stage o)
Fix o < ¢
If zeAno, then z2¢ A% or z is a follower in

existence at stage ¢ (because z < o)
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Let O0p 2 0 Dbe the least stage such that some z < ¢

is put in A at stage 9 (say it is zo)
For each 1 € w, let 0441 be the least stage T, 7 > oy

such that some 2z < ¢ enters A at stage °i+i
(say z = Z1+l>

Suppose Gi is well defined for all i e w

Let R be the requirement satisfied at stage oy

ky

by Zi'
As all these zi's
beginning of stage o, by lemma 3.14 we get:

were existing followers_at the

Polkg) > pylky) > pylk,) > ... ==

If o i1s not defined then =z ¢ A o <=> 3z ¢ AG(\ (o

0

If o, 1is the last well defined o; (n e w), then

%n
ZeAno<=>2z¢gA o,

It is now obvious that A and B are regular,

Lemma 3,16

If ¢ = [(1)1* = [(1)1B

Then C is recursive
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Proof

. Let o be the least ordinal ¢ such that Ry has

1
been dlscharged prior to stage o for every y such that

Pg¥ < pq1 = 51. .The existence of o, follows from the

proof of lemma 3.11.
Any positive requirement that receives attention at
stage B, B > Oy has its followers subject to association

with Qi at stage B.

To decide whether or not x € C, search for a

stage 0, > 0, such that L(az,i) = M(oz,i) > X, 0,

éxists by lemma 3.15.
%2 %2

e [(1) ]A (x) = [(D) ]B (x) = q for some q, € «
0 02 1 0y 1 1

A and B are regular and subgeneric,

' ()
Co [ 1A = 1m L) 04 ()
g > a

[, 15 (0
lim i X
G+ o l-c

ASSIRR(E)

.+ to show that C(x) = 6§ it 1s enough to show that
AT BT

([(1)5]] (x) =8 or [(1),10 (x) = 68) for all T > o,

Part I

At stage 0,5 We have:
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>

o

2 g
, (0 = 1), 2

2 .
[(1),22 (x) = q

o 2

(o]
[y (T, e, 2 P opy & Bk 4(1),(%ay)
RANEH

(9
2

L

where ¢(i)o and ¢(i)l are the Zl formulas used to

code the two functions we are considering.
As A and B are subgeneric, we can consider
without problem the objects ¢y and do, where

cqy (dO respectively) is the computation of
92 92

[<1>OJ§2 () = qy <[<1>1J§2 (x) = q;)

cqy (dO respectively) will be invalid at stage B > g,

only if some =z < 0, 1s put in A(B) before B8 but

after o, (This is obvious from (J)). Let be the

By
least 8 > O, such that some 1z < 0, 1s put in A or B
at stage B. Let zZy bea 2z put in A at stage Bl,

let z; follow Ryl (.2 Po¥y = 5y1 + 1)

The computation dO 1s still valid at the

beginning of stage Bl+l,
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Claim 1

If p 1s a follower of Rv such that

1) p 1is in existence at the end of stage Bl

2) Rv is not satisfied before the end of stage 81

Then p < 0y

Proof of the claim

Let RV be a requirement such that Rv has a
follower p in existence at the end of stage 81 and

Rv is not satisfied before the end of stage 61.

o« polv) < po(yl) (B)

Assume now that p 2> 02.

&

. ¢+ there is a 6§ such that 0, £ 6 < B, and p 1is
appointed to follow Rv at stage §. Since 24 < Oy
2, has been appointed before stage 0,3 as Z, will

enter A at stage Bl’ 24 is not cancelled at stage §.

oY PV > PoY, because zq i1s not cancelled because

of the appearing p.
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But this contradicts (B).
«’» all followers in existence at the end of stage Bl,
for the sake of requiremenps which are not satisfied
before the end of stage Bl belong to 05

claim 1 ’

Part II _ |

If no z < o, is put in B after Bl,

then the computation d0 is valid forever and

B
[(i)llg (x) = q; for all 8 > o,

«¢ 9y 1s the-true value of [(i)l]B(x)

So assume that there is a B > Bl’ such that
some z < o, is put in BB at stage B. Let the

least such B be 82, and let 2, be such a z

Suppose z follows R
2 Yo

We must notice that Z, will enter B at stage 82.
Thus Z, wlll not be cancelled at any stage v < 82.

As Zz, will enter B at stage 62, 2, must be

realized at some stage Y, < 32; we know also that Ry
- 2

will receive attention at least once "between" stage Bl

and stage B, (namely at stage B8,)
2 2
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Two cases occur:

Case 1
Z, is not assoclated with Qi at any stage B such
that Bl < B < 62. By the preceding remarks we KkKnow

that Ry will receive attention through 2, at some
2

stage B8 such that By < B L Bse Let B' be such a B

(the first one for instance)

Since Z5 < 0, < Bl’ Z5 existed as a follower at

the end of stage Bl'

If z, was unrealized at the end of stage By,

then 3z, was eligible (at stage g') for association

with Qg through <51i,0>; and i1f 2z, was associated
with some Q'j through, say <w,n>, at the end of
stage B,, then 2, was eligible (at stage gt) for

association with Qi through <5i,n+l>.

But since 2, is not associated with Qi at
stage B' we must have:

"some follower r of Ry2 of higher order than that
of Z5 was associated with Qi at stage p, where o is
the least stage such that 2z, was associated with some

Qj through some <u,k>" (if there is no such p, let

p = Bs).
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We have <u,k> > <51,0> if z, was unrealized at
stage 81, and <u,k> > <5i n+l> if Z, was realized
‘at stage 81 and associated then with some QJ through

<w,n>,

But since r has higher order than Z, at stage »p,
r < Z,; S0 r exlsted as a follower at stage O0y. If r
were not associated with Qi at stage Oss then it must

be the case that Ry has received attention through »
2

at stage § (02 < 6 < B') because r was not associated
with Qi at stage o, but will be so at stage B! < 32.
But z, would have been cancelled at stage 6§ and thus

could net be a follower at stage 82. XK=

L3

¢ « r is associated with Qi at stage Ooe

But o, is such that L(oz,i) = M(o2,i), lee. Qg

is satisfied by 02.

e r is a follower of Ry which is associated to a
2
negative requirement at stage Oss and Ry is not
2

satisfied prior td stage Oy

e Ry requires attention through r at stage 9,
2

There are now four poésibilities:
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1) Ry receives attention through r and 2z, 1s

2
cancelled ===
2) Ry receives attention through a follower of higher
2
order than r and 2z, 1is cancelled =<

3) R, receives attention, with pgyv < pyy, and

z, 1is cancelled =

v

4y s receives attention with p,oV < pyYs and 2z,
is cancelled = "

Thus case 1 cannot occur,

Case 2
Z5 is associated with Qi at stage B for some B

such that Bl < B < 32; let Bi be the least such 8.

Since 1z, enters B at stage 82, there is a first

i L
stage B such that B' < B, < B and the association
1 1 l—-"2

]
of 1z, with Qi is cancelled at stage Bi. Since z,
is still a follower at the end of stage B;, it must be
"
the case that L(B;,1) = M(B;,1) (otherwise @; fis

not satisfied by 8;, ,‘,Ry does not receive attention
2

through z,, '+ We cannot cancel the assoclation of 1z,

with Qi uﬁless we cancel 22 =><=) and there must be
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an ordinal q < @ and a computation cq of
i

1 ‘ " "
[(1)032" (x) = q, (because ‘L(By,1) = M(B,1) > x

1 )
: "
el
=> [(1),1%, (x) +)
By
= ’ N t = ’ ¢ M
Z, P Bl 81 A Bsy o

If ¢, Wwere invalid at the end of stage 82, then
some follower r would land in A at some stage A
1]
Suppose r follows Rv'

11
r has to be such that r < Bl (otherwise it would
not invalidate cl) ana r exists as a follower at

stage BI. Also PyVv < Po¥s because Ry2 has a follower

"
Z, which exists at stage Bl, and Ry requires attention
2

11 e
through z, at stage Bl but does not cancel r (which
will enter A after stage B; and has been appointed a

follower before stage B;).
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But as RV receives attention at stage A, z, would

be cancelled at stage A < 82. =

Hence cy is valid at the end of stage 62.

But all followers in existence at the end of
stage 82 for the sake of requirements which are not
satisfied before the end of stage B are less than o,
(this can be proven as claim 1, in part I, with Z,

for z,, B, for B, and B for A).
Let Cyr = ¢q

If no z < o5 is placed in A after stage 62, then

the computation cy is valid forever
Assume that some 2z < o, is placed in A after
stage 82.

Continue to altqrnate as above between A and B,
If for some n ¢ w, 2, fails to be defined, then the
lemma is proved. So suppose zn is defined for all

new, As zn follows Ry and is in existence at
n

stage 0,, we get by lemma 3.14
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We might, of course, wish to use the full power of
the definitions of "F-calculable in" and of "subgeneric™
given by Harrington in [8]. But in that case, we need

more than countably many requirements (as soon as n > 1),

Lerman and Sacks called refractory the Zl—admissible

ordinals ¢ such that, in o-recursion theory (i.e, in

<L,5€>), the following holds: p2¢ = gco < tp20 < ¢ (with:
p2c = 22 projectum (in La) of o; geo = greatest cardinail
in Lo’ if there is oneé, or o otherwise; tp2¢ = tame

Z, projectum (in Lc) of ¢). They proved in [8], that irf

o is not refractory, then there is a minimagl pair in L
Unluckily thelr construction might lead to two g=-r.e,

Subsets of o whose indices are not integers: this cannot

lead to a minimal pair of sets of individuals semirecursive

in F, but well to objects semirecursive in <F,f> for
some subindividual f, Nevertheless we can use a technique
derived from that used by Shore in [27] for his uniform

-80lution of Post's problem,

Definition 3.17

An ordinal ¢ is saig to be distorted iff

pac X geo < tp2o <0
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Theorem 3.17

Then there is a minimal pair of o-r.e. sets A and B

sucﬁ that both A and B have integers as indices.

The proof requires first a Shore-~like uniform
construction and an argument which follows, after
translation into the corresponding language, the

Lerman-Sacks argument of [8].

Corollary 3.18

If p2a = a

Then there are two (uncountable if n > 1) objects
of type n+2, A and B, semirecursive iﬂ 'y such that every
object of type n+l, D, corresponding to a set of ordinals
less than a which is £educib1e to both A and B according

fo Harrington's definition is recursive in F. Moreover A

is- not reducible to B (nor B to A).
The proof uses the uniform construction of theorem 3.17
and the argument -used by Harrington in [8] to show the

exlstence of type n+2 objects which solve Post's problem.

Remark 3.19

As announced earlier, if V = L, then Ai-l is not

distorted.

P
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We must confess that we do not know any model of
F

n-1
are distorted ordinals (e.g. the first Zo,~-admissible),

we do not know whether Al ., if distorted, could be

ZFC where 2 is distorted; also: although there

non-refractory (the first Z,~admissible is refractory).
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