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PREFACE

Four years ago I never would have thought that I would write a thesis in logic but
here we are. During my first year at UGent, I followed my first course on logic
which was taught by prof. dr. Bert Leuridan and dr. Frederik Van De Putte. I
liked this course for a number of reasons. I liked it because it was different from
the other courses. It was different in the sense that there were these symbols and
ways to manipulate them. There were proofs and goals and reaching such a goal
gave a sense of satisfaction.

It was also different in a different sense. It felt like a fresh start. It is not an under-
statement to say that, coming out of high school, I was not very mathematically
oriented nor proficient which, I think, was largely due to not properly knowing
the basics and being unmotivated. The fact that this logic course started from the
basics and so did not require any previous mathematical knowledge motivated me
to keep up with it and do the required work. During this course, I realised that I
liked logic and wanted to get a deeper understanding of this discipline which is
why after the course was over I reached out to dr. Frederik Van De Putte. I asked
him whether he could provide me with any reading tips, which he gladly did, and
for which I am thankful.

The following year, luckily, there was another logic course. This course was taught
by prof. dr. Joke Meheus. The logic that was taught in this course was more
abstract than the previous one which, I discovered, I liked even more. At the end
of one of these classes prof. dr. Joke Meheus told a group of students, one of
which was me, that she would happily accept students that wanted to complete a
Bachelors thesis on a logic oriented topic. This was perhaps the tipping point that
led to this thesis. I convinced myself that I wanted to write a Bachelors thesis in
logic and so I did under the supervision of prof. dr. Joke Meheus as promotor and
dr. Frederik Van De Putte as copromotor.

It felt like the natural next step was to write a masters thesis on the same topic
and so it happened. This time I wrote it under the supervision of dr. Frederik Van
De Putte as promotor and prof. dr. Joke Meheus as copromotor. The completion
of this thesis was not without its hiccups and there were many times that things
just didn’t go to plan. However, if, in the end, I have produced something that has
some value to some people I will be satisfied. I have learned a lot these last four
years and there are some people to thank for that. There is, of course, the entire
staff that teaches philosophy at UGent of which there are two people in particular
that I wish to thank: dr. Frederik Van De Putte and prof. dr. Joke Meheus.
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I want to thank my promotor dr. Frederik Van De Putte for teaching me much of
what was needed to complete this thesis. If it were not for his critical remarks,
corrections and advice this thesis would certainly be of lesser quality. During
these last two years of supervision, there were many meetings and each of these
meetings often went on for more than an hour but of which every minute was
appreciated. I also thank him for stirring up my self-esteem by expressing faith in
me that I would complete this thesis when things weren’t going my way.

I want to thank my copromotor prof. dr. Joke Meheus for everything that she has
taught me during the last three years. If it were not for her open invitation to
write a Bachelors thesis under her supervision I might not have ended up writing
this thesis. During that Bachelor thesis I have learned much of the basics that
were needed to complete this thesis. I also want to thank her for allowing me
to take two additional logic courses this year from the Postgraduate Studies in
Logic, History and Philosophy of Science which have also contributed to a deeper
understanding of what philosophical logic is all about.

I want to thank Stef Frijters who collaborated with me this last semester during a
course of the aforementioned Postgraduate Studies in Logic, History and Philosophy
of Science which, as a side-project, gave me some valuable experience on how to
approach a philosophical problem by formal means. I also want to thank him for
being on the reading committee. Some gratitude is owed to dr. Rafał Urbaniak as
well who took the time to listen to my philosophical problems and gave me some
feedback when the metaphysics course he taught didn’t go as planned.

Lastly, I want to thank my parents for always supporting me in my choice to
pursue a philosophy degree and making this a financial possibility. I also wish
to thank Lander, Stan and Sam for being splendid room-mates this last year and
thanks to Pieter and Stan for proof-reading parts of this thesis.



LIST OF SYMBOLS AND ABBREVIATIONS

Logical symbols

What follows is a list of the most commonly used logical symbols:

¬ Negation

� Material implication

^ Conjunction

_ Disjunction

⌘ Equality

= Identity

8 Universal quantifier

9 Existential quantifier

O Deontic necessity

P Deontic possibility

S Set of proposition symbols

p, q, r Proposition symbols

V Set of variables

x, y, z Variables

C Set of individual constants

a, b, c Individual constants

Pr Set of predicate symbols

P
r
, Q

r Predicate symbols

A,B,C Meta-variables for formulas

↵, �, � Meta-variables for terms

⇡, ⇡1 Meta-variables for predicates

W Set of well-formed formulas

2 Set membership

[ Union

✓ Subset

⇥ Cartesian product

} Power set

W Set of worlds

R Accessibility relation

D Outer-domain

Dw Inner-domain of w

a Assignment function

d Domain function
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Abbreviations

iff If and only if

SDL Standard Deontic Logic

QFD Quantified free deontic logic

BF Barcan formula

CBF Converse Barcan formula

GF Ghilardi formula

CGF Converse Ghilardi formula



SAMENVATTING

In deze masterproef wordt onderzoek gedaan naar de rol van kwantoren in deon-
tische logica’s. Kwantoren toevoegen aan een deontische logica is geen rechtlijnig
proces. Ik presenteer een variëteit aan mogelijke manieren om dit te doen en
bespreek hun formele eigenschappen. Eén van de conclusies van deze presen-
tatie is dat vele van deze deontische predikatenlogica’s vrije logica’s blijken te
zijn. Dit zorgt ervoor dat de manier waarop de deontische operatoren seman-
tisch gedefinieerd zijn herzien moet worden om een meer intüıtieve semantiek te
bekomen. Deze revisie zorgt ervoor dat niet bestaande personen geen deontische
relevantie meer hebben en wordt de Van Benthem-clausule genoemd. Vervol-
gens wordt ze expliciet gecontrasteerd met de standaard clausule. Na een reeks
formele opties te hebben gepresenteerd ga ik na op welke manier sommige van
de formules die interacties uitdrukken tussen deontische operatoren en kwan-
toren gëınterpreteerd kunnen worden. Ik besluit hieruit dat formules waarbij de
kwantoren buiten het bereik van de deontische operator liggen de re gëınterpre-
teerd kunnen worden als uitdrukkingen die iets zeggen over persoonsgebonden
normen terwijl formules waarbij de kwantoren binnen het bereik van de deon-
tische operatoren liggen (de dicto) een vorm van niet persoonsgebonden normen
kunnen uitdrukken. Echter, om deze interpretatie plausibel te maken moeten een
aantal axiomakandidaten opgegeven worden, namelijk de Barcanformule, de Ghi-
lardiformule en de converse Ghilardiformule terwijl de converse Barcanformula
wordt behouden. Om dit mogelijk te maken hebben we een variërende domein-
semantiek nodig en de adoptie van de Van Benthem-clausule.
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1. INTRODUCTION

“It ought to be the case that everyone is happy”, “Someone should rescue that
drowning child over there”, “No sentient animal should suffer needlessly”, “Ev-
eryone may drink as much as he or she wants tonight”, “Someone is permitted to
push that red button over there” all of these expressions have at least two things
in common. First, they contain a deontic expression of some sort and second, they
contain a quantifier.

Deontic expressions are modal expressions indicative of normative content. The
word “deontic” is rooted in the Greek expression “�✏́o⌫”, which means “what is
binding” or “proper” (Hilpinen and McNamara, 2013). Deontic expressions such
as “must”, “ought”, “should”, “may”, “permissible” and “forbidden” can be found
in a wide range of human discourse of which the three most important are prob-
ably moral discourse, legal discourse and games. Any kind of area governed by
rules of some sort will have among its lexicon deontic expressions of some sort.

Quantifiers are the elements of a sentence indicative of quantity. The meaning of
expressions like “everyone” or “someone” are determined by the context in which
we are uttering them. They are bound by what we call the domain of discourse
which is that about which we intend to speak and let our quantifiers range over.
If we are at a party and I utter the phrase “It seems like everyone is enjoying
themselves” it is understood that by “everyone” I mean everyone at that particular
party.

Suppose I said that everyone ought to enjoy themselves at the party I would be
asserting a claim that combines a deontic expression with a quantifier. Sentences
that combine these two kinds of expressions are what we will call “quantified de-
ontic sentences” of which I have given some examples in the opening paragraph.
They are the kind of sentences that are the primary object of study in this thesis
and are of importance mainly due to their prevalence and subject matter. To give
a sense of their importance we can look at the Universal Declaration of Human
Rights which contains some examples of quantified deontic sentences.1 Let us
take a look at article 5:

Article 5: No one shall be subjected to torture or to cruel, inhuman or de-
grading treatment or punishment. (Assembly, 1948)

What does “no one” refer to exactly? Do we need to evaluate this expression with

1 Daniel Rönnedal argues in Rönnedal (2014a) that we can use quantified deontic logic to analyse
the rights contained within the Universal Declaration of Human rights which inspired me to use
one of the articles as an example at the beginning of this thesis.
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reference to all the currently existing people or also to future possible individuals?
In other words, what is its intended domain of discourse? Does it follow that
it is forbidden for everyone to torture other people? Most people will find no
great difficulty in making some correct inferences based on Article 5. However,
we shouldn’t deceive ourselves into thinking that the meaning of such sentences
is always transparent. In reality, we encounter much more opaque sentences
or complex constructions of which we can no longer intuitively grasp the subtle
nuances and their consequences. To give an example:

1. All of the Frenchmen are wine drinkers.
2. Some of the wine drinkers are gourmets.

3. Some of the Frenchmen are gourmets.

This is the syllogism presented in an experiment (Oakhill et al., 1989) to 45 sub-
jects all of whom were students who had not taken any classes on formal logic.
The majority of these students saw no problem with the conclusion despite the
fact that this argument is not valid. These syllogisms were intended to illustrate
that if the conclusion is itself believable many people deceive themselves into
thinking the argument is valid (Johnson-Laird, 2010). People, generally, are not
very good reasoners and our gut-instinct can easily lead us astray. There are, how-
ever, many disciplines in which proper reasoning is highly important and, surely,
it doesn’t need much convincing that ethics and law are two primary examples of
this.

This is why it is important to carefully think about what kinds of arguments are
valid. Assessing the validity of arguments is perhaps the main objective of logic
as a formal discipline. Fundamentally, logic is concerned with the question: what
is good reasoning? When we are reasoning about a particular topic, we have to
ask ourselves: which inferential steps are valid, which are not, and why is that
the case? Formal logic is the attempt to answer these questions in a structured,
systematic, and analytical fashion.

Deontic logic is a type of modal logic that has as its subject matter sentences
containing deontic expressions. This is nowadays a well-established discipline
spanning many decades of research. First-order predicate logic is an extension of
propositional logic that is able to deal with quantifiers. This logic is perhaps one
of the most established and well-studied logics in existence. If we want to build
a logic that can handle deontic expressions with quantifiers, the most straightfor-
ward way is to combine a well established deontic logic such as Standard Deontic
Logic (SDL) with first-order predicate logic. Surprisingly, we quickly discover
that combining a modal logic with a predicate logic is not straightforward at all.
As Patrick Blackburn and Johan Van Benthem put it:

We turn now to what is arguably one of the least well behaved modal lan-
guages ever proposed: first-order modal logic. [...] Had first-order modal
logic never existed, a logician who proposed its (now standard) syntax and
relational semantics might have been regarded as audacious, perhaps down-
right careless. Why? Because, in essence, first-order modal logic is a com-
bined logic. As we have just seen, combining two modal logics while retaining
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interesting properties is no easy matter. So it should not come as too much
of a surprise that combining propositional modal logic with first-order logic
is unlikely to be plain sailing. (Blackburn and Van Benthem, 2007, p. 66)

What it boils down to is that when constructing such a logic we encounter many
formal and philosophical problems that do not occur when we do not take quanti-
fiers or modalities into account. These formal and philosophical problems will not
necessarily be a problem of quantified deontic logics in particular but problems
of quantified modal logics in general. However, the way in which to resolve these
problems or what options are most suitable will, to a large extent, be determined
by the fact that we are working with deontic logics. In this thesis, we will take a
look at what kinds of philosophical and formal problems these are and how we
can deal with them from the deontic point of view.

There are also some important limitations to my discussion of quantified deontic
logics. My discussion on the semantical side remains limited to a discussion of
standard relational Kripke semantics. There are, however, many different ways in
which we can semantically interpret modal predicative languages. Some of these
other options will very briefly be touched upon throughout this thesis and I will
also later on motivate why I chose to work with Kripke semantics instead of one of
these alternatives. My discussion will also remain entirely on the first-order level
and I will not look at multi-modal systems combining deontic operators with, for
example, alethic or temporal operators.2 Another important thing to keep in mind
is that I will work with the principles of Standard Deontic Logic which is known to
be susceptible to many paradoxes. To maintain focus I will have to largely ignore
these paradoxes but they always lurk just beneath surface level.

Before we dive into the more formal part of this thesis, I will, in chapter 2, take
the time to situate the subject matter of this thesis by providing some historical
context. I will also explain how this thesis can be seen as a response to the lack of
attention quantified deontic logic has received so far. Normally, at the start of a
thesis, there is a chapter dedicated to the status quaestionis of the subject matter,
however, because of the lack of attention and the resulting lack of systematic
work on the topic there is hardly enough content to produce a coherent chapter.
Of course, the relevant literature will be weaved in throughout the entirety of this
document. The last section of chapter 2 will be used to reflect on what it is that
logicians actually do.

This is a thesis in philosophy and more specifically its domain is that of philo-
sophical logic. This is why one of the aims of chapter 3 is simply to show what
a formal logic that can be used for philosophical analysis looks like. We will see
that a formal logic consists of three main constituents: a formal language, a syn-
tax and a semantics. Each of these constituents have to be designed to suit the
specifics of a first-order deontic logic. This prompts a lot of questions. Which op-
tions are there when it comes to the syntax of a first-order deontic logic and what
are the important formulas that express interactions between quantifiers and de-
ontic operators? What does a model that is able to interpret a first-order deontic

2 If one is interested in some of the technicalities of these kinds of systems see Rönnedal (2014b).
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language look like and what are the formal options with respect to standard rela-
tional Kripke semantics? How does the semantics relate to the syntax of a logic?
In short: the main aim of this chapter is to show the plethora of formal options
that the deontic logician faces when bringing quantifiers into play.

In chapter 4, we will inquire into the meaning of formulas that express relations
between the deontic operators and the quantifiers. We will do so by examining
what it is that these formulas semantically express by using the various kinds
of models introduced in chapter 3. The main aim of this chapter is to use the
semantic meaning of these formulas to advance an interpretation of them which
will help us make some choices with respect to the formal options presented in
chapter 3.

In chapter 5, I will synthesise what has been said so far and the conclusions that
we can draw from this. I will highlight some of its shortcomings and limitations
and share some of the options for future research that I have stumbled upon when
surveying the literature.



2. WHAT, WHY AND HOW?

In this chapter I will situate the topic in its historical context, explain why we
should tackle the problems that it presents and how to do that.

2.1 A very short history of deontic logic

2.1.1 The dawn of modality

Deontic expressions fall under the umbrella of modal expressions. Modal expres-
sions are a key component of every language and yet it proves elusive to define
exactly what is meant by the term “modality”. Clarifying its meaning usually con-
sists in giving some examples. They are expressions like: necessarily, possibly, it
is obligatory that, it is permissible that, it ought to be that, it has always been
that, it will always be that, etc. The common thread throughout all these modal
utterances is that they speak not merely of the actual, of what is, but of ways in
which the world might have been, ought to be, will be etc. (Melia, 2014).

It is clear that these kinds of expressions pervade our everyday language1 and
hence our everyday thinking. Alan R. White (White, 1975) suggests that modality
lies at the root of many of our oldest philosophical problems. He writes: “...scep-
ticism is based on the feeling that nothing can be known unless the possibility of
its being otherwise has been ruled out; while determinism usually enshrines the
belief that it is not possible for anything to be otherwise than it is. The problem
of free will is the problem whether anyone could have done something other than
what he did do...” and concludes with “Of many queer philosophical views it is
true to say that there is modality in their madness.” (White, 1975, p. 2).

Because modality is so important in both everyday and philosophical thinking, it
is no surprise that philosophers have been concerned with the meaning of modal
statements as early as antiquity. Aristotle is one of the first philosophers who
concerned himself with modality in a philosophical way when he busied himself
with modal syllogisms in his work “Prior Analytics” (Smith, 1989).

In this thesis, the focus will be on deontic modalities: modalities like “ought to
be”, “ought to do”, “it is obligatory that”, “it is permissible that”, etc. The first
logical investigations into normative modalities took place in the fourteenth cen-
tury, nearly a thousand years after Aristotle. According to Knuuttila (1981), the

1 Henceforth I will use the term “natural language” to refer to everyday language.
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first discussion of a logic of norms in which the deontic notions are treated anal-
ogously with the interdependencies of alethic modal notions like “necessity” and
“possibility” is to be found in the work of Roger Rosetus, of whom almost nothing
is known, and Robert Holcot, an English Dominican scholastic philosopher.

2.1.2 Calculemus!

Fast forward another 300 years to the seventeenth century and we find Gottfried
Wilhelm Leibniz discussing deontic concepts such as the obligatory (debitum), the
permitted (licitum) and the prohibited (illicitum) in his work Elementa iuris natu-
ralis and calls them “modalities of law” (iuris modalia) (Hilpinen and McNamara,
2013; Leibniz, 1930). He also establishes a connection between alethic modal
logic and ties it to legal modalities.

It is also Leibniz who, in his dream, gave birth to the concept of a calculus ratioci-
nator, which would reduce any dispute to a mere calculation:

quando orientur controversiae, non magis disputatione opus erit inter duos
philosophus, quam inter duos computistas. Sufficiet enim calamos in manus
sumere sedereque ad abacos, et sibi mutuo (accito si placet amico) dicere:
calculemus (Leibniz and Gerhardt, 1875)

When controversies arise, there will be no more need for a disputation be-
tween two philosophers than there would be between two accountants [com-
putistas]. It would be enough for them to pick up their pens and sit at their
abacuses, and say to each other (perhaps having summoned a mutual friend):
‘Let us calculate.’ (Ross, 1984)

It is believed by some (e.g. Fearnley-Sander (1982)) that Leibniz’s idea of a cal-
culus ratiocinator anticipates mathematical logic. In some ways, provided a char-
itable reading, he even anticipated deontic logic when he wrote:

...moral ideas are more complex than the figures ordinarily considered in
mathematics, and that makes it hard for the mind to retain the precise com-
binations of constituents of moral ideas as perfectly as is needed for long
deductions. If in arithmetic the various stages weren’t indicated by marks
whose precise meanings are known and which last and remain in view, it
would be almost impossible to perform long calculations. In moral discourse
definitions provide some remedy for this trouble; provided they are kept to.
And what methods algebra or something like it may some day suggest to
remove the other difficulties - who can tell? (von Leibniz et al., 1996, p.
385)

Whether or not Leibniz can be said to have anticipated it, the spirit of a char-
acteristica universalis, a universal and formal language that was to empower the
calculus ratiocinator envisioned by him, is somewhat exemplified in the work of
Gottlob Frege who first introduced quantifiers and predicates in his Begriffsschrift
(Isaac, 2016). Although Frege himself notes that Leibniz was a tad too opti-
mistic concerning a calculus ratiocinator: “Auch Leibniz hat die Vortheile einer



2. What, why and how? 7

angemessenen Bezeichnungsweise erkannt, vielleicht überschätzt. Sein Gedanke
einer allgemeinen Charakteristik, eines calculus philosophicus oder ratiocinator
war zu riesenhaft, als dass der Versuch ihn zu verwirklichen über die blossen
Vorbereitungen hätte hinausgelangen können.”2(Frege, 1879b, p. 11).

2.1.3 The build up to formal deontic logic

The work of Frege was not isolated but an extension of the work already done on
propositional logic by logicians such as George Boole (Boole, 1854), Augustus De
Morgan (De Morgan, 1847), William Stanley Jevons (Jevons, 1864, 1872), John
Venn (Venn, 1881) and others (for a detailed history of formal logic see Bochenski
and Thomas (1970)).

All of this earlier work laid the necessary groundwork for formalised modal logic.
The publication of C.I. Lewis’s Survey of Symbolic Logic (Lewis, 1918) is considered
by Blackburn et al. (2002) as the birth of modal logic as a mathematical discipline.
According to Blackburn et al. (2002) “Lewis’s work sparked interest in the idea of
‘modalizing’ propositional logic, and there were many attempts to axiomatise such
concepts as obligation, belief and knowledge (Blackburn et al., 2002, p. 38-39).

This brings us to the first “proper” formalizations of deontic logic. Among them
was the system named “Deontik” by the Austrian philosopher Ernest Mally (Mally,
1971). What really took deontic logic of the ground, however, was the semi-
nal paper by George Henrik von Wright matter-of-factly named “Deontic logic”
(Von Wright, 1951). Woleński (1990) brings attention to the fact that similar
ideas were independently developed in Poland by Jerzy Kalinowksi (Kalinowski,
1953) and in Germany by Oskar Becker (Becker, 1952).

All of this work culminated in what would be known as Standard Deontic Logic.
Not standard in the sense that it is widely accepted, but standard in the sense that
it is used as a point of reference. That it is widely considered only as a starting
point has to do with its many paradoxes (see Hilpinen and McNamara (2013)).

2.1.4 A call to arms!

What is striking though is that almost all work in deontic logic in the timespan
between the publication of Wright’s “Deontic Logic” and the present has been
done on the propositional level. This was true in 1983 when Jan Štěpán wrote:

“Systémy normativńı logiky vybudované na bázi výrokové logiky lze
dnes považovat již za klasické. Problém vytvořeńı normativńı logiky
na základě predikátové logiky prvńıho řádu dosud nebyl systematicky
zkoumán.”(Štěpán, 1983, p. 67)

2 Translation: “Leibniz, too, recognized -and perhaps overrated- the advantages of an adequate
system of notation. His idea of a universal characterisic, of a calculus philosophicus or ratiocina-
tor, was so gigantic that the attempt to realize it could not go beyond the bare preliminaries.”
(Frege, 1879a, p. 6)
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Which translates to “Normative logic systems built on the basis of propositional
logic can now already be considered standard. The problem of creating a norma-
tive logic based on deontic first-order logic has not been systematically studied.”.

This fact unfortunately remains true for the years that came after Štěpán’s obser-
vation. Illustrative of this state of affairs are the last two international �EON-
conferences. In both the 11th (Deontic Logic in Computer Science) as well as the
12th �EON-conference (Deontic Logic and Normative Systems) none of the 33 arti-
cles presented were about first-order deontic logic (Cariani et al., 2014; Agotnes
et al., 2012).

Another example is the “Handbook of Deontic Logic and Normative Systems”. In
it we read: “This handbook presents a detailed overview of the main lines of re-
search on contemporary deontic logic and related topics.” (Gabbay et al., 2013,
p. vii). However, the entire book contains only a handful of pages about deon-
tic logic at the predicative level and Risto Hilpinen and Paul McNamara remark
“Most presentations of deontic logic are restricted to propositional logic. This is
a serious and unnecessary limitation; [...] some normative propositions and re-
lations can be formalized in a plausible way by combining deontic operators and
quantifiers.(Hilpinen and McNamara, 2013, p. 51).

This is a quite unexpected state of affairs given the nature of our deontic discourse
which contains an abundance of sentences combining quantifiers and deontic ex-
pressions. This is especially surprising because Jaakko Hintikka, a Finnish logi-
cian, made a call to arms to equip deontic logic with quantifiers as early as 1957
(Hintikka, 1957) when he wrote:

...quantifiers seem to me indispensable for any satisfactory analysis of the
notions with which every system of deontic logic is likely to be concerned.
Among these notions, perhaps the most important ones those of obligation,
forbiddance, permission and commitment. I shall argue that, in the contexts
contemplated by the deontic logicians, the logical relations of these notions
cannot be described without using such words as ‘every’ and ‘some’. (Hin-
tikka, 1957, p. 4)

We can only guess as to why this is the case but some suggest that it is due to the
inherent complexities of the subject. As Patrice Bailhache puts it in his Essai de
logique déontique:

Il nous a fallu de même résolument ignorer le calcul des prédicats. Et
cependant, avec l’introduction des individus dans les modalités, sa mise en
oeuvre était fortement suggérée. Mais, si nous nous étions engagés dans
cette voi, il nous aurait fallu traiter des questions d’existence en relation
avec les modalités, et ces questions difficiles, bien que fort importantes
philosophiquement, nous auraient entrâıné dans des développements d’une
effroyable complexité.3 (Bailhache, 1991, p. 9)

3 Own translation: “We also had to resolutely ignore the predicate calculus. And yet, with the
introduction of individuals into the modalities, its implementation was strongly suggested. But
if we had taken this path, we would have had to deal with questions of existence in relation to
the modalities, and these difficult questions, though very important philosophically, would have
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Given this apparent complexity, why should we take the trouble? This is the
question that I hope to answer in the following section.

2.2 Why should we care?

Why should we care about applying logic to our normative reasoning and why
should we extend propositional deontic logic to include quantifiers and predi-
cates? First I will motivate why it is useful to investigate our normative thinking
from a logical point of view and thereafter I hope to convince the reader that it is
worthwhile to investigate the predicative case.

One often finds among laymen the conception that logic and ethics are two dis-
tinct or even opposing realms of human inquiry; the one cold and objective, the
other humane and subjective. Not so, argues John Corcoran in his article The
inseparability of logic and ethics. I agree with him when he concludes his article
with the following words:

I have in mind the fact that logic can be seen as an ongoing, imperfect, in-
complete, and essentially incompletable attempt to cultivate objectivity, to
discover principles and methods that contribute to the understanding and
practice of objectivity, which is an ethical virtue standing alongside kindness,
justice, honesty, compassion, and the rest, and which is characteristically hu-
man in the sense that an omniscient or infallible entity would have no use for
objectivity and no use for logic. Logic is a humane and humanistic science; it
is one of the humanities in the renaissance sense. (Corcoran, 1989, p. 40)

In order to cultivate this objectivity, we have to abstract away from the particu-
larities of natural language and make use of a formal language. Such a logical
formalisation can serve at least three functions. It has a descriptive function be-
cause we are able to describe in precise terms the many ways in which humans
reason by laying bare the premises and inferential steps of the arguments (Batens
et al., 2009). It also has an explanatory function: it allows us to explain how
someone arrived at a conclusion and if the conclusion does not follow from the
premises explain why. Lastly, it has a prescriptive function, because we can di-
agnose problems in the arguments, show precisely where they went awry and as
such prescribe how to reason correctly.

Harry Gensler puts it as follows:

Logic can help us understand our moral reasoning - how we go from premises
to a conclusion. It can force us to clarify and spell out our presuppositions, to
understand conflicting points of view, and to identify weak points in our rea-
soning. Logic is a useful discipline to sharpen our ethical thinking. (Gensler,
1996, p. 35)

Let us now consider the second part of my motivation. Why should we care about
adding quantifiers and predicates to our formal language and hence complicate

led us into frighteningly complex developments.”
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matters? The reason is quite straightforward: our everyday language contains
many uses of quantified deontic sentences and so if we are able to deal with them
we extend the reach of formal logic considerably. Hintikka and Štěpán are not the
only ones to notice this need for extending deontic logic.

In the legal sphere there was Ulfrid Neumann, who wrote in 1989 that standard
propositional logic was inadequate for the formalisation of “Rechtsnormen und
Rechtssätzen”:

Unabhängig von diesem Problem der Darstellbarkeit inhaltlicher
Verknüpfungen ist der Aussagenkalkül wegen seiner beschränkten
Ausdrucksmöglichkeit für die Formalisierung von Rechtsnormen und
Rechtssätzen wenig geeignet; der Unterschied zwischen generellen und
singulären Sätzen, der für die Struktur der juristischen Subsumtion
wesentlich ist, kann im Aussagenkalkül nicht erfasst werden. Für die
Formalisierung von Rechtsnormen und -sätzen wird deshalb überwiegend
auf den Prädikantenkalkül zurückgigriffen...4 (Büllesbach et al., 1989, p.
261)

Someone who has explicitly argued for the use of quantified deontic logic across
several articles is Daniel Rönnedal. As noted in the introduction, Rönnedal
(2014a) argues that we can use quantified deontic logic to analyse the rights
contained within the Universal Declaration of Human Rights. In Rönnedal
(2015c) he argues that some normative standards seem to be tied to certain
geographical areas and that we can model these intuitions with the help of a
quantified deontic logic. In Rönnedal (2015a) he takes a more broad look at
universal norms and the structure of normative systems. And lastly, he argues for
a quantified deontic logic within the context of an analysis of the free choice
permission paradox (Rönnedal, 2015b). Unfortunately some of these articles are
not accessible due to a language barrier.

And so, reassured that there seems to be a need for more reflection on quantified
deontic logic I will do so in the following chapters of this thesis. But first I will
reflect on how to proceed and what it is that we need before we dive more deeply
into the subject matter.

2.3 Methodological reflections

Before reflecting on how to achieve our goal we first need to know what it is.
One of the goals of a deontic logician is to model deontic reasoning in a formally
precise way. In this thesis we use a first-order modal language which will give us

4 Own translation: “Irrespective of this problem of the representability of content connections, the
calculus of propositions is not very suitable for the formalization of legal norms and sentences
because of its limited expressiveness; the difference between general and singular sentences,
which is essential for the structure of legal subsumption, can not be expressed within a proposi-
tion calculus. Thus, the formalization of legal norms and sentences will largely be based on the
calculus of predicates.”
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more expressive resources. One of the goals thus consists in discovering whether
and how we can use these extra expressive resources to model our deontic rea-
soning in a better and more precise way than was previously possible. As we have
seen, such a formalisation can serve at least three functions. It is important to
keep these functions in mind when assessing the adequacy of a logic. They are
essential in determining the qualities we should strive for in a logic. The way in
which logicians choose between competing “theories” is comparable to the empir-
ical sciences. They produce criteria that allows them to compare and assess the
strengths and weaknesses of various logical systems and thus allow them to pick
one over the other.

These are criteria like parsimony, fruitfulness and adequacy to the data. A logic
shouldn’t be needlessly complex: we need to be parsimonious with regards to its
internal structure and not add unnecessary components. Nevertheless, we should
also aim at fruitfulness, a logic shouldn’t be idiosyncratic to the point of being
applicable to only a very small subset of human reasoning. This is especially
the case here because first-order deontic logic is relatively unexplored and so we
should try to preserve options wherever possible. It should also show adequacy
to the data, a theory that is detached from reality can not give a proper account
of human reasoning nor have any normative import.

But what constitutes data in logic? Our data will have to be samples of human
reasoning. This is the kind of data that allows us to accomplish the descriptive
and normative function. We look at specific cases of reasoning to determine how
we reason and, to assure us of normative import, search for examples of reasoning
that we are convinced are sound and of which we can easily convince others that
they should serve as a benchmark of good reasoning. Any logic should then be
able to account for them and if it cannot, it is agreed among the people that
accepted their soundness that this reveals a weakness of the logic.

The fact that logics can serve multiple functions and are tailored to specific do-
mains of human reasoning almost necessarily entails a logical pluralism. It is
quite implausible that it is possible to construct a logic that models the whole
range of human reasoning while still complying with the criteria of parsimony,
fruitfulness and adequacy to the data. I will not advance additional arguments
for this plurality view but it is implicitly assumed in this thesis.

In the chapter ahead I will show what some of our options are with respect to
constructing a quantified deontic logic.



3. QUANTIFIED DEONTIC LOGIC

Logic is concerned with the question: what is good reasoning? However, as previ-
ously indicated, we will only take a look at a small fragment of human reasoning.
They way in which this fragment is formalised will be the subject of this chapter.
Before I spell out the formal machinery needed to study quantified deontic logic
in particular, it is useful to get a sense of how a logic is constructed in general.

A logic typically consists of three parts: a formal language, a syntactic part, and
a semantic part. A formal language is a language made up of precisely picked
symbols and the rules by which to combine them into formulas. Naturally, we
have to pick our symbols and our rules for combining them in such a way as to be
able to express the relevant aspects of the kind of arguments under consideration.

In the syntax of our logic, we concern ourselves with the way in which formulas
are related to each other. One way of achieving this goal is by use of an axiomatic
system. In an axiomatic system, we specify the rules by which to derive formulas
from each other and pick the formulas that will function as the axioms of our sys-
tem. The formulas that we are able to derive from these axioms are its theorems.
In the syntactic part, we do not concern ourselves with meaning. In the words
of Ernest Nagel: “The postulate and theorems of a completely formalized system
are “strings” of meaningless marks, constructed according to rules for combining
the elementary signs of the system into larger wholes.”(Nagel et al., 2001, p. 26).
If the symbols can be said to have meaning it is only in the way that they relate
to each other as a consequence of their behaviour within the system and not as
a consequence of something external that imbues them with meaning. Why do
we want such a highly formalised system? Because, as Nagel notes, “...it serves a
valuable purpose. It reveals structure and function in naked clarity.”(Nagel et al.,
2001, p. 26).

In the semantic part of our logic, we concern ourselves with the way in which for-
mulas are related to their possible referents (Tarski, 1969). That is, with the way
in which the symbols and formulas relate to things outside the formal language.
We study this by using models. A model is a mathematical structure that interprets
a formal language. By an interpretation of the formal language is meant a fixing
of the referent of every formula and non-logical symbol in the formal language to
only one of its possible referents. In other words, each particular model maps the
non-logical symbols of the formal language and, consequently, its well-formed
formulas onto a possible referent in accordance with the rules of the structure.
By using a model-theoretic apparatus external to the language itself, logicians are
able to discover interesting results about formal languages, their semantic proper-
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ties, and the relation between syntactical and semantic features of a logic (Chang
and Keisler, 1990).

In this chapter, I will firstly construct a language that enables me to discuss the
philosophical problems that arise in discourse containing quantification and de-
ontic modalities. Secondly, I will expound on how the syntax of a quantified
deontic logic may be given shape. Thirdly, I will elaborate on possible ways to
construct model-theoretic interpretations of a formal language adequate for ex-
pressing first-order logic with deontic modalities. Lastly, I will clarify some aspects
of the relation between syntax and semantics.

3.1 The language

In this section, I will explicate the non-logical symbols and the logical symbols
that I am going to use throughout this thesis and how to construct well-formed
formulas from them.

Firstly, we need symbols that represent ordinary propositions. I will use the set
S = {p, q, r, s, t, u, p1, ...} and call them proposition symbols. Secondly, we need
symbols that range over individuals without targeting someone specifically, I use
the set V = {x, y, z, x1, ...} and call them variables. Thirdly, I will use the sym-
bols of the set C = {a, b, c, d, e, a1, ...} to refer to specific individuals and call
them constants. Members of the set C [ V are called terms. Lastly, the set
Pr = {P r

, Q
r
, T

r
, P

r
1 , ...} are the symbols used as predicates, the rank r displays

the arity of the predicate.1

In addition to the non-logical symbols, we need some logical symbols. They are
the symbols of the set {¬,�,^,_,⌘,=, 8, 9,O,P} and are called, in order, nega-
tion, material implication, conjunction, disjunction, equality, identity, universal
quantifier, existential quantifier, deontic necessity, and deontic possibility. O is
taken as primitive and P is defined as ¬O¬. Likewise, 8 is primitive and 9 is
defined as ¬8¬. O and P are the deontic operators and their particular interpre-
tation will depend on the context, for example, O will sometimes be rendered as
“it is obligatory that” and sometimes as “it ought to be that”.

Furthermore, I will use some meta-variables. The symbols of the set {A,B,C, ...}
are used as variables for strings of symbols. The members of the set {↵, �, �, ..., }
are used as variables for members of the set C [ V and the members of {⇡, ⇡1, ...}
are used as variables for the members of Pr.

The set W is the minimal set that satisfies the seven conditions below:

1. S ⇢ W .

2. If A 2 W, then ¬ A 2 W.

3. If A 2 W, then OA and PA 2 W.

1 Whenever the arity of a predicate is unimportant I will not mention the rank r.
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4. If A, B 2 W, then (A _ B), (A ^ B), (A � B), (A ⌘ B) 2 W.

5. If ⇡ 2 Pr has rank R and ↵1↵2...↵r 2 C [ V, then ⇡↵1↵2...↵r 2 W.

6. If ↵, � 2 C [ V, then ↵ = � 2 W.

7. If A 2 W and ↵ 2 V, then (8↵)A, (9↵)A 2 W.

Each member of W is a well-formed formula of the language, in other words,
W is the set of all well-formed formulas. Brackets are used to disambiguate
wherever needed. The usual conventions with respect to quantifiers are adopted:

Definition 1. The scope of a quantifier is the formula that immediately follows it.

Definition 2. ↵ 2 V is a free variable iff ↵ does not occur within the scope of a
quantifier over ↵.

Definition 3. ↵ 2 V is bound by a quantifier over ↵ iff ↵ occurs free in the scope of
that quantifier over ↵.

Definition 4. A formula A is closed iff no member of V occurs free in A.

Definition 5. A formula A is open iff a member of V occurs free in A.

Definition 6. A[↵] means that the formula A has free occurrences of ↵ 2 C [ V.

Definition 7. A[�/↵] is the formula obtained by substituting every free occurrence
of ↵ 2 C [ V in A by � 2 C [ V on the condition that � does not occur free in A.

3.2 The semantics

Models are mathematical structures used to interpret a formal language. Gener-
ally, the formulas that are satisfied in a model are the formulas said to be true
under its interpretation. In modal logic, formulas are satisfied relative to a point
of evaluation in the model. The truth of a formula is thus also contingent on
the point of evaluation in the model. These points of evaluation are often called
possible worlds.

The idea of thinking about modality in terms of possible worlds is certainly not
new: it can be traced back to as early as the 18th century when Leibniz declared
the actual world to be the best of all possible worlds (Leibniz and de Jaucourt,
1747). Saul Kripke is one of the first logicians who took this idea and forged
it into a formal structure (Kripke, 1959, 1963b). However, there is still some
dispute about who deserves credit for what. Jaakko Hintikka, Stig Kanger, Arthur
Prior and Richard Montague are all logicians who have, in one way or another,
contributed to this formalization and deserve some part of the credit (Blackburn
et al., 2002; Goldblatt, 2006).
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There are usually a variety of ways we can construct models. In the case of
quantified modal logics this is especially true and the choices we make will be a
reflection of our philosophical choices.

Traditionally, Kripke-semantics for propositional modal logic uses a model that is
a triple hW,R, vi consisting of a Kripke-frame hW,Ri and a valuation function v.
W is a set of worlds, R is a binary relation on W such that R ✓ W ⇥W . We call R
the accessibility relation: it determines which worlds are accessible from a world.
The accessible worlds are the worlds that are relevant to determine the truth of
a formula containing modal operators. The function v assigns truth values to the
formulas at each w in W .

There are, however, other ways to characterise the semantics of a quantified
modal logic such as neighbourhood semantics (also known as Scott-Montague
semantics) or David Lewis’s counterpart semantics (Lewis, 1968). As indicated,
I will only take a deeper look at traditional Kripke semantics. To motivate this
choice it is useful to briefly look at how these other kinds of semantics differ
from traditional Kripke-semantics. I will only explicate the relevant parts of these
models but, for the interested reader, I will also provide some references to the
relevant literature if one wants to get a deeper sense of how these semantics work.

Neighbourhood semantics for propositional modal logic uses a model that is a
triple hW,N , vi consisting of a neighbourhood-frame hW,N i and a valuation func-
tion v. W is a set of worlds, N is a function N : W ! }(}(W )) that maps worlds
to sets of sets of worlds. The valuation function v is defined as v : S ! }(W ). To
see how truth in a model of a formula at a world is defined I refer the reader to
the PhD thesis of Kirsten Segerberg (Segerberg and Universitet, 1971). (Waagbø,
1992) has shown how to extend neighbourhood semantics to the predicative level
and (Stolpe, 2003) has expanded on this.

Lewis developed counterpart semantics because he saw a problem with identifica-
tion across possible worlds, i.e. the problem of transworld identity (for discussion
on this see (Loux, 1979)). When, for example, one says that it is obligatory that
Peter does the dishes, then in Kripke semantics Peter will do the dishes in each ac-
cessible world.2 This, however, requires that we can identify Peter across possible
worlds contends Lewis and this is seen as problematic. His solution is to introduce
a counterpart relation:

The counterpart relation is our substitute for identity between things in dif-
ferent worlds. Where some would say that you are in several worlds, in which
you have somewhat different properties and somewhat different things hap-
pen to you, I prefer to say that you are in the actual world and no other, but
you have counterparts in several other worlds (Lewis, 1968, p. 114)

Formally, a counterpart-frame will be a quintuple hW,R,D, d, Ci. W and R are as
before. Because counterpart semantics is a type of semantics developed for the
predicative level, we also have an outer-domain D that can be thought of as a set

2 How this works precisely will become clear in the sections ahead but this should give one a
feeling for Lewis’s problem.
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of individuals, and a function d defined as d : W ! }(D). d associates with each
world w an inner-domain, i.e. the set of individuals existing at each w denoted
with the set Dw. C can then be defined as a function that assigns a subset of
Dw ⇥Dw0 to every couple hw,w0i 2 R. This should suffice to give an idea of how
this approach would formally look like. To see how a complete model and truth
would be defined in these models, see (Braüner and Ghilardi, 2007; Corsi, 2002a;
Belardinelli, 2006).

There are two reasons why I will use traditional Kripke semantics. The first is
that it is the most used semantics and so my analysis will fit in more neatly with
the rest of the literature on quantified modal logic. The second reason is that
in comparison with neighbourhood semantics and counterpart semantics we can
more intuitively interpret the mathematical structure. Thinking in terms of sets
of sets of worlds is more opaque than thinking in terms of accessible worlds and,
similarly, adding another function or an additional relation on the structure com-
plicates the picture even more. Of course, there are also time constraints at work
here. Given enough time, it might prove insightful if we contrasted kripke-models
with these other kinds of models. That, however, is left for another time.

3.2.1 Models for quantified deontic logic

If we want models that are able to give interpretations to a language with
quantifiers and modal operators we need a more complex structure than the
Kripke models briefly introduced in the previous subsection. The most general
way to characterize a model of quantified deontic logic that uses Kripke style
possible world semantics is one with varying domains.

Definition 8. A varying domain model is a quintuple M = hW,R,D, d, ai. W is a
non-empty set of points. R ✓ W ⇥ W is a serial relation on W . D is a non-empty
set. d is a function: d : W ! }(D) that associates with each point w 2 W a set Dw

such that Dw ✓ D. a is a function that satisfies the following conditions:

1. C [ V ! D

2. Pr ⇥W ! }(Dr)

3. S ⇥W ! {0, 1}

Given a model M the valuation of M works as follows:

1. M, w ✏ A if A 2 S and a(A,w) = 1

2. M, w ✏ ¬A iff M, w 2 A

3. M, w ✏ A _ B iff M, w ✏ A or M, w ✏ B

4. M, w ✏ ⇡↵1...↵n iff ha(↵1), ..., a(↵n)i 2 a(⇡, w)

5. M, w ✏ ↵ = � iff a(↵) = a(�)

6. M, w ✏ OA iff M, w
0 ✏ A for all w0 for which Rww

0
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7. M, w ✏ (8↵)A iff for all M0 = hW,R,D, d, a
0i, where a

0 differs at most from a

concerning the value it assigns to ↵ from Dw, M0
, w ✏ A holds.

The truth values of all formulas of the language are determined by a valuation of
the model M. Each valuation determines the truth of a formula relative to a
model and a world. Clause 6 of the valuation will be referred to as the standard
deontic operator clause because it will, later on in this document, be contrasted
with another way in which we can define this clause. The following definitions
define truth at a world in a model and validity of a formula:

Definition 9. A is true at w in the model M iff M,w ✏ A.

Definition 10. A is valid iff for every model M, M, w ✏ A holds.

The points in W are usually thought of as possible worlds. But what exactly are
“possible worlds”? To answer this question we first need to disambiguate what
is meant by “possible”. The meaning of “possible” is certainly not fixed. It could
mean that which is conceivable. It could mean that which is possible given the
laws of nature or perhaps what could be the case given our current technological
capabilities. And so, what the relevant possibilities are will differ from context to
context and needs to be specified in advance.

It is conceptually useful to introduce a distinction between conceivable worlds
and possible worlds. I will use the term “conceivable world” for the worlds we
are able to imagine and make intuitively sense. I take it that conceivability is not
dependent upon a point of view and that everyone, in principle, could imagine
the same state of affairs. Each point in W should be thought of as such a con-
ceivable world. I will use the elements of the set {w,w0

, w
00
, ...} as variables for

conceivable worlds and the elements of the set {w1, w2, ...} as names for conceiv-
able worlds. The term “possible world”, however, will be used as a term relative
to other worlds. To determine this relativeness we need a relation R over the set
W .

The relation R in the model is called, like before, the accessibility relation. For
each world, the accessibility relation selects among the conceivable worlds those
world which are alethically acceptable from the point of view of that world given
the intended meaning of possibility. The alethically acceptable worlds for a world
are what we will call the possible worlds for that world. The possible worlds for
a given world will thus always be a subset of the conceivable worlds. Moreover,
in deontic logic, the accessibility relation picks for each world among the set of
possible worlds of that world those worlds which are deontically acceptable3 for

3 In McNamara (1996) Paul McNamara defends the view that we should opt for speaking in
terms of acceptable worlds and not in terms of deontically optimal or ideal worlds because this
conflates the notion of deontic necessity and “ought”. An action is deontically necessary if it is
required by morality’s demands, but surely, McNamara contends “...there is little pre-theoretic
support for the contention that morally ideal behavior is always morally mandatory. Does the
moral exemplar not at once often do what is morally ideal and what is morally optional?”
(McNamara, 1996, p. 164). McNamara is not the first to criticize the use of deontic perfect
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that world. A possible world w
0 is deontically acceptable for a world w if at w

0

everyone adheres to the rules at w without exception. The relation R is serial
which means that for every world w there is a world w

0 such that Rww
0. In

summary, the accessibility relation picks for each world w a set of possible worlds
from the set of conceivable worlds that are alethically acceptable and then selects
a subset of this set of possible worlds in which everyone adheres to the rules at w.

D, which we will call the outer domain, should be thought of as the set containing
the conceivable individuals. They are the individuals of which it makes intuitively
sense to talk about. We can, for example, say intelligible things about Santa Claus,
about Socrates or about Michelle Obama. The domain function d associates with
each conceivable world the individuals that actually exist at that world. We use
Dw to refer to the domain of a world w which consists of the individuals that exist
at w. We call it the inner domain. It needn’t be the case that every conceivable
individual actually exists at a conceivable world. Santa Claus might not exist in
any conceivable world, while Socrates will exist in some conceivable worlds and
Michelle Obama happens to exist in the conceivable worlds which are like our
world at present.

However, the entities in the domain of the conceivable worlds needn’t be re-
stricted to individuals. They can be arbitrary objects which would make it possible
to interpret a sentence such as: “Everyone has to bring some present to the party”
where “some” is interpreted as an existential quantifier. However, for reasons of
simplicity I will stipulate that the domains are made up of individuals only. Histor-
ically, individuals were not always the predominant option. Hintikka took another
approach in his 1957 paper “Quantifiers in deontic logic” (Hintikka, 1957). He
let the quantifiers range over so called act-individuals which is a term that origi-
nates with Von Wright (1951). To give an idea of how this term is used: if theft
is an act, every instance of thieving is considered an act-individual. Hintikka, for
example, uses the formula (8x)(Px � O(9y)Fxy) to express “any particular act
of promising implies an obligation to do at least one act which fulfils the promise
in question. If ‘Pa’ means that the act a is an instance of promising and if ‘Fab’
means that the act b fulfils the promise given in a.” (Hintikka, 1957, p. 18).
While this approach has some appeal, there have been convincing arguments by
David Makinson in his paper “Quantificational Reefs in Deontic Waters” that act-
individuals are not the appropriate universe of discourse. He gives the following
example:

Imagine that a few days later you are in the waiting room of another, more
easy-going, hospital. You ask a passing nurse whether it is forbidden to
smoke. “No”, she replies, “it isn’t forbidden, though we don’t actually en-
courage it.” Hintikka, who is with you again, interprets: “She means”, he
confides, “that it is not the case that for every act x, it is forbidden that x
be a case of smoking here.” As you know at least a little classical logic, you
reflect: “Aha. So there are some acts x, for which it is not forbidden that they
be cases of smoking in here - in other words, (9x)¬FSx.” Then, carried away

worlds. For more on this debate I refer the reader to Hansson (2006) and Purtill (1973). In this
thesis, I will, for this reason, speak in terms of deontically acceptable worlds.
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by your reflections, you suddenly ask, “But which ones are they?” My present
act of playing with worry beads - is it such an x? That fellow’s chewing on
gum, right now - is it one of the x’s of which it is not forbidden that they be
acts of smoking? And that actual case of smoking over there - does it provide
an instance of our existential?” (Makinson, 1981, pp.88-89)

The problem is that we have no way of knowing which act-individuals satisfy
the existential quantifier and which do not. As Makinson puts it “It begins to look
like a distinction without even the vaguest criterion of discrimination.”(Makinson,
1981, p. 89). Moreover, saying that some act is such that is is permitted to be
a case of smoking or forbidden to be a case of chewing gum is a peculiar way of
speaking and certainly not how we speak about obligations and permissions in
our day to day life. The fact that there is no natural way to read such formulas
suggests that using act-individuals as the objects that the quantifiers range over is
not very satisfying. I will instead opt for using individuals.

Our model is called a varying domain model because there are no restrictions on
the domain function d and the domains of our accessible worlds are allowed to
vary freely.

The set of worlds W , the accessibility relation R, the outer-domain D and the
domain function d together make up the Kripke frame hW,R,D, di of first-order
modal models. By imposing frame conditions on models we can validate different
kinds of formulas. As we have already seen, one of the frame conditions that
is imposed on every kind of model that we consider in this thesis is the seriality
condition. There are also some other important frame conditions that we will
consider in this thesis.

We can impose the increasing domains frame condition by restricting the domain
function such that every member of the actual world is also a member of every
accessible world (sometimes called monotonicity):

Definition 11. An increasing domain frame is a Kripke frame with the restriction
that whenever Rww

0 holds, then also Dw ✓ Dw0 .

Every model based on an increasing domain frame is an increasing domain
model. The second option is to impose the decreasing domains frame condition
by restricting the domain function such that every member of every accessible
world is also a member of the actual world (sometimes called anti-monotonicity):

Definition 12. A decreasing domain frame is a Kripke frame with the restriction
that whenever Rww

0 holds, then also Dw0 ✓ Dw.

Every model based on a decreasing domain frame is a decreasing domain model.
The third option is the most restrictive one and demands that the domains of
accessible worlds remain equal to the domain of the actual world. This will be
called constant domains:

Definition 13. A constant domain frame is a Kripke frame with the restriction that
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whenever Rww
0 holds, then also Dw = Dw0 .

Each of these frame conditions have important consequences for the kind of
formulas that are valid (Fitting and Mendelsohn, 2012; Hughes and Cresswell,
1996). This will be discussed at length in section 3.4.

a is an assignment function that determines the extension of non-logical symbols
(i.e. their reference) relative to each conceivable world. Members of C [ V have
as their extension objects of D, while members of Pr have as their extension sets
of n-tuples of }(Dr). That there exists a set such that it is the proper extension
of a predicate is guaranteed, in the case of a unary predicate, by using the power
set of the domain and, in the case of predicates with rank r > 1, by using the
power set of the r

th-Cartesian product.4 The assignment function also determines
the truth value of proposition symbols relative to a world by mapping them onto
0 (falsehood) or 1 (truth).

We can see that the assignment function a maps our variables and constants di-
rectly onto the set of all conceivable individuals. Our constants and variables will
thus pick out the same conceivable individual in each conceivable world. They
are what is called rigid designators. The predicates are relativised to a world but
can contain individuals that do not exist at that world. This makes it possible to
say that at w it is true that John is the great-grandfather of Marie although John
has already passed away and so is no longer in the domain of w. The fact that our
terms can refer to individuals that do not exist suggest that we are dealing with
a free logic. In the next section I will show that this is indeed the case and what
this entails.

3.2.2 Why we need free logics

As Garson (2001) notes, the adoption of varying domains practically forces us to
adopt the principles of free logic.5 Free logics are defined by Ermanno Bencivenga
as follows:

A free logic is a formal system of quantification theory, with or without
identity, which allows for some singular terms in some circumstances to be
thought of as denoting no existing object, and in which quantifiers are invari-
able thought of as having existential import. (Bencivenga, 2002, pp. 148-
149)

As previously indicated, our varying domain models allow terms to refer to any
individual in D and this assignment is not in any way bound to existence but
only to mere conceivability. The varying domain models are also not at odds with
Quine’s dictum that “to be is to be the value of a bound variable” (Quine, 1939, p.
50) because the quantifiers range over Dw and so have existential import. These
two characteristics of our varying domain models show us that we have in our

4 That such a powerset can be constructed is guaranteed by the axiom of power set in ZFC that
states that for every set x, there is a set }(x) consisting precisely of all subsets of x.

5 Free logics are originally introduced in Leonard (1956) and Lambert et al. (1967)
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hands the semantics of a free logic. The fact that we end up with a free logic
is no mistake because trying to preserve classical first-order logic forces one to
take unsatisfying measures. To show why this is the case I will draw heavily upon
Garson (2001).

First, Garson (2001) observes, (9↵)(↵ = �) is true at a world w in a model if the
extension of � is in the domain Dw of that world. The problem is that (9↵)(↵ = �)
is a theorem of classical first-order logic. If we accept this theorem then every term
of the language must refer to an object that exists in every possible world. This,
however, is at odds with the idea behind varying domain semantics because we
want to allow that objects in one world do not exist in another. So one strategy
to preserve classical rules is to simply eliminate terms, which is what Kripke’s
approach in Kripke (1963a) amounts to (Garson, 2001). The problem is that this
does not give a satisfying account of terms as it simply eliminates them.

The second problem is that accepting the principles of first-order logic forces us
to adopt increasing domains. The reason is that the converse Barcan formula
(O(8↵)A � (8↵)OA) is a theorem of first-order logic combined with the modal
logic K (this derivation can be found at p. 557 of Braüner and Ghilardi (2007)).
As we will see in section 3.4, every model must be based on an increasing domain
frame to validate the converse Barcan formula. However, we do not want to
impose this frame condition from the get-go because there aren’t any established
results concerning what kind of models are appropriate in deontic logics.

Suppose, however, that we do have good reason to adopt increasing domains
then we will still run into trouble if we want to keep the classical principles
of first-order logic. The classically valid formula (8↵)A � A[�/↵] (known as
universal instantiation) is, for example, not true in a world in a model if � /2 Dw

and A is P and P = Dw. One way in which to resolve the issue is to demand
that the terms get assigned their extensions locally. That is, the extension of
a term in w must be in Dw. However, as Garson (2001) contends, there are
serious problems with this approach. First, it excludes terms such as “Pegasus”
because their extension can not be any real object and so be in Dw. Second,
because my terms are rigid they need to have the same extension in each world
and so terms will need to have extensions that exist in every world, which
undercuts the basic idea of varying domains. The second way in which we could
resolve the issue is to demand that predicates get assigned their extensions locally.

Definition 14. Local Predicates. Where a is the assignment function such that a :
Pr ⇥W ! }(Dr) we ensure local predicates by demanding that for every arbitrary
predicate ⇡

r 2 Pr and arbitrary world w 2 W we have a(⇡r
, w) 2 D

r
w.

This ensures that ⇡↵ � (9↵)⇡↵ is valid because the truth of ⇡↵ ensures that
a(↵) 2 Dw. However, ¬⇡↵ � (9↵)¬⇡↵ is not valid. From the truth of ¬⇡↵ it does
not follow that the extension of ↵ is an existing object and so it does not follow
that (9↵)¬⇡↵ is true (Garson, 2001). Garson (2001) concludes: “Not only do
we fail to validate the rule of existential generalization, but the valid principles
cannot be expressed as axiom schemata. [...] In case we are using axioms and a
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rule of substitution of formulas for atoms, the problem re-emerges in the failure
of the rule of substitution. Either way, the use of local predicates leads to serious
formal difficulties”(Garson, 2001, pp. 276-277).

Given the anomalies that local predicates set us up with, it is surprising
that Hilpinen and McNamara (2013) make use of local predicates when
characterising the semantics of a quantified deontic logic. To see why this will
not do as a starting point we can, for example, look at instances of the converse
P-Barcan formula ((9↵)PA � P(9↵)A) (this formula will be properly introduced
in section 3.3). In section 3.3 I show that the converse P-Barcan formula is
syntactically equivalent to the converse Barcan formula (O(8↵)A � (8↵)OA) and
in section 3.4 I show that the converse Barcan formula is not valid on decreasing
domain frames. However, when using local predicates, (9x)PPx � P(9x)Px is
valid on decreasing domain frames while (9x)P¬Px � P(9x)¬Px is not valid.

Fact 1. The formula (9x)PPx � P(9x)Px is valid when using varying domains and
local predicates.

Proof. The proof is by reductio ad absurdum. Suppose that M, w ✏ (9x)PPx

and M, w 2 P(9x)Px. Because of M, w ✏ (9x)PPx we know that among all
models M0 in which the assignment function a

0 differs at most from a concerning
the value it assigns to x from Dw we will have at least one model M0 such that
M0

, w ✏ PPx. From this we know that in M0 there is a w
0 such that Rww

0 at
which we will have M0

, w
0 ✏ Px. The only way in which M0

, w
0 ✏ Px can be

true is if a
0(x) 2 a

0(P,w0) and because of local predicates it is guaranteed that
a
0(x) 2 Dw0 because every member of the extension of P must be in Dw0 .

Because of M, w 2 P(9x)Px we know by the negation clause that M, w ✏
¬P(9x)Px. This formula is syntactically equivalent to O(8x)¬Px given that O

is interchangeable with ¬P¬ and 8 with ¬9¬ and double negation can be elimi-
nated. This gives us M, w ✏ O(8x)¬Px from which we can infer that for all w0

for which Rww
0 we will have in M that M, w

0 ✏ (8x)¬Px. This in turn estab-
lishes that in all M0 in which the assignment function a

0 differs at most from a

concerning the value it assigns to x from Dw0 we will have M0
, w

0 ✏ ¬Px for all
w

0. However we already knew that there is a M0 and a world w
0 in it for which

we do have M0
, w

0 ✏ Px and for which we know that a0(x) 2 Dw0 . This leaves us
with a contradiction. ⌅

Fact 2. The formula (9x)PPx � P(9x)Px is valid when imposing decreasing do-
main frames and local predicates.

Proof. This fact follows a fortiori from the proof given for the varying domain case
because decreasing domain models are a subset of varying domain models. ⌅



3. Quantified Deontic Logic 23

Fact 3. The formula (9x)P¬Px � P(9x)¬Px is not valid when imposing decreasing
domain frames and local predicates.

Proof. Consider any arbitrary varying domain model M such that:

1. W = {w1, w2}

2. R = {hw1, w2i, hw2, w2i}

3. D = {o1, o2}

4. d(w1) = {o1, o2} and d(w2) = {o2}

5. a(P,w2) = {o2}

Now we can check whether the model M is such that M, w1 ✏ (9x)P¬Px and
M, w1 2 P(9x)¬Px. To check whether M, w1 ✏ (9x)P¬Px is true we have to
take a look at all M0 = hW,R,D, d, a

0i, where a
0 differs at most from a concerning

the value it assigns from Dw1 to x, and check if M0
, w1 ✏ P¬Px holds in one of

these M0. To determine whether M0
, w1 ✏ P¬Px is true for one of these M0 we

have to search for a M0 in which for at least one w
0 such that Rww

0 it is true that
M0

, w
0 ✏ ¬Px. Consider the M0 and the assignment a0 in it for which a

0(x) = o1.
In this M0 we know that there is only one w

0 for which Rww
0 namely w2. We

can see that a(x) /2 a(P,w2) and so we have M0
, w2 2 Px and by the negation

clause M0
, w2 ✏ ¬Px. From this we know that M0

, w1 ✏ P¬Px is true. This in
turn establishes that there is a model M0 such that M0

, w1 ✏ P¬Px and so that
M, w1 ✏ (9x)P¬Px is true.

Now we have to show that M, w1 2 P(9x)¬Px. I will do this by showing that
its negation is true in M, in other words that M, w1 ✏ ¬P(9x)¬Px which is
equivalent to showing that M, w1 ✏ O(8x)Px given that O is interchangeable
with ¬P¬ and 8 with ¬9¬ and double negations can be eliminated. To show that
M, w1 ✏ O(8x)Px is true we have to show that in M for all w0 for which Rww

0

that M, w
0 ✏ (8x)Px. We know that there is only one world w

0 for which Rww
0

namely w2. To show that M, w2 ✏ (8x)Px we have to look at all M0 , where a
0

differs at most from a concerning the value it assigns from Dw2 to x, and check
if M0

, w2 ✏ Px holds for all of these M0. We know that for all M0 it will be
the case that a

0(x) = o2 because there is only one individual in Dw2 and so for
all these M0 we can see that it is true that a0(x) 2 a

0(P,w2). From this we infer
that for all M0 it is true that M0

, w2 ✏ Px. Because of this fact we know that
M, w2 ✏ (8x)Px is true. Now that we have checked all worlds w0 for which Rww

0

we know that M, w1 ✏ O(8x)Px. O(8x)Px is equivalent to ¬P(9x)¬Px and so
M, w1 ✏ ¬P(9x)¬Px. By the negation clause it follows that M, w1 2 P(9x)¬Px.
⌅

These results show us that given decreasing domain frames and local predicates
we can not even express all valid principles by using axiom schemata. That is, we
cannot express the validity of (9x)PPx � P(9x)Px by using (9↵)PA � P(9↵)A
as an axiom schema because (9x)P¬Px � P(9x)¬Px is an instantiation of this
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axiom schema and, as I have shown, not valid. Using axioms and a rule of substi-
tution will not do either as the problem will re-emerge as a failure of the rule of
substitution. Because of these formal problems I conclude that working with local
predicates is not a good basis to start from when trying to ascertain what kinds
of models are appropriate within quantified deontic logic. Moreover, given the
problems that occur when trying to preserve classical first-order logic I conclude
that we should not try to preserve it and instead adopt the principles of free logic.
Because we will be using free logics it will be useful to take a deeper look at what
they encompass.

3.2.3 Interpreting quantified free logics

In section 3.2.1 I have defined the mathematical structure of the various kinds
of models under consideration. The way in which the structure is defined de-
termines exactly under what conditions the formulas of the language come out
true. However, the job does not end there. We have to be able to intuitively
grasp what it means that a certain formula is true and what it expresses in or-
der to assess whether or not our models are actually useful if we apply them to
natural language expressions and arguments. In particular, we have to get clear
on the meaning of some basic formulas. Let us start with one of the most basic
expressions.

Suppose we have M, w ✏ Pa. It is true just in case the individual denoted by
a is in the extension of the predicate P at the world w. The individual constant
and predicate both get their values from the outer domain of the model. This
means that the expression Pa can be true regardless of whether or not a exists
at w. In fact, the extension of the predicate P , which is simply a set of objects
taken from the powerset of the outer domain, needn’t contain any individual that
exists at w. These features make it clear that predicates and persons are very
general concepts in our semantics. This is why I suggested earlier to think of
the individuals “inhabiting” the outer domain as conceivable individuals. Suppose
that a denotes Santa Claus and P is a predicate for “a bearded men”. If Pa

is true in w then that must mean that at w the imaginary individual we think
of as “Santa Claus” should be thought of as having a beard. In talking about
persons and features of those persons we have to abstract away from their actual
existence. While at first sight this might feel kind of strange I do not think that it
is necessarily a problematic feature of our semantics because it is designed to give
us a better understanding of natural language and we seem to be talking about
non-existent people and properties that nobody instantiates all the time.

Now suppose that P expresses an action. It might at first sight be puzzling how
a conceivable individual can be in the extension of such a predicate at a world.
However, just as it is not absurd to say that what it means to be Santa Claus
is to be a bearded man independently of whether Santa Claus actually exists.
It seems equally not absurd to assert that Santa Claus gives presents to children
independently of whether he exists. The semantics thus commits us to the position
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that it is intelligible to give properties and ascribe actions to non-existent persons
and objects.

M, w ✏ (9x)Px is true just in case an individual in the domain of w instantiates
the property P . In other words: it tells us that a person who exists at w actually
exhibits or instantiates the concept expressed by P . This explains why we cannot
simply go from the truth of Pa to the truth of (9x)Px. The existential quantifier
comes with real existential import; any existentially quantified formula will be
false if we are dealing with a world with an empty-domain. On the other hand
M, w ✏ (8x)Px does not come with the same kind of existential import. The
reason is that a universally quantified formula is vacuously true when the domain
is empty. However, it is still the case that a universally quantified formula can only
genuinely tell us something about existing persons. If everything has a certain
property at w then this means either that every existing individual at w has that
property or that no individual exists at w.

M, w ✏ OPa is true if and only if in every accessible world w
0 the person denoted

by a is in the extension of P at each of these w
0. Recall that only deontically

acceptable worlds are accessible. In other words: OPa can only be true if Pa in
each world w

0 does not violate what ought to be the case according to w. So, for
example, suppose that it is obligatory at w that John babysits his sister Mary then
this means that in each world that is acceptable from the point of view of w John
babysits his sister. Conversely, a world in which John does not babysit Mary is not
deontically acceptable and thus not accessible. Notice that it is entirely irrelevant
whether or not John or Mary actually exist at those accessible worlds. Suppose it
is true at w that John has to babysit his sister Mary and so we have M, w ✏ OPab

where ‘a’ refers to John and ‘b’ to Mary. The truth of OPab does not exclude there
being acceptable worlds at which John and Mary or just one of them does not
exist. The deontic operator does not discriminate between the existence and the
non-existence of a person in the acceptable worlds. This is strange because the
acceptable worlds are intended to be deontically relevant to the actual world and
the people in them. Why should the acceptable world in which you are merely a
non-existent person be of any normative relevance to what you ought to do in the
actual world. This seems like an unintended consequence of the fact that we are
forced to work with free logics.

Suppose that Mary does not exist in one of those acceptable worlds w0, what then
does it mean that John is at w

0 in the extension of P? I don’t think there is a
straightforward answer to this question but nevertheless an answer we need if we
want to make sense of this kind of semantics. An attempt to give an answer to
this question might look something like this. When we are reasoning about what
a particular person ought to do we can simply imagine her doing a particular
action or having a particular property and then ask ourselves whether that would
be allowed or would be necessary given her obligations without explicitly taking
into account her existence. What our semantics would commit us to is, in a sense,
that we can speak intelligibly about what a person ought to do or be while at the
same time “bracketing” his or hers existence. This is the sort of interpretation
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that Martin Mose Bentzen seems to have in mind in his thesis “Deontic Logics and
Imperative Logics - A Historical Overview of Normative Logics from Ernst Mally to
Defeasible Deontic Logic and a New System”. He presents a counter model and
gives an interpretation of that model:

Informally if Andrea(a)and Bert(b) are persons then Andrea exists in the ac-
tual world Reality (�) and Bert exists in the perfect world Utopia(⌦). Since
Utopia is perfect nobody there is required to go to jail, because nobody there
commits crimes. Now in the horrible actual world that Reality is, Andrea
does not go to jail (we do not have � ✏ Q(a)), because here money rules, le-
gal systems are corrupt, she is a white, rich protestant and she has a devious
lawyer. However, in the perfect world Andrea would be required to go to jail,
since she has committed a crime. (When the saint Bert discusses Andrea’s
case with himself, he comes to the conclusion that if people like Andrea ex-
isted, they would have to go to jail. Then he goes to bed, happily assured
that they don’t). (Bentzen, 2004, p. 55)

I will not reproduce the specifics of this model because it is not relevant here.
What is relevant is the fact that he uses a model and a perfect (acceptable) world
in which Andrea does not exist and is in the extension of Q where Q is a predicate
for going to jail. He interprets this as as saying “if people like Andrea existed,
they would have to go to jail.”. This kind of interpretation is not very satisfying,
however, because it seems to avoid the problem by not taking the semantics at face
value. If we were to hypothetically think about how someone ought to behave we
would most likely imagine how that person would behave in the ideal situation
and, surely, it does not make much sense to also take into account ideal situations
in which that person does not exist.

A way in which to go forward is to modify the clause of the deontic operator
to give us a more satisfying deontic operator. We can do this by modifying the
standard deontic operator clause as follows:

Definition 15. Van Benthem Clause: M, w ✏ OA iff M, w
0 ✏ A for all w0 for which

Rww
0 and a(↵) 2 Dw0 for every ↵ free in A.

This clause does discriminate between existing and non-existing people because
to determine the truth of a formula such as OPa it will not take into account
acceptable worlds at which the denotation of a does not exist. I first encountered
this kind of clause in Hilpinen (2002) who refers to Van Benthem (1990). For
future reference, I will name it after Johan Van Benthem because his discussion of
it in “A manual of intensional logic” is the oldest reference I could find, although I
do not know whether he is the first to describe it. As I will demonstrate in section
3.4, the adoption of this clause makes a major difference for the conditions under
which some of the important formulas are valid. This gives us additional reason
to keep it in mind if it proves to be a better fit with the formulas that we desire to
be valid.

M, w ✏ (9x)OPx expresses that there actually is someone existing at w for whom
it is true that at each acceptable world s/he is in the extension of P . Again, we
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cannot go from the truth of OPa to the truth of (9x)OPx. We can only do so if
we know that someone actually existing at w has the obligation to P . The move
from OPa to (9x)OPx thus does not come with additional normative content.
(8x)OPx, if it is not vacuously true, says something about a set of people, i.e. that
they all have an obligation to P . Contrary to M, w ✏ (9x)OPx, M, w ✏ O(9x)Px

is more of an explicit normative statement. It asserts that at each acceptable world
there has to exist someone who is in the extension of P . An important difference
between (9x)OPx and O(9x)Px is that for the first one to be true there has to
be at least some unique person such that s/he is in the extension of P at each
acceptable world while O(9x)Px asserts that at each accessible world there has
to be a person that is in the extension of P but it doesn’t need to be the same
person in each accessible world.

A formula such as O(8x)Px demands that every person in the domain of every
acceptable world P ’s. This suggests that we have to do with a general norm that
does not admit of any exceptions. P(9x)Px seems to be saying something to the
effect of: a state of affairs in which someone P ’s is an acceptable situation and it
doesn’t matter who that someone is. P(8x)Px is an even stronger formula that
says that a situation in which everyone P ’s is acceptable.

This concludes my brief discussion of the semantic meaning of some important
basic formulas of the language. These formulas will be discussed in more depth
in chapter 4 where we will give them a more explicit interpretation. First we will
discuss what is meant by “the syntax of a logic” and give some options of how the
syntax of a quantified deontic logic might look like.

3.3 The syntax

The syntax of a logic determines the way in which formulas are related to each
other. One way to determine the relation between formulas is with an axiomatic
system. In an axiomatic system we stipulate which formulas are the axioms and
the rules by which to derive other formulas from them. The formulas we are
able to derive from our axioms are the theorems of the logic. I will write ` A

to indicate that A is an axiom or a theorem. To characterise various axiomatic
systems I will use axiom schemata. Each instantiation of an axiom schema is
an axiom. To characterize quantified deontic logics I will use Standard Deontic
Logic (as defined in Hilpinen and McNamara (2013)) as a starting point and then
expand on it.

3.3.1 Standard Deontic Logic

First there are the axiom schemes and rules of Standard Deontic Logic:

TAUT All propositional tautologies of the language



3. Quantified Deontic Logic 28

KD O(A � B) � (OA � OB)

DD OA � ¬O¬A

MP If ` A and ` A � B then ` B

RND If ` A then ` OA

Every propositional tautology is an axiom, KD is the deontic counterpart to
the K axiom (it is named K after Kripke). DD entails that every obligation is
also permissible (given the definition of the P-operator) and enforces deontic
consistency. The two rules are modus ponens (MP) and deontic necessitation
(RND). A modal logic is considered normal if its set of theorems contains all
propositional tautologies, every instance of the axiom schema K and is closed
under modus ponens and necessitation. We can see that SDL is an example of a
normal modal logic.

Definition 16. SDL is the logic obtained by adding to the propositional tautologies
of the language the axiom schemata KD and DD, and the rules MP and RND.

3.3.2 Quantified free deontic Logic

To characterize the predicative fragment we need some additional schemes and
rules (adopted from Corsi (2002b).

Reflexivity � = �

Substitutivity (↵ = � ^ A[↵/�]) � A[�/�]

Necessary distinctness (↵ 6= �) � ⇤(↵ 6= �)

8 Distributivity (8↵)(A � B) � ((8↵)A � ((8↵)A � (8↵)B))

8 Permutation (8↵)(8�)A � (8�)(8↵)A

Free 8 elimination (8�)(8↵)(A � A[�/↵])

Vacuous Quantification A � (8↵)A where ↵ not free in A.

Universal Generalization If ` A then ` (8↵)A.

Reflexivity and Substitutivity form a standard axiomatisation of equality in
first-order logic. Necessary distinctness is needed to reflect the fact that our
variables and constants are rigid designators. However, we do not have traditional
quantifier elimination ((8↵)A � A[�/↵]) and introduction (if (A � A[�/↵]
then A � (8↵)A). The reason is that the extension of a variable can denote a
non-existing object in which case it will not be a member of the quantifier
domain. This allows, for example, that the antecedent of (8↵)A � A[�/↵] is true
while its consequent is false. To prevent this from happening we have to add a
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“guard”. By quantifying over the variable � we make sure that it designates only
objects that exist which gives us Free 8 elimination. This gives us an axiomatic
system for the quantifiers that is similar to the usual axiomatic characterisation
of free logics (this type of axiomatisation is first introduced in Kripke (1963a)
and discussed in (Braüner and Ghilardi, 2007; Hughes and Cresswell, 1996;
Fine, 1983; Fitting and Mendelsohn, 2012)).

Definition 17. QFD (quantified free deontic logic) is the logic obtained
by adding to SDL the axiom schemata Reflexivity, Substitutivity,
Necessary distinctness, 8 Distributivity, 8 Permutation,
Free 8 elimination and Vacuous Quantification, and the rule
Universal Generalization.

3.3.3 The syntactic relation between the quantifiers and the deontic operators

The following four axiom schemes are able to determine the syntactic relation
between the quantifiers and the deontic operators:

BF (8↵)OA � O(8↵)A

CBF O(8↵)A � (8↵)OA

GF (9↵)OA � O(9↵)A

CGF O(9↵)A � (9↵)OA

The first two are the Barcan formula (BF) and the converse Barcan formula
(CBF) originally introduced by Ruth Barcan Marcus in Barcan (1946). The
second two are the Ghilardi formula (GF) and the converse Ghilardi formula
(CGF).6 These formulas play a crucial role within quantified modal logics and
will thus be an important object of study in this thesis. We can add each of these
formulas or a combination of them to our base logic QFD and each of these
options will give us a different logic. The way in which these options relate to
the different kinds of models will become clear in the section ahead. I will define
each of these possible logics but I will exclude logics that contain CGF because
as we will see in section 3.4, this formula is not valid on any of the models we
will take into account. This, I will argue in section 4.3, is not a mistake.7 I
will also exclude the logic QFD+CBF+GF and QFD+BF+CBF+GF

because GF is a theorem of QFD+CBF and so it would be redundant to add it
as an axiom schema if we already have CBF.

Fact 4. The Ghilardi formula is a theorem of QFD+CBF.

6 This is the name given to it in Corsi (2002b), Gochet and Gribomont (2006) and Calardo (2013).
It is named after Silvio Ghilardi, a contemporary italian mathematician and logician.

7 See Van Benthem (2010) page 307 for the semantic conditions needed to validate this formula.
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Proof. Some minor steps have been omitted:

1. (8x)(Px � (9x)Px) (Theorem instance)

2. O(8x)(Px � (9x)Px) (1; RND)

3. (8x)O(Px � (9x)Px) (2; CBF)

4. (8x)(OPx � O(9x)Px) (3; KD)

5. (8x)(OPx � O(9x)Px) � ((9x)OPx � O(9x)Px)) (Theorem instance)

6. (9x)OPx � O(9x)Px) (4, 5; MP)

The proof makes use of two theorems of QFD namely (8↵)(A[↵] � (9�)A[�/↵])
(line 1) and (8↵)(A[↵] � B) � ((9↵)A[↵] � B)) where ↵ is not free in B (line
5).8 This proof can be found in Fitting (1999). The fact that GF is a theorem of
QFD+CBF should be kept in mind because it will be important later on when
we discuss the effect of the Van Benthem clause on the semantics.

Definition 18. QFD+BF is the logic obtained by adding to QFD the axiom
schema BF.

Definition 19. QFD+CBF is the logic obtained by adding to QFD the axiom
schema CBF.

Definition 20. QFD+GF is the logic obtained by adding to QFD the axiom
schema GF.

Definition 21. QFD+BF+CBF is the logic obtained by adding to QFD the
axiom schemata BF and CBF.

Definition 22. QFD+BF+GF is the logic obtained by adding to QFD the axiom
schemata BF and GF.

Let us now take a look at all the possibilities with respect to formulas containing
deontic operators and quantifiers. We can observe that there are 8 possible
permutations in total: (8↵)OA, O(8↵)A, P(9↵)A, (9↵)PA, (9↵)OA, O(9↵)A,
P(8↵)A, (8↵)PA. These possible permutations stand in the following relation to
each other:

8 Corsi (2002b) mentions these two as theorems of her logic Q
�

=.K which is axiomatically defined
the same as QFD minus the DD axiom scheme.
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Barcan formula (8↵)OA � O(8↵)A P-Barcan formula9
P(9↵)A � (9↵)PA

converse Barcan formula O(8↵)A � (8↵)OA
converse P-

Barcan formula (9↵)PA � P(9↵)A

Ghilardi formula (9↵)OA � O(9↵)A Buridan formula10
P(8↵)A � (8↵)PA

converse Ghilardi formula O(9↵)A � (9↵)OA
converse Buri-
dan formula (8↵)PA � P(8↵)A

Because the interrelations between these formulas are important for what is to
come I will demonstrate for each row the equivalence between the formula in
the second column and the one in the fourth column. The steps I give are given
in just one direction, but they can equivalently be given in reverse order for the
other direction.

Fact 5. The Barcan formula (8↵)OA � O(8↵)A is syntactically equivalent to the
P-Barcan formula P(9↵)A � (9↵)PA .

Proof. We start with (8↵)OA � O(8↵)A. Replace every (8↵) by ¬(9↵)¬ and every
O by ¬P¬. This leaves us with ¬(9↵)¬¬P¬A � ¬P¬¬(9↵)¬A. Now we elimi-
nate double negations, which gives us: ¬(9↵)P¬A � ¬P(9↵)¬A. Lastly, we use
contraposition11 and eliminate double negations to get: P(9↵)¬A � (9↵)P¬A.
⌅

Fact 6. The converse Barcan formula O(8↵)A � (8↵)OA is syntactically equivalent
to the converse P-Barcan formula (9↵)PA � P(9↵)A .

Proof. We start with O(8↵)A � (8↵)OA. Replace every (8↵) by ¬(9↵)¬ and
every O by ¬P¬. This leaves us with ¬P¬¬(9↵)¬A � ¬(9↵)¬¬P¬A. Now we
eliminate double negations, which gives us: ¬P(9↵)¬A � ¬(9↵)P¬A. Lastly, we
use contraposition and eliminate double negations to get: (9↵)P¬A � P(9↵)¬A.
⌅

Fact 7. The Ghilardi formula (9↵)OA � O(9↵)A is syntactically equivalent to the
Buridan formula P(8↵)A � (8↵)PA.

9 This formula is usually also called a Barcan formula. To distinguish it from its counterpart in
terms of obligations I will use the name P-Barcan formula.

10 It was given its name by Alvin Plantinga (Plantinga, 1974) after the medieval logician Jean
Buridan.

11 Contraposition is the rule that allows you to infer ¬B � ¬A from A � B.
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Proof. We start with (9↵)OA � O(9↵)A. Replace every (8↵) by ¬(9↵)¬ and
every O by ¬P¬. This leaves us with ¬(8↵)¬¬P¬A � ¬P¬¬(8↵)¬A. Now we
eliminate double negations, which gives us: ¬(8↵)P¬A � ¬P(8↵)¬A. Lastly, we
use contraposition and eliminate double negations to get: P(8↵)¬A � (8↵)P¬A.
⌅

Fact 8. The converse Ghilardi formula O(9↵)A � (9↵)OA is syntactically equivalent
to the converse Buridan formula (8↵)PA � P(8↵)A.

Proof. We start with O(9↵)A � (9↵)OA. Replace every (8↵) by ¬(9↵)¬ and
every O by ¬P¬. This leaves us with ¬P¬¬(8↵)¬A � ¬(8↵)¬¬P¬A. Now we
eliminate double negations, which gives us: ¬P(8↵)¬A � ¬(8↵)P¬A. Lastly, we
use contraposition and eliminate double negations to get: (8↵)P¬A � P(8↵)¬A.
⌅

3.4 The relation between syntax and semantics

One of the aims of the logician is to make sure there is an intimate connection
between syntax and semantics. As Kant’s dictum goes “syntax without semantics is
empty, but semantics without syntax is blind.”(Woleński, 2012, p. 589) on which
Jan woleński expands “...the Kantian metaphor that syntax without semantics
is empty, but semantics without syntax is blind, means that the preciseness of
calculus sharpens the semantic eye, although semantics brings the content into
correct formulas.”(Woleński, 2012, p. 595).

One way in which to connect the two is by relating the provable formulas within
the syntax of a logic (i.e. its axioms and theorems) to the valid formulas of its
semantics. A natural question to ask is whether every formula that is provable is
also valid and every valid formula also provable. If every provable formula is valid
the logic is considered sound. If every valid formula has a proof, it is considered
complete.

One example of the importance of this connection is that if our logic is sound
and complete we can show that it is impossible to derive a contradiction from our
axioms by showing that there exists a model of them. This is due to the fact that
an inconsistent set of formulas does not have a model. This is not possible with
purely syntactic means because, given a particular set of premises, it can not be
shown that it is impossible to derive an inconsistency from it.

If we want our syntax and semantics in alignment, we have to carefully consider
which axioms and rules we want in our logic and how to make sure our models
make them and only them valid. To further illuminate this link we will take a
look at the 8 formulas introduced in the previous section and see what kind of
semantics we need to validate or invalidate them.
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I will first show that if we use varying domain models and do not restrict the
domain function in any way we will have models that make the Barcan formula,
the converse Barcan formula, the Ghilardi formula and the converse Ghilardi
formula false. Which is the same as saying that those formulas are not valid
when using varying domain models. We have already established that the
P-Barcan formula, the converse P-Barcan formula, the Buridan formula and
the converse Buridan formula are their syntactic equivalents and so they are
equally not valid on varying domain models. I will also show that if we use the
Van Benthem clause instead of the standard deontic operator clause the converse
Barcan formula is valid when using varying domain models.

3.4.1 Varying domain models

Fact 9. The Barcan formula is not valid when using varying domain models and the
standard deontic operator clause or the Van Benthem clause.

Proof. To show that the Barcan formula is not valid when using varying domain
models we need to find one possible varying domain model that makes its an-
tecedent true and consequent false. This counter model works for both the stan-
dard deontic operator clause and the Van Benthem clause.

Consider any arbitrary varying domain model M such that:

1. W = {w1, w2}

2. R = {hw1, w2i, hw2, w2i}

3. D = {o1, o2}

4. d(w1) = {o1} and d(w2) = {o1, o2}

5. a(P,w1) = a(P,w2) = {o1}

Now we can check whether the model M is such that M, w1 ✏ (8x)OPx and
M, w1 2 O(8x)Px. To determine whether M, w ✏ (8x)OPx we have to take a
look at all M0 = hW,R,D, d, a

0i, where a
0 differs at most from a concerning the

value it assigns from Dw1 to x, and check if M0
, w1 ✏ OPx holds in all these M0

(clause 7 of the valuation). For every M0 and the assignment a0 in it, it will be the
case that a0(x) = o1 because o1 is the only individual in Dw1 and Dw1 remains the
same for all M0. To determine whether M0

, w1 ✏ OPx, we look at all w0 for which
Rw1w

0 and check whether M0
, w

0 ✏ Px for all w0. Because every model model M0

will be identical to M we know that in every M0 we have w1 and only one world
for which Rw1w

0 namely w2 and that for w2 we have a
0(x) 2 a

0(P,w2) and so we
know that M0

, w
0 ✏ Px for all w0. This allows us to conclude that M0

, w1 ✏ OPx

holds for all such M0 and so M, w1 ✏ (8x)OPx.

Now we have to show that M, w1 2 O(8x)Px. I will do this by showing that its
negation is true in M , in other words that M, w1 ✏ ¬O(8x)Px which is equiva-
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lent to showing that M, w1 ✏ P(9x)¬Px given that O is interchangeable with
¬P¬ and 8 with ¬9¬ and double negation can be eliminated. To show that
M, w1 ✏ P(9x)¬Px is true we have to show that in M there is a w

0 for which
Rww

0 and M, w
0 ✏ (9x)¬Px. We know that there is only one world w

0 for
which Rw1w

0 namely w2. To show that M, w2 ✏ (9x)¬Px we have to look at
all M0 = hW,R,D, d, a

0i, where a
0 differs at most from a concerning the value

it assigns from Dw2 to x, and check if M0
, w2 ✏ ¬Px holds in one of these M0.

We know that there must be a M0 for which a
0(x) = o2 and so for this M0 it

is true that a
0(x) /2 a

0(P,w2). From this we infer that there is a M0 such that
M0

, w2 2 Px and via the negation clause that for this M0, M0
, w2 ✏ ¬Px holds.

Because of this fact we know that M, w2 ✏ (9x)¬Px is true. We also already
knew that there is a world w for which Rww2 in M, namely w1 and so we now
know that M, w1 ✏ P(9x)¬Px. P(9x)¬Px is equivalent to ¬O(8x)Px and so
M, w1 ✏ ¬O(8x)Px. By the negation clause it follows that M, w1 2 O(8x)Px. ⌅

Fact 10. The converse Barcan formula is not valid when using varying domain mod-
els and the standard deontic operator clause.

Proof. Consider any arbitrary varying domain model M such that:

1. W = {w1, w2}

2. R = {hw1, w2i, hw2, w2i}

3. D = {o1, o2}

4. d(w1) = {o1, o2} and d(w2) = {o1}

5. a(P,w1) = a(P,w2) = {o1}

Now we can check whether the model M is such that M, w1 ✏ O(8x)Px and
M, w1 2 (8x)OPx. To check whether M, w1 ✏ O(8x)Px we have to consider all
worlds w

0 for which Rww
0 and see whether M, w

0 ✏ (8x)Px for all such w
0. We

can see that there is only one world we have to check, namely w2. To ascertain
whether M, w2 ✏ (8x)Px holds we have to look at all M0 = hW,R,D, d, a

0i, where
a
0 differs at most from a concerning the value it assigns from Dw2 to x, and check

if M0
, w2 ✏ Px holds in all these M0. There is only one individual, o1, in Dw2 and

so this will be the individual that gets assigned to x in every M0. We can see that
in M it holds that a(x) 2 a(P,w2) and we know that the assignment function a

does not change with respect to the extension of P in all the models M0. From
this it follows that for all M0 it is true that M0

, w2 ✏ Px. Because of this fact we
know that M, w2 ✏ (8x)Px. We have checked every w

0 for which Rww
0 because

there only was one to check and so now we can conclude that M, w1 ✏ O(8x)Px.

Now we have to prove that M, w1 2 (8x)OPx. I will do this by showing that
its negation is true in M, namely that M, w1 ✏ ¬(8x)OPx which is equivalent
to M, w1 ✏ (9x)P¬Px. To check whether M, w1 ✏ (9x)P¬Px we have to take
a look at all M0 = hW,R,D, d, a

0i, where a
0 differs at most from a concerning

the value it assigns from Dw1 to x, and check if M0
, w1 ✏ P¬Px holds in one
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of these M0. To check whether M0
, w1 ✏ P¬Px holds for one of these models

we have to search among these models a model M0 and a world w
0 for which

Rww
0 and M0

, w
0 ✏ ¬Px. In all these models M0 there is but one world w

0 to
check for which Rww

0, namely w2. We know that there must be a model M0 in
which a(x) = o2 and in that case a(x) /2 a(P,w2) and so we will have a model
M0 for which M0

, w2 2 Px and by the negation clause we have M0
, w2 ✏ ¬Px.

This result establishes that in this M0 we have M0
, w1 ✏ P¬Px and subsequently

that M, w1 ✏ (9x)P¬Px. Because of the equivalence between (9x)P¬Px and
¬(8x)OPx we know that M, w1 ✏ ¬(8x)OPx and by the negation clause that
M, w1 2 (8x)OPx. ⌅

Fact 11. The converse Barcan formula is valid when using varying domain models
and the Van Benthem Clause.

Proof. The proof is by reductio ad absurdum. Suppose that M, w ✏ O(8x)Px and
M, w 2 (8x)OPx. Because of M, w ✏ O(8x)Px we know that for every w

0 for
which Rww

0 that M, w
0 ✏ (8x)Px. From this we can infer that for all M0 in which

the assignment function a
0 differs at most from a concerning the value it assigns

to x from Dw0 and for all worlds w0 it holds that M0
, w

0 ✏ Px.

Because of M, w 2 (8x)OPx we know by the negation clause that M, w ✏
¬(8x)OPx which is equivalent to M, w ✏ (9x)P¬Px. Because of this we know
that there is a model M0 for which the assignment function a

0 differs at most from
a with respect to the value it assigns to x from Dw for which M0

, w ✏ P¬Px. From
this we can infer that in this model M0 there is a world w

0 for which Rww
0 and

M0
, w

0 ✏ ¬Px.

By the first part of the proof we know that for all M0 in which the assignment
function a

0 differs at most from a concerning the value it assigns to x from Dw0

and for all worlds w
0 it holds that M0

, w
0 ✏ Px. Hence, for every a

0 in every
such M0 it holds that a

0(x) 2 a
0(P,w0) where a

0(x) 2 Dw0 . By the second part
of the proof we know that there is a model M0 and a world w

0 in it for which
M0

, w
0 ✏ ¬Px which tells us that in this M0 it is the case that a

0(x) /2 a
0(P,w0)

where a
0(x) 2 Dw. Because of the Van Benthem clause we know that this a

0(x)
must also be in Dw0 and so a

0(x) 2 Dw0 but for every a
0(x) 2 Dw0 it holds that

a
0(x) 2 a

0(P,w0) which leaves us with a contradiction. ⌅

Fact 12. The Ghilardi formula is not valid when using varying domain models and
the standard deontic operator clause or the Van Benthem clause.

Proof. In order to proof this fact I will produce a counter model that works for
both the standard deontic clause and the Van Benthem clause. Consider any
arbitrary varying domain model M such that:

1. W = {w1, w2, w3}
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2. R = {hw1, w2i, hw2, w2i, hw1, w3i, hw3, w3i}

3. D = {o1, o2}

4. d(w1) = {o1, o2} and d(w2) = {o2} and d(w3) = {o1}

5. a(P,w2) = a(P,w3) = {o1}

Now we can check whether the model M is such that M, w1 ✏ (9x)OPx and
M, w1 2 O(9x)Px. To check whether M, w1 ✏ (9x)OPx is true we have to take
a look at all M0 = hW,R,D, d, a

0i, where a
0 differs at most from a concerning the

value it assigns from Dw1 to x, and check if M0
, w1 ✏ OPx holds in one of these

M0. To determine whether M0
, w1 ✏ OPx is true for one of these M0 we have to

search for a M0 in which for every w
0 such that Rw1w

0 it is true that M0
, w

0 ✏ Px.
Consider the M0 and the assignment a0 in it for which a

0(x) = o1.

If we use the Van Benthem Clause there is in this M0 only one w
0 for which Rw1w

0

and a
0(x) 2 Dw0 namely w3. We can see that a(x) 2 a(P,w3) and so we have

M0
, w3 ✏ Px. Because w3 was the only accessible world to check we now know

that M0
, w1 ✏ OPx is true. This in turn establishes that there is a model M0 such

that M0
, w1 ✏ OPx and so that M, w1 ✏ (9x)OPx is true.

If we use the Standard Deontic operator Clause there is in this M0 two w
0 for

which Rw1w
0 namely w2 and w3. We can see that a(x) 2 a(P,w2) and so we have

M0
, w2 ✏ Px. We can also see that a(x) 2 a(P,w3) and so we have M0

, w3 ✏
Px. Because w2 and w3 were the only accessible worlds to check we know that
M0

, w1 ✏ OPx is true. This in turn establishes that there is a model M0 such that
M0

, w1 ✏ OPx and so that M, w1 ✏ (9x)OPx is true.

Now we have to show that M, w1 2 O(9x)Px. I will do this by showing that its
negation is true in M, in other words that M, w1 ✏ ¬O(9x)Px which is equivalent
to showing that M, w1 ✏ P(8x)¬Px given that O is interchangeable with ¬P¬
and 8 with ¬9¬ and double negation can be eliminated. To show that M, w1 ✏
P(8x)¬Px is true we have to show that in M there is a w

0 for which Rw1w
0

and M, w
0 ✏ (8x)¬Px. Let us consider w2. To show that M, w2 ✏ (8x)¬Px

we have to look at all M0 = hW,R,D, d, a
0i, where a

0 differs at most from a

concerning the value it assigns from Dw2 to x, and check if M0
, w2 ✏ ¬Px holds

for all of these M0. We know that for all M0 it will be the case that a0(x) = o2

because there is only one individual in Dw2 and so for all these M0 we can see
that it is true that a0(x) /2 a

0(P,w2). From this we infer that for all M0 it is true
that M0

, w2 2 Px and via the negation clause that for all these M0 it holds that
M0

, w2 ✏ ¬Px. Because of this fact we know that M, w2 ✏ (8x)¬Px is true.
Now that we have found a world w

0 for which Rw1w
0 and M, w

0 ✏ (8x)¬Px we
know that M, w1 ✏ P(8x)¬Px. P(8x)¬Px is equivalent to ¬O(9x)Px and so
M, w1 ✏ ¬O(9x)Px. By the negation clause it follows that M, w1 2 O(9x)Px. ⌅

Fact 13. The converse Ghilardi formula is not valid when using varying domain
models with the standard deontic operator clause or the Van Benthem clause.
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Proof. Consider any arbitrary varying domain model M such that:

1. W = {w1, w2}

2. R = {hw1, w1i, hw1, w2i, hw2, w2i}

3. D = {o1, o2}

4. d(w1) = d(w2) = {o1, o2}

5. a(P,w1) = {o1} and a(P,w2) = {o2}

Now we can check whether the model M is such that M, w1 ✏ O(9x)Px and
M, w1 2 (9x)OPx. To check whether M, w1 ✏ O(9x)Px we have to consider all
worlds w

0 for which Rw1w
0 and see whether M, w

0 ✏ (9x)Px for all such w
0. We

can see that there are two worlds we have to check, namely w1 and w2.

To ascertain whether M, w1 ✏ (9x)Px holds we have to look at all
M0 = hW,R,D, d, a

0i, where a
0 differs at most from a concerning the value it

assigns from Dw1 to x, and check if M0
, w1 ✏ Px holds in one of these M0.

Consider the model M0 in which a(x) = o1, we can see that in M0 it holds that
a(x) 2 a(P,w1) and we know that the assignment function a does not change
with respect to the extension of P in w1 in all the models M0. From this it
follows that there is a model M0 for which it is true that M0

, w1 ✏ Px. Because of
this fact we know that M, w1 ✏ (9x)Px.

To see that M, w2 ✏ (9x)Px, consider the model M0 in which a(x) = o2, we can
see that in M0 it holds that a(x) 2 a(P,w2) and we know that the assignment
function a does not change with respect to the extension of P in w2 in all the
models M0. From this it follows that there is a model M0 for which it is true that
M0

, w2 ✏ Px. Because of this fact we know that M, w2 ✏ (9x)Px.

We have checked every w
0 for which Rw1w

0 because there were only two to check
and so we can conclude that M, w1 ✏ O(9x)Px.

Now we have to prove that M, w1 2 (9x)OPx. I will do this by showing that its
negation is true in M, namely that M, w1 ✏ ¬(9x)OPx which is equivalent to
M, w1 ✏ (8x)P¬Px. To check whether M, w1 ✏ (8x)P¬Px we have to take a
look at all M0 = hW,R,D, d, a

0i, where a
0 differs at most from a concerning the

value it assigns from Dw1 to x, and check if M0
, w1 ✏ P¬Px holds for all of these

M0. To check whether M0
, w1 ✏ P¬Px holds for all of these models we have to

check for all these models M0 whether there is a world w
0 for which Rw1w

0 and
M0

, w
0 ✏ ¬Px. In all these models M0 there are two worlds w0 to check for which

Rw1w
0, namely w1 and w2. We know that there will either be models M0 in which

a(x) = o2 or models M0 in which a(x) = o1.

In the models where a(x) = o2 it will be the case that a(x) /2 a(P,w1) and so in
these models M0 we will have M0

, w1 2 Px and by the negation clause we have
for every such M0 that M0

, w1 ✏ ¬Px. In the models where a(x) = o1 it will be
the case that a(x) /2 a(P,w2) and so in these models M0 we will have M0

, w2 2 Px

and by the negation clause we have for every such M0 that M0
, w2 ✏ ¬Px.
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This result establishes that in all M0 we have M0
, w1 ✏ P¬Px and subsequently

that M, w1 ✏ (8x)P¬Px. Because of the equivalence between (8x)P¬Px and
¬(9x)OPx we know that M, w1 ✏ ¬(9x)OPx and by the negation clause that
M, w1 2 (9x)OPx. ⌅

It is proven by Giovanna Corsi in Corsi (2002b) that QFD
12 is sound and complete

with respect to varying domain models and the standard deontic operator clause.
The previous results show us that if we use the Van Benthem clause and varying
domain models CBF is valid while GF is not valid. This is strange because we
learned in section 3.3.3 that GF is a theorem of QFD+CBF. What this shows
is that QFD+CBF is not sound with respect to varying domain semantics and
the Van Benthem clause. If it were sound it would have to follow that GF is valid
because it is provable within QFD+CBF and soundness guarantees that every
provable formula is valid. There has to be a step in the proof of GF that is no
longer available when we adopt the Van Benthem clause. I will restate the proof
here for convenience:

Proof. Some minor steps have been omitted:

1. (8x)(Px � (9x)Px) (Theorem instance)

2. O(8x)(Px � (9x)Px) (1; RND)

3. (8x)O(Px � (9x)Px) (2; CBF)

4. (8x)(OPx � O(9x)Px) (3; KD)

5. (8x)(OPx � O(9x)Px) � ((9x)OPx � O(9x)Px)) (Theorem instance)

6. (9x)OPx � O(9x)Px) (4, 5; MP)

Quite surprisingly the KD axiom scheme is the culprit: KD is no longer valid if
we adopt the Van Benthem clause.

Fact 14. When using varying domain models with a Van Benthem clause the axiom
schema KD is not valid.

Proof. Consider any arbitrary varying domain model M such that:

1. W = {w1, w2}

2. R = {hw1, w1i, hw1, w2i, hw2, w2i}

3. D = {o1, o2}

4. d(w1) = {o2} and d(w2) = {o1, o2}

12 Corsi (2002b) proves this for Q
�

=.K which is axiomatically defined the same as QFD without
the DD axiom scheme.
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5. a(P,w1) = ; and a(P,w2) = {o1, o2} and a(a) = o1 and a(b) = o2

I will now show that the model M is such that M, w1 ✏ O(Pa � Pb) and M, w1 2
OPa � OPb. To check whether M, w1 ✏ O(Pa � Pb) holds we have to check in
all worlds w

0 for which Rw1w
0 and a(a) 2 Dw0 and a(b) 2 Dw0 whether M, w

0 ✏
Pa � Pb holds. We can see that there is only one such w

0 namely w2. We can also
see that at w2 we have M, w2 ✏ Pb because a(b) 2 a(P,w2). This establishes that
M, w2 ✏ Pa � Pb holds and because we have checked every accessible w

0 with
the right criteria it follows that M, w1 ✏ O(Pa � Pb) is true.

Because of M, w1 2 OPa � OPb we know by the negation clause that M, w1 ✏
¬(OPa � OPb) which is equivalent to M, w1 ✏ OPa^¬OPb. Thus we will show
that M, w1 2 OPa � OPb is the case by showing that M, w1 ✏ OPa ^ ¬OPb

holds. Let us first check whether M, w1 ✏ OPa. To ascertain whether M, w1 ✏
OPa holds we have to check in all worlds w0 for which Rw1w

0 and a(a) 2 Dw0 . We
can see that there is only one such w

0 that is eligible namely w2. At w2 we have
M, w2 ✏ Pa because a(a) 2 a(P,w2). To ascertain whether M, w1 ✏ ¬OPb holds
we have to check whether M, w1 2 OPb. M, w1 2 OPb would mean that there is
a world w

0 for which Rw1w
0 and a(b) 2 Dw0 at which it holds that M, w

0 2 Pb. We
can see that there is such a world w

0 namely w1. From M, w1 ✏ OPa and M, w1 ✏
¬OPb we can conclude by the conjunction clause that M, w1 ✏ OPa ^ ¬OPb.
This in turn gives us M, w1 ✏ ¬(OPa � OPb) and so this concludes the proof
with M, w1 2 OPa � OPb. ⌅

This result establishes that any axiom system sound for varying domain models
and the Van Benthem clause (as I have defined them) will be a non-normal modal
logic because K or its deontic counterpart KD can not be added as an axiom
without producing an unsound axiomatisation. Unfortunately, to my knowledge,
there is as of yet no axiomatisation of varying domain models and the Van Ben-
them clause and I have not been able to produce it myself. Consequently, there is
also no soundness and completeness proof.

3.4.2 Increasing domain models

I will now show that if we impose increasing domain frames, we will still
have models that make the Barcan formula and the converse Ghilardi for-
mula false but the converse Barcan formula and the Ghilardi formula will be valid.

Fact 15. The Barcan formula is not valid on increasing domain frames with the
standard deontic operator clause or the Van Benthem clause.

Proof. This fact follows immediately from the proof given earlier that shows that
the Barcan formula is not valid when using varying domain models because that
proof only relies on increasing domain models. ⌅
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Fact 16. The converse Ghilardi formula is not valid on increasing domain frames
with the standard deontic operator clause or the Van Benthem clause.

Proof. This fact follows immediately from the proof given earlier that shows that
the converse Ghilardi formula is not valid when using varying domain models
because that proof only relies on constant domain frames. ⌅

Fact 17. The converse Barcan formula is valid on increasing domain frames with the
standard deontic operator clause.

Proof. The proof is by reductio ad absurdum. Suppose that M, w ✏ O(8x)Px and
M, w 2 (8x)OPx. Because of M, w ✏ O(8x)Px we know that for every w

0 for
which Rww

0 that M, w
0 ✏ (8x)Px. From this we can infer that for all M0 in which

the assignment function a
0 differs at most from a concerning the value it assigns

to x from Dw0 it holds that M0
, w

0 ✏ Px.

Because of M, w 2 (8x)OPx we know by the negation clause that M, w ✏
¬(8x)OPx which is equivalent to M, w ✏ (9x)P¬Px. Because of this we know
that there is a model M0 for which the assignment function a

0 differs at most from
a with respect to the value it assigns to x from Dw in which M0

, w ✏ P¬Px. From
this we can infer that in this model M0 there is a world w

0 for which Rww
0 and

M0
, w

0 ✏ ¬Px.

Because we only look at models based on an increasing domain frame we know
that for all w and all w0 for which Rww

0 it holds that Dw ✓ Dw0 . By the first
part of the proof we know that for all M0 in which the assignment function a

0

differs at most from a concerning the value it assigns to x from Dw0 it holds that
M0

, w
0 ✏ Px. Hence, for every a

0 in every such M0 it holds that a0(x) 2 a
0(P,w0)

where a
0(x) 2 Dw0 . By the second part of the proof we know that there is a

model M0 and a world w
0 in it for which M0

, w
0 ✏ ¬Px which tells us that in

this M0 it is the case that a0(x) /2 a
0(P,w0) where a

0(x) 2 Dw. By the property of
increasing domains we know that this a0(x) must also be in Dw0 and so a

0(x) 2 Dw0

but for every a
0(x) 2 Dw0 it holds that a

0(x) 2 a
0(P,w0) which leaves us with a

contradiction. ⌅

Fact 18. The converse Barcan formula is valid on increasing domain frames with the
Van Benthem clause.

Proof. This fact follows immediately from the proof given earlier that shows that
the converse Barcan formula is valid when using varying domain models because
increasing domain models are a subset of varying domain models. ⌅

Fact 19. The Ghilardi formula is valid on increasing domain frames with the stan-
dard deontic operator clause or the Van Benthem clause.
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Proof. The proof is by reductio ad absurdum. Suppose that M, w ✏ (9x)OPx and
M, w 2 O(9x)Px. Because of M, w ✏ (9x)OPx we know that among all M0 in
which the assignment function a

0 differs at most concerning the value it assigns to
x from Dw we have at least one M0 such that M0

, w ✏ OPx. In this M0 we know
that for each w

0 for which Rww
0 we have M0

, w
0 ✏ Px.

Because of M, w 2 O(9x)Px we know by the negation clause that M, w ✏
¬O(9x)Px which is equivalent to M, w ✏ P(8x)¬Px. Because of this we know
that in M we have a world w

0 for which Rww
0 and M, w

0 ✏ (8x)¬Px. Because
of M, w

0 ✏ (8x)¬Px we know that in all M0 for which the assignment function a
0

differs at most from a with respect to the value it assigns to x from Dw0 we have
M0

, w
0 ✏ ¬Px.

Because we only look at models based on an increasing domain frame we know
that for all w and all w0 for which Rww

0 it holds that Dw ✓ Dw0 . By the first part of
the proof we know that there is a M0 in which the assignment function a

0 differs at
most from a concerning the value it assigns to x from Dw it holds that M0

, w
0 ✏ Px

for every w
0. Hence, for this a

0 in this M0 it holds that a0(x) 2 a
0(P,w0) for all w0

and a
0(x) 2 Dw. Because of increasing domains we also know that a0(x) 2 Dw0 .

However, by the second part of the proof we know that for every M0 there is a
world w

0 in it for which M0
, w

0 ✏ ¬Px which thus tells us that in all these M0 it is
the case that there is a w

0 and a
0(x) /2 a

0(P,w0) where a
0(x) 2 Dw0 . This leaves us

with a contradiction. ⌅
Fact 20. If we impose increasing domain frames and use a Van Benthem clause the
axiom schema KD is not valid.

Proof. This fact follows immediately from the proof given earlier that shows that
the axiom schema KD is not valid when using varying domain models and a van
Benthem clause because that proof only relies on models based on an increasing
domain frame. ⌅

It is proven by Giovanna Corsi in Corsi (2002b) that QFD+CBF is sound and
complete with respect to increasing domain frames and the standard deontic op-
erator clause. Just as before, QFD+CBF is not sound with respect to increasing
domain frames and the Van Benthem clause because of the invalidity of KD.

3.4.3 Decreasing domain models

I will now show that if we impose decreasing domain frames, we will have
models that make the converse Barcan formula, the Ghilardi formula and the
converse Ghilardi formula false but the Barcan formula will be valid. Moreover,
KD will be invalid when adopting a Van Benthem clause.

Fact 21. The Barcan formula is valid on increasing domain frames with the standard
deontic operator clause or the Van Benthem clause.
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Proof. The proof is by reductio ad absurdum. Suppose that M, w ✏ (8x)OPx and
M, w 2 O(8x)Px. Because of M, w ✏ (8x)OPx we know that for all M0 in which
the assignment function a

0 differs at most concerning the value it assigns to x from
Dw we have M0

, w ✏ OPx. In all these M0 we know that for each w
0 for which

Rww
0 we have M0

, w
0 ✏ Px.

Because of M, w 2 O(8x)Px we know by the negation clause that M, w ✏
¬O(8x)Px which is equivalent to M, w ✏ P(9x)¬Px. Because of this we know
that in M we have a world w

0 for which Rww
0 and M, w

0 ✏ (9x)¬Px. Because of
M, w

0 ✏ (9x)¬Px we know that among all M0 for which the assignment function
a
0 differs at most from a with respect to the value it assigns to x from Dw0 we have

a model M0 such that M0
, w

0 ✏ ¬Px.

Because we only look at models based on a decreasing domain frame we know
that for all w and all w0 for which Rww

0 it holds that Dw0 ✓ Dw. By the first part of
the proof we know that for all M0 in which the assignment function a

0 differs at
most from a concerning the value it assigns to x from Dw it holds that M0

, w
0 ✏ Px

for every w
0. Hence, for the a

0 in all these M0 it holds that a0(x) 2 a
0(P,w0) for

all w0 and a
0(x) 2 Dw. By the second part of the proof we know that there is a

M0 and a world w
0 in it for which M0

, w
0 ✏ ¬Px which tells us that in this M0

it is the case that there is a w
0 and a

0(x) /2 a
0(P,w0) where a

0(x) 2 Dw0 . Because
of decreasing domains we also know that for this a

0 it is true that a
0(x) 2 Dw

but for every a
0(x) 2 Dw it holds that a

0(x) 2 a
0(P,w0) which leaves us with a

contradiction. ⌅

Fact 22. The converse Barcan formula is not valid on decreasing domain frames with
the standard deontic operator clause.

Proof. This fact follows immediately from the proof given earlier that shows that
the converse Barcan formula is not valid when using varying domain models be-
cause that proof only relies on models based on a decreasing domain frame. ⌅

Fact 23. The converse Barcan formula is valid on decreasing domain frames with
the Van Benthem clause.

Proof. This fact follows immediately from the proof given earlier that shows that
the converse Barcan formula is valid when using varying domain models because
decreasing domain models are a subset of varying domain models. ⌅

Fact 24. The Ghilardi formula is not valid on decreasing domain frames with the
standard deontic operator clause or the Van Benthem clause.

Proof. This fact follows immediately from the proof given earlier that shows that
the Ghilardi formula is not valid when using varying domain models with the
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standard deontic operator clause or the Van Benthem clause because that proof
only relies on models based on a decreasing domain frame. ⌅

Fact 25. The converse Ghilardi formula is not valid on decreasing domain models
with the standard deontic operator clause or the Van Benthem clause.

Proof. This fact follows immediately from the proof given earlier that shows that
the converse Ghilardi formula is not valid when using varying domain models
with the standard deontic operator clause or the Van Benthem clause because
that proof only relies on models based on a constant domain frame. ⌅

Fact 26. If we impose decreasing domain frames and use a Van Benthem clause the
axiom schema KD is not valid.

Proof. Consider any arbitrary varying domain model M such that:

1. W = {w1, w2}

2. R = {hw1, w1i, hw1, w2i, hw2, w2i}

3. D = {o1, o2}

4. d(w1) = {o1, o2} and d(w2) = {o1}

5. a(P,w1) = {o1, o2} and a(P,w2) = ; and a(a) = o2 and a(b) = o1

I will now show that the model M is such that M, w1 ✏ O(Pa � Pb) and M, w1 2
OPa � OPb. To check whether M, w1 ✏ O(Pa � Pb) holds we have to check in
all worlds w

0 for which Rw1w
0 and a(a) 2 Dw0 and a(b) 2 Dw0 whether M, w

0 ✏
Pa � Pb holds. We can see that there is only one such w

0 namely w1. We can also
see that at w1 we have M, w1 ✏ Pb because a(b) 2 a(P,w1). This establishes that
M, w1 ✏ Pa � Pb holds and because we have checked every accessible w

0 with
the right criteria it follows that M, w1 ✏ O(Pa � Pb) is true.

Because of M, w1 2 OPa � OPb we know by the negation clause that M, w1 ✏
¬(OPa � OPb) which is equivalent to showing that M, w1 ✏ OPa^¬OPb. Let us
first check whether M, w1 ✏ OPa. To ascertain whether M, w1 ✏ OPa holds we
have to check in all worlds w

0 for which Rw1w
0 and a(a) 2 Dw0 . We can see that

there is only one such w
0 that is eligible namely w1. At w1 we have M, w1 ✏ Pa

because a(a) 2 a(P,w1). To ascertain whether M, w1 ✏ ¬OPb holds we have to
check whether M, w1 2 OPb. M, w1 2 OPb would mean that there is a world w

0

for which Rw1w
0 and a(b) 2 Dw0 at which it holds that M, w

0 2 Pb. We can see
that there is such a world w

0 namely w2. From M, w1 ✏ OPa and M, w1 ✏ ¬OPb

we can conclude by the conjunction clause that M, w1 ✏ OPa ^ ¬OPb. This
in turn gives us M, w1 ✏ ¬(OPa � OPb) and so this concludes the proof with
M, w1 2 OPa � OPb. ⌅
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It is proven by Giovanna Corsi in Corsi (2002b) that QFD+BF is sound and
complete with respect to decreasing domain frames and the standard deontic op-
erator clause. QFD and QFD+BF are not sound with respect to decreasing
domain frames and the Van Benthem clause because of the invalidity of KD.

3.4.4 Constant domain models

I will now show that if we impose constant domain frames, the Barcan formula,
the converse Barcan formula and the Ghilardi formula will be valid but we still
have models that invalidate the converse Ghilardi formula.

Fact 27. The Barcan formula is valid on constant domain frames with the standard
deontic operator clause or the Van Benthem clause.

Proof. This fact follows immediately from the proof given earlier that shows that
the Barcan formula is valid when using decreasing domain models with the stan-
dard deontic operator clause or the Van Benthem clause because constant domain
models are a subset of decreasing domain models. ⌅

Fact 28. The converse Barcan formula is valid on constant domain frames with the
standard deontic operator clause or the Van Benthem clause.

Proof. This fact follows immediately from the proof given earlier that shows that
the converse Barcan formula is valid when using increasing domain models with
the standard deontic operator clause or the Van Benthem clause because constant
domain models are a subset of increasing domain models. ⌅

Fact 29. The converse Barcan formula is valid on constant domain frames and the
Van Benthem clause.

Proof. This fact follows immediately from the proof given earlier that shows that
the converse Barcan formula is valid when using varying domain models because
constant domain models are a subset of varying domain models. ⌅

Fact 30. The Ghilardi formula is valid on constant domain frames with the standard
deontic operator clause or the Van Benthem clause.

Proof. This fact follows immediately from the proof given earlier that shows that
the Ghilardi formula is valid when using increasing domain models with the stan-
dard deontic operator clause or the Van Benthem clause because constant domain
models are a subset of increasing domain models. ⌅
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Fact 31. The converse Ghilardi formula is not valid on constant domain frames with
the standard deontic operator clause or the Van Benthem clause.

Proof. This fact follows immediately from the proof given earlier that shows that
the converse Ghilardi formula is not valid when using varying domain models
with the standard deontic operator clause or the Van Benthem clause because
that proof only relies on constant domain frames. ⌅

Fact 32. If we impose constant domain frames and use a Van Benthem clause the
axiom schema KD valid.

Proof. The proof is by reductio ad absurdum. Suppose that M, w ✏ O(A[↵] �
B[�]) and M, w 2 OA[↵] � OB[�]. M, w ✏ O(A[↵] � B[�]) guarantees that at all
worlds w0 such that Rww

0 and a(↵) 2 Dw0 and a(�) 2 Dw0 we have M, w ✏ A[↵] �
B[�]. It follows that in M we have for every such w

0 that either M, w
0 2 A[↵] or

M, w
0 ✏ B[�].

M, w 2 OA[↵] � OB[�] guarantees M, w ✏ OA[↵] ^ ¬OB[�]. This establishes
that M, w ✏ OA[↵] and M, w 2 OB[�]. M, w ✏ OA[↵] says that in all worlds w

0

for which a(↵) 2 Dw0 we have M, w ✏ A[↵]. M, w 2 OB[�] guarantees that there
is a world w

0 for which Rww
0 and a(�) 2 Dw0 such that M, w

0 2 B[�].

Constant domain frames ensure that every accessible world has the same domain.
This means that every world that is accessible to evaluate the truth of M, w ✏
O(A[↵] � B[�]) will also be accessible to evaluate the truth of M, w ✏ OA[↵] or
M, w 2 OB[�] and vice versa. It follows that as soon as one world is accessible
to evaluate the truth of a modal formula containing a free variable or constant at
a world, the truth of every modal formula containing free variables or constants
at that world will be evaluated with respect to the same accessible worlds.13 We
knew that in M we have for every accessible w

0 that either M, w
0 2 A[↵] or

M, w
0 ✏ B[�]. However, we also know that in all accessible worlds w

0 we have
M, w ✏ A[↵] and among these accessible worlds there must be a world w

0 such
that M, w

0 2 B[�]. This leaves us with a contradiction. ⌅

It is proven by Giovanna Corsi in Corsi (2002b) that QFD+BF+CBF is sound
and complete with respect to constant domain frames and the standard deontic
operator clause. When using constant domain frames and a Van Benthem clause
it is not clear whether QFD+BF+CBF is sound with respect to it, we do not

13 There is a minor caveat here, if the modal formula contains a free variable or constant that
denotes a person that does not exist in any accessible world then it will not be evaluated with
respect to the same accessible worlds as the modal formulas for which this is not the case.
In fact, in such a case the formula will turn out vacuously true due to there being no world
accessible for evaluation. It is interesting to observe here that modal formulas containing free
variables or constants, when using a Van Benthem clause, seem to induce their own accessibility
relation. Perhaps there is an interesting link here with respect to multi-relational semantics that
use multiple accessibility relations.
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have the same problem as before with the KD axiom scheme but there is no
soundness or completeness result available.

3.4.5 Summary

In summary, we have before us 5 different possible logics and some ways in which
to make their axioms valid. The following table summarises the relation between
the frame conditions and the validity or invalidity of the discussed formulas when
adopting the standard deontic operator clause:

Axioms No condition Increasing
domains

Decreasing
domains

Constant
domains

Barcan formula Invalid Invalid Valid Valid

converse Barcan formula Invalid Valid Invalid Valid

Ghilardi formula Invalid Valid Invalid Valid

converse Ghilardi formula Invalid Invalid Invalid Invalid

KD Valid Valid Valid Valid

The table below shows the relation between the frame conditions and the validity
or invalidity of the formulas when adopting the Van Benthem clause:

Axioms No condition Increasing
domains

Decreasing
domains

Constant
domains

Barcan formula Invalid Invalid Valid Valid

converse Barcan formula Valid Valid Valid Valid

Ghilardi formula Invalid Valid Invalid Valid

converse Ghilardi formula Invalid Invalid Invalid Invalid

KD Invalid Invalid Invalid Valid
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These two tables show clearly that the difference between the standard deontic
operator clause and the Van Benthem clause is located in the status of the converse
Barcan formula and the KD axiom scheme. CBF is always valid when adopting
the Van Benthem clause while it is not always valid when using the standard deon-
tic operator clause. KD is always valid when using the standard deontic operator
clause while it is only valid when using constant domain frames if we use a Van
Benthem clause. These tables also show that there are two logics QFD+GF and
QFD+BF+GF that are impossible to match semantically with the options laid
out. It is impossible to match QFD+GF and QFD+BF+GF because every
option that validates GF also validates CBF.

The first option is to adopt QFD. If we take this option we need to use varying do-
main models and the standard deontic operator. Only in this way will the Barcan
formula, the converse Barcan formula, the Ghilardi formula, the converse Ghi-
lardi formula all turn out invalid. What this means is that if we want to argue for
the adoption of varying domain models we will have to give convincing examples
that show that each of these formulas, when given an appropriate interpretation,
can be made false.

The second option is to adopt QFD+CBF. If we take this option we need to
impose increasing domain frames and use the standard deontic operator clause.
Only then will the Barcan formula and the converse Ghilardi formula turn out
invalid but the converse Barcan formula, the Ghilardi formula and KD will be
valid. If we want to argue for the adoption of this logic, we will have to give
convincing examples that show that the converse Barcan formula and Ghilardi
formula will always be true in contradistinction to the Barcan formula and the
converse Ghilardi formula which can turn out false.

The third option is to adopt QFD+BF. If we take this option we need to impose
decreasing domain frames and use a standard deontic operator clause. Only then
will converse Barcan formula, the Ghilardi formula and the converse Ghilardi
formula turn out invalid but the Barcan formula will be valid. If we want to argue
for the adoption of this logic, we will have to give convincing examples that show
that the Barcan formula will always be true in contradistinction to the converse
Barcan formula, the Ghilardi formula and the converse Ghilardi formula.

The fourth option is to adopt QFD+BF+CBF. If we take this option we need
to impose constant domain frames and use the standard deontic operator clause.
Only then will the the converse Ghilardi formula turn out invalid but the Barcan
formula, Ghilardi formula and converse Barcan formula valid. If we want to argue
for the adoption of this logic, we will have to give convincing examples that show
that the Barcan formula, the converse Barcan formula and the Ghilardi formula
will always be true in contradistinction to the converse Ghilardi formula.

The fifth option is to adopt varying domain models and a Van Benthem clause.
This will ensure that the converse Barcan formula is valid while the Barcan for-
mula, the Ghilardi formula and the converse Ghilardi formula is not. We will also
have to give up KD and produce a logic that is sound and complete with respect
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to this semantics.

The sixth option is to impose increasing domain frames and use a Van Benthem
clause. This will ensure that the converse Barcan formula and Ghilardi formula
is valid while the Barcan formula and the converse Ghilardi formula is not. We
will also have to give up KD and produce a logic that is sound and complete with
respect to this semantics.

The seventh option is to impose decreasing domain frames and use a Van Benthem
clause. This will ensure that the Barcan formula is valid while the converse Barcan
formula, the Ghilardi formula and the converse Ghilardi formula is not. We will
also have to give up KD and produce a logic that is sound and complete with
respect to this semantics.

The eighth option is to impose constant domain frames and use a Van Benthem
clause. This will ensure that the Barcan formula, the converse Barcan formula and
the Ghilardi formula is valid while the converse Ghilardi formula is not. We do
not have to give up KD but we do need to show either that QFD+BF+CBF

is sound and complete with respect to this semantics or produce a new logic that
is sound and complete.

Varying domain semantics and constant domain semantics are, in the literature
on quantified modal logic that focuses on alethic modalities, sometimes linked to
the metaphysical positions known as actualism and possibilism. Because varying
domain semantics conceives of people as existing at particular worlds and not
existing at other worlds it is tied to actualism: the position that only that which
is actual exists. In constant domain semantics we have no such variation across
worlds and so the only way to make sense of this seems to be that the domain
not only comprises actual individuals but also possible individuals and so in some
sense, possibilia exist (Tomberlin, 1996; Menzel, 2016). Some have even main-
tained that one cannot take possible world semantics seriously while at the same
time being an actualist (Menzel, 1990).

However, none of these metaphysical worries will be addressed here for two rea-
sons. The first and primary reason is that metaphysical arguments only carry
much weight if one intends to use the logic to bear on metaphysical issues. If
one is concerned with human reasoning, however, and merely conceives of log-
ics as tools to help us understand and improve our reasoning it is less clear
why it would matter whether our semantic constructs reflect metaphysical reality
(Gamut, 1991). The second reason is that, even if we would take metaphysical
considerations into account, it is a mystery to me how we could, on metaphysical
grounds, make sense imposing increasing or decreasing domain frames. For ex-
ample, if we adopt actualism, it wouldn’t make sense to impose increasing domain
frames or decreasing domain frames. Because, clearly, people die all the time and
people come into existence all the time and so we need varying domains. If we
would give serious weight to metaphysical arguments, it seems like we would
lose some of the options before us. Because I want to preserve all the options and
do not think we should give much weight to metaphysical arguments when dis-
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cussing human reasoning I will not take metaphysical considerations into account
when deciding on what option to pick.

Now that I have explicated some of the logical machinery, presented some of
our options, and proven some of the properties of these options, we will, in the
chapter ahead, take a stab at interpreting the relation between the quantifiers and
the deontic operators.



4. THE RELATION BETWEEN THE QUANTIFIERS AND THE
DEONTIC OPERATORS

In this chapter, we will take a look at the relation between the quantifiers and
the deontic operators. There are eight formulas that express basic interactions
between the deontic operators and the quantifiers. These are the Barcan formula,
the converse Barcan formula, the Ghilardi formula, the converse Ghilardi formula
and their syntactic equivalents. In this chapter, we will investigate what it is
precisely that these formulas semantically mean and how we might interpret them
from a deontic point of view.

In section 4.1 I introduce a problem of interpretation in modal contexts commonly
referred to as the distinction de re/de dicto. We will first take a look at some
examples of this distinction in other modal contexts and then ask ourselves how
this might translate into a deontic context. I will argue that there is a difference
de re/de dicto in deontic contexts and that this difference can be leveraged to
introduce a distinction between formulas representing person-specific norms and
formulas representing person-non-specific norms.

In section 4.2 I will go into more detail on what the difference between a person-
specific norm and a person-non-specific norm amounts to. I will also introduce
absolute and conditional norms and show that by using a first-order language
we can express conditional norms more faithfully and express different types of
absolute norms.

In sections 4.3 to 4.6 I discuss the formulas expressing interactions between the
quantifiers and the deontic operators and elaborate on whether they ought to be
valid given the reading of these formulas introduced in sections 4.1 and 4.2. I will
moreover argue that to uphold my reading we will need varying domain models
and the Van Benthem clause.

4.1 The distinction de re/de dicto

The distinction de re/de dicto is about the modal operators having the ability to
affect the interpretation of the various constituents of a sentence (Keshet and
Schwarz, 2014). Quine offers the example: “The number of planets is necessarily
odd.” in Two dogmas of empiricism (van Orman Quine, 1976). There are two ways
in which to interpret this sentence.
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The first way is by taking “the number of planets” as a description and applying
the modal necessity operator to it. This is the de dicto reading, in symbols we
would then formalise it as ⇤(8x)(Px � Ox) where ⇤ means “necessarily”, the do-
main is taken to be the natural numbers, P the predicate “the number of planets”
and O the predicate “odd”. In words: necessarily, for all natural numbers if the
number matches the number of planets it is an odd number. This kind of reading
seems to be false. The extension of “the number of planets” changes relative to
the possible world from which it is evaluated and because it is conceivable that
possible worlds contain an even number of planets it follows that “the number of
planets” is not necessarily odd.

The second way to interpret it is by taking the modality operator to be applicable
to the extension of “the number of planets”, the thing itself, in this case, a number,
and not the description. In symbols this becomes 8x(Px � ⇤Ox). In Quine’s time
the number of planets was 9, if we then apply the modal operator to it, it says
that the number 9 is necessarily odd, which, given our mathematical conventions,
is true.

This phenomenon was first discussed by Aristotle in his Prior Analytics and Sophis-
tici elenchi and about 1500 years later spelt out in more detail by Peter Abelard.
Peter Abelard distinguished between an interpretation de re, about the thing, and
an interpretation de sensu, about a linguistic statement (Kneale, 1966; Keshet and
Schwarz, 2014). The distinction in its current terminology, however, is due to
Thomas Aquinas.

The above example concerning the number of planets is an example of alethic
nature. This phenomenon isn’t restricted to alethic modality, however, but can
also be found in doxastic and epistemic contexts. Quine (1956), for example, also
gives this example: “Ralph believes that someone is a spy.” and comments that
“they may be unambiguously phrased respectively as ‘There is someone whom
Ralph believes to be a spy’ and ‘Ralph believes there are spies.”’(Quine, 1956, p.
178).

The Ralph example is straightforwardly convertible into an epistemic one. For
instance, the sentence “Ralph knows that someone is a spy.” might be taken as
Ralph knowing that there are individuals who are spies but he doesn’t know who
they are and, alternatively, as Ralph knowing a particular individual that is a spy.
If one alters the sentence just a bit “Ralph knows someone that is a spy”, we would
get a sentence that expresses the de re interpretation much more prominently.
Nevertheless, the original sentence is much less clear-cut.

The natural question is now whether this distinction also applies to a deontic
context. I think the answer is affirmative. Given the following two formulas:

De re (9↵)OA

De dicto O(9↵)A

how might they differ in meaning? If we apply a similar reading as before, we can
interpret the de re formula as “there is someone for whom it is obligatory that A”,
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and the de dicto formula as “it is obligatory that there is someone who A’s”. The
de re formula thus applies the deontic operator to the extension of “someone”. It
uses the term “someone” as a way to refer to specific persons and then says of
those persons that they have an obligation of some sort. In contrast, the de dicto
formula expresses something about the content of the linguistic statement “there
is someone who A’s” and the fact that what that statement expresses is obligatory
or ought to be the case. “Someone” is used here as a term that can apply to
anyone.

For example, the formula (9x)(OPx ^ (x = a)) where a refers to John and P is a
predicate for “doing the dishes” asserts that there is someone, John, who has to
do the dishes. In this scenario, this obligation is person-specific because it is tied
to John. In contrast, a formula such as O(9x)Px asserts that someone ought to
do the dishes but there is no one specific person to which “someone” refers: it is
not person-specific or person-non-specific.

On this account, formulas de re express something about a person or a set of
persons and what it is that they are obligated to do while formulas de dicto say
something about what is obligatory for “someone” or “everyone” without regard to
whom that “someone” or “everyone” refers to. These different senses in which the
word “someone” or “everyone” are used in normative discourse can be captured
within a quantified deontic logic, or so I will argue.

4.2 Norms and their representation

Norms can be conceived as directives that are issued by a norm-authority to
direct the behavior of norm-subjects. As examples of norms, we can think
of military commands, orders and permissions given by parents to children,
traffic laws issued by a magistrate, etc. (Beirlaen, 2012, p. 2)

As Mathieu Beirlaen explains in his PhD thesis, norms are issued by
norm-authorities to direct the behaviour of norm-subjects and they come in many
shapes and forms. There are, for example, norms expressing obligations, norms
expressing prohibitions and norms expressing permissions (Beirlaen, 2012).
These are the kinds of norms that are easily representable by a propositional
deontic language. If we want to express the fact that it is obligatory to pay
taxes we can do so by using a propositional formula such as Op where p is
interpreted as “paying taxes” and O expresses obligatoriness. The main point I
will advance in this chapter is that by adopting a first-order deontic language
we can represent more types of norms than if we would limit ourselves to a
propositional language.

All formulas of the language are intended to be propositions and so formulas that
express norms are to be interpreted as norm-propositions. In what follows I will
not explicitly make a distinction between the ought to do versus the ought to be
reading of deontic formulas (see Von Wright (1968)). Whether one interprets
certain norms as agentive or non-agentive will not bear on the discussion that
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follows. I will also not clearly delineate the different kinds of normative sources
but use a variety of examples. The reason is simply that I do not think that there
are differences between these various kinds of normative sources that are relevant
to the discussion in this chapter.

4.2.1 Person-specific norms and person-non-specific norms

A type of norm that becomes representable when adopting a first-order deontic
language is what I will call a person-specific norm. A person-specific norm is a
norm that can be conceived as a directive issued by a norm-authority that directs
the behaviour of a specific norm-subject. For example, suppose that Mary is the
norm-authority in question and she issues the command: “John, do the dishes!”
then we can represent this person-specific norm by a formula such as ODa where
‘D’ stands for “doing the dishes” and ‘a’ refers to John. The fact that we can tie
such an obligation to a specific person is something that we can do because of the
availability of individual constants.

We can leverage the fact that the expression “Someone has to do the dishes” can
be interpreted de re to say something about the person-specific norms in place.
For example, the formula (9x)ODx is such a formula and we can read it as saying
that there exists at least one person with the person-specific obligation to do the
dishes. If we know that John has to do the dishes (ODa) and that John exists
then we know that (9x)ODx must be true. Conversely, if we know that (9x)ODx

is true there must be some specific person who has to do the dishes.

There are also person-non-specific norms. These are norms that do not direct the
behaviour of a specific norm-subject but direct the behaviour of norm-subjects in
general. On the de dicto reading: “Someone has to do the dishes” is interpreted as
not being about what some specific person has to do. Instead, the norm applies in
general to some set of norm-subjects. Before I elaborate on types of person-non-
specific norms I will first introduce some other types of norms.

4.2.2 Absolute norms and conditional norms

In addition to person-specific and person-non-specific norms there are two types
of norms that I deem especially relevant to the discussion in this chapter. These
are absolute norms and conditional norms. Sadegh-Zadeh (2015) defines these
two kinds of norms as follows:

An absolute norm is an absolute deontic sentence, i.e., an obligation, per-
mission, or prohibition without any precondition on which it depends. [...]
an absolute norm binds independently of the factual circumstances, because
no such circumstances are specified therein. By contrast, a conditional norm
has a precondition such that when it is fulfilled, some action is obligatory,
permitted, or forbidden. (Sadegh-Zadeh, 2015, p. 1005)
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An example of an absolute norm is: “It is obligatory that you tell the truth.” while
a conditional norm is, for example, “If you promise your patient to visit her, then
it is obligatory that you do so.”(Sadegh-Zadeh, 2015, p. 1005).

A norm such as “John has to do the dishes” is an example of an absolute person-
specific norm. The introduction of quantifiers, however, allows us to also repre-
sent absolute person-non-specific norms. I will show that we can use formulas
de dicto to represent these kinds of absolute norms that exhibit either a univer-
sal quantification or an existential quantification. Absolute norms exhibiting such
quantification will be dubbed absolute quantified norms

An example of an absolute quantified norm with universal quantification is the
norm “It is obligatory that you tell the truth”. Absolute norms such as “It is oblig-
atory that you tell the truth.” do not come with a precondition. We can capture
this norm by a formula de dicto because it is not about what some specific person
or set of persons are obligated to do. This is the type of norm that directs the be-
haviour of norm-subjects in general. In this case the quantification is intended to
be universal: it is not just obligatory that someone tells the truth but that everyone
tells the truth.1 This prima facie leads me to conclude that O(8x)Tx is the most
appropriate way to formalise it. That this is indeed the best formula to capture the
intent of “It is obligatory that you tell the truth” will become more apparent when
we assess how such a formula is semantically evaluated in sections 4.5 and 4.6.

An absolute norm such as “someone ought to do the dishes” when read de dicto is
an example of an absolute quantified norm with an existential quantifier. In this
case, O(9x)Dx can be used to represent the intent of the norm. Both O(8↵)A and
O(9↵)A are formulas that can represent absolute quantified person-non-specific
norms. To fully capture the person-non-specific intent of these types of norms we
will have to adopt varying domains which I will make clear in the sections ahead.

Conditional norms are norms that have a precondition. If we were dealing with
just the propositional level, the most plausible way to formalise the conditional
norm: “If you promise your patient to visit her, then it is obligatory that you do
so.” would probably be p � Oq where the ‘p’ stands for “promising to visit your
patient” and ‘q’ expresses that you visit your patient. There is some discussion on
how to formalise conditional norms because O(A � B) is also seen as a plausible
candidate. However, I follow Sadegh-Zadeh (2015) when they argue that:

For two reasons, the alternative (265) [O(A � B)] cannot be viewed as
an adequate formalization of the commitment under discussion. First, its
verbatim translation says “it is obligatory that if you promise your patient to
visit her, you do so”. Thus, it deviates from the original “if you promise your
patient to visit her, then it is obligatory that you do so”. Second, obviously it
says that the conditional A � B is an obligation. But it does not say what we

1 The addition of a temporal operator would model the intention even closer. The intention
behind such a statement is probably that it is obligatory that everyone tells the truth all the
time. As indicated in the introduction, I do not consider multi-modal languages in this thesis
but it is clear that a multi-modal language would in many cases allow a more fine-grained
modelling of the intention behind some norm.
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are to do when the antecedent A is true. (Sadegh-Zadeh, 2015, pp. 1005-
1006)

Because we are using a first-order language we can generalize the formula p � Oq

to one with a universal quantifier which gives us (8x)(Px � OV x). This formula
captures that everyone who promises to visit their patient is obligated to visit their
patient which seems to be the intended conditional norm.

Conditional norms have an important role to play because they are able to induce
person-specific norms: if John promised his patient to visit her then it is oblig-
atory for John to do it. An important difference here is that the person-specific
norms to which people are subject because they meet the condition of a condi-
tional norm is dependent on what obtains in the actual world. There are also
other ways to acquire a person-specific obligation. As said before, there might
be some absolute norm directly saying that a particular person has to do some-
thing such as “John, do the dishes!”. There might also be some absolute quantified
norm such as “Everyone ought to tell the truth” in which case John also has the
person-specific obligation to tell the truth in virtue of a person-non-specific norm
that applies generally (see 4.6 for the discussion of this kind of situation). An im-
portant contrast is that person-specific norms incurred because of some absolute
norm are not in the same way dependent on how the world actually is because
they have no precondition in order to be applicable. This difference will become
more clear later on and will be used to explain how varying domain models are
able to capture the difference between a formula saying something about person-
specific norms and formulas representing some form of absolute quantified norm.

Now that I have introduced some different types of norms let us apply these to
a scenario that could plausibly happen. Suppose John has just recently accepted
a job at a law firm. He finds himself at his first meeting among the rest of the
people who have just been hired. They are all attentively listening to the speech
of chairwomen Mary. Mary looks around, glances at the newcomers and declares:
“As of tomorrow everyone has to be dressed in a suit and a tie”. The newcomers
internalise this rule and after the speech is over they all go to their offices. The
next day Suzy, also a newcomer, turns up at John’s office and informs her new
colleague John that she could not attend the meeting and is unsure as to what the
required dress code is. The following day Suzy makes an appearance in a suit and
a tie despite the fact that women are required to wear a dress at this particular
law firm. What went wrong?

What went wrong is that John recalled the rule “everyone has to be dressed in a
suit and a tie” interpreted this as being an absolute quantified norm that applies
generally and informed Suzy that in light of this rule she is required to be dressed
in a suit and tie. However, chairwomen Mary did not mean to suggest that there
is such an absolute quantified norm in place. She intended to say that the people
at that meeting are required to wear a suit and tie. She came to that conclusion
because she deduced it from the conditional norm that if you are male you have
to wear a suit and tie and the fact that everyone at that meeting happened to be
male. If John was aware of these possible ambiguities he would have perhaps
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thought twice about what Mary had said and realised that Mary’s statement was
ambiguous (or, alternatively, Mary would state the rules more carefully).

One of the central points of this chapter is the claim that in order to uphold the
semantic distinction between the representation of an absolute quantified norm
and the representation of the person-specific obligations of people we need to
adopt varying domain models. The way in which to correctly evaluate the person-
specific obligation of a person is to check in all the acceptable worlds in which that
person exists what he or she there does. To capture the idea that the person has
to exist in the acceptable worlds we will need the adoption of the Van Benthem
clause. The way in which to evaluate whether an absolute quantified norm holds
is to check not just what the people of the actual world do in the acceptable
worlds but also what any arbitrary possible individual does for which we will
need varying domains.

If we adopt constant domain models we are unable to look at individuals that do
not exist in the actual world which collapses the distinction that we can make
between what is true about people and their obligations and whether the norm-
propositions modelling absolute quantified norms are true. For example, it can
be contingently true that everyone has the obligation to A while it is at the same
time true that there is no absolute quantified norm dictating that everyone has to
A. When using constant domain models these two kinds of situations completely
overlap because they demand the same from the people at the acceptable worlds.

In order to prevent this overlap and validly assess the truth of an absolute quan-
tified norm we have to be able to abstract away from the actual world and the
people in there. If we don’t do this, the obligations that hold because of facts
about the actual world and the people in there influence to a large extent what
happens at the acceptable worlds. We need individuals at the acceptable worlds
that are not already under some constraints because they are under the influence
of a conditional norm or a direct person-specific norm. By allowing varying do-
mains we can look not just at how the people of the actual world would behave
in the acceptable words but also other possible individuals which reveals whether
some norms apply unconditionally to every possible human or just to some subset
thereof.

4.3 The converse Ghilardi formula and the converse Buridan
formula

We will first discuss the converse Ghilardi and the converse Buridan formula.
We have already established that these formulas are syntactically equivalent and
not valid on any of the kinds of models introduced earlier. This leaves us with
the problem of explaining why these formulas are problematic and why their
invalidity is not just an unintended side effect of the way in which the models are
defined. Hilpinen and McNamara (2013) provides us with some examples that



4. The relation between the quantifiers and the deontic operators 57

highlight the problematic nature of the converse Ghilardi formula. The lifeboat
example concerns the following situation:

...it may be obligatory that someone leave the lifeboat (else no one will be
saved), but not that there is some one person such that she is obligated to
leave, else there would be no need to draw straws to transform the first situ-
ation into one like the second, and it would also mean that at least someone
in the boat could not go beyond the call by going overboard voluntarily, since
s/he would be obligated to do so... (Hilpinen and McNamara, 2013, p. 53).

O(9x)Px expresses here that it ought to be that there is someone such that s/he
leaves the lifeboat. In semantic terms this formula says that in each acceptable
world there exists someone who leaves the lifeboat. It moreover doesn’t matter
whether it is the same person in each acceptable world. In other words, every
possible world at which no existing person leaves the lifeboat will not be ren-
dered acceptable from the point of view of the actual world. This kind of formula
expresses on my reading an absolute quantified non-specific norm: it has no pre-
condition and it is a formula de dicto which captures the person-non-specificity.

(9x)OPx says that there exists at least one person in the actual world for which
it is true that that person leaves the lifeboat in each acceptable world. It forces
a different “acceptability condition” on the possible worlds. Suddenly a possible
world is no longer acceptable from the point of view of the actual world if it is
not one of the specific persons in the domain of the actual world that makes the
existential quantifier true that leaves the lifeboat in that possible world. In other
words: it does not allow just any arbitrary person to do the act of leaving the
lifeboat in order for a possible world to be rendered acceptable from the point of
view of that formula. On my reading, this formula asserts the existence of at least
one person who has the person-specific obligation to leave the lifeboat. However,
in this example, surely the person-specificity of (9x)OPx is not applicable. It does
not matter, morally speaking, who leaves the lifeboat, only that someone does.
This is why we cannot go from the truth of O(9x)Px to the truth of (9x)OPx on
my reading.

A way of looking at this is that normative propositions act as a filter over the
set of possible worlds. Imagine that, from the point of view of the actual world,
we started out with the complete set of possible worlds, i.e. all the worlds that
are alethically acceptable, we can then conceive every normative proposition as a
filter that excludes those possible worlds that would violate the normative propo-
sition in question. It is then interesting to check which set of possible worlds a
certain normative proposition would filter out when considered true at the actual
world. This allows us to compare the constraints a normative formula imposes
on the set of possible worlds and allows us to ask whether the set of possible
worlds that would be filtered out really are worlds that are unacceptable deonti-
cally speaking.

In addition to the lifeboat example, Hilpinen and McNamara (2013) also give this
example:
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...the sentence ‘Someone ought to rescue the cat Gussie from the shelter for
abandoned pets’ is ambiguous: It can be understood as having the form of the
antecedent of (7.8) [O(9↵)A] (a wide-scope ought) or the form of its con-
sequent [(9↵)OA], and the former interpretation does not mean that some
specific person has a (personal) obligation to rescue Gussie. (Hilpinen and
McNamara, 2013, p. 53)

The Gussie example is very similar to the lifeboat example. It plays on the fact
that what they call the “wide-scope ought” is of a more general nature allow-
ing an arbitrary person to fulfil the obligation at each accessible world while the
“narrow-scope ought” requires only some specific persons to fulfil it. On my read-
ing it is the wide-scope ought or the formula de dicto that expresses an absolute
quantified norm while the narrow-scope ought or the formula de re expresses a
person-specific obligation. This seems to be in line with how Hilpinen and Mc-
Namara interpret the situation. In this particular case, it is true that there is
an absolute quantified norm in place demanding that Gussie be rescued, but it
is not true that there is some specific person who has the obligation to do it.
In other words, absolute existentially quantified norms are not able to induce
person-specific norms.

Hilpinen and McNamara (2013) also give us an example that illustrates the con-
ceptually problematic nature of the converse Buridan formula:

Everyone is permitted to have a dinner in Casa Paco, a public restaurant,
but no situation in which everyone is having dinner in Casa Paco is permitted
(normatively acceptable), because the legal seating capacity of the restaurant
is 40 customers.” (Hilpinen and McNamara, 2013, p. 53)

(8x)PPx where “P” stands for “dining at Casa Paco” expresses the following: given
the current state of affairs it is true that for each one of the people in the domain
of the actual world there is at least one world that is not deontically ruled out at
which they dine at Casa Paco. Surely this is a true description of the situation.
Everyone, may, in principle, go dine at Casa Paco. Which is to say that no one is
prohibited from dining there.

P(8x)Px says that given the current state of affairs it is true that there is a world
that is not deontically ruled out at which everyone dines at Casa Paco. This for-
mula requires there to be at least one possible world at which everyone dines at
Casa Paco to be among the set of acceptable worlds. However, the seating capac-
ity of the restaurant is only 40 customers and so it will not be true that such a
world should be considered deontically acceptable. It follows that P(8x)Px is not
true of this situation.

A similar example can be found in Formal Ethics by Harry Gensler:

1. (x)RSx: it’s all right for anyone to stay home.

2. R(x)Sx: it’s all right for everyone to stay home.

Again, the first might hold without the second; maybe it’s all right for any
specific person to stay home from work today - and yet it would be disastrous
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if everyone did it (Gensler, 1996, p. 173).

Thomason and Stalnaker (1968) provide yet another example that captures this
distinction in scope. The difference can be thought of as the difference be-
tween “everyone can come along with us” and “anyone can come along with us”.
Whether one interprets the “can” as alethic or deontic, it is clear that they do not
intuitively express the same thing.

The examples just discussed show that the invalidity of the converse Ghilardi
formula and the converse Buridan formula is not just a fluke but a desired conse-
quence of the way in which the models are designed. Let us now take a look at a
formula that is valid on some frame conditions and so can help us decide whether
some frame conditions are desired.

4.4 The Ghilardi formula and the Buridan formula

Suppose we again let “P” stand for “dining at Casa Paco”. (9x)OPx then says that
there exists someone in the actual world for whom it is true that this person in
each acceptable world dines at Casa Paco. There are some ways in which this
could be true. For example, John has promised to Paco that he will come and
dine at his restaurant which would give us OPa. John exists at the actual world
and so we infer (9x)OPx. In this case, it is John who has to go to Casa Paco and
not just any arbitrary person which is an obligation he has incurred upon himself
by virtue of the conditional norm that if you promise something you have to fulfil
it. The correct semantic correspondence seems to be that every possible world
at which John exists and dines at Casa Paco should be acceptable with respect to
Johns obligation.

O(9x)Px says: given the current state of affairs it is true that worlds at which
no one dines at Casa Paco are unacceptable. On my reading, this expresses an
absolute quantified person-non-specific norm. Semantically it says that in order
for a possible world to be recognised as acceptable someone at that world has to
dine at Casa Paco. It doesn’t matter who, there just has to be someone who does.
This kind of absolute quantified norm does not seem to follow from the fact that
someone at the actual world has incurred an obligation because of a conditional
norm. A world in which no one dines at Casa Paco might be unfortunate for Paco,
but, surely, such a world should not be deontically ruled out by virtue of the fact
that there is someone who has promised to dine at Casa Paco? There seems to be
no genuine conceptual clash between saying that John ought to go dine at Casa
Paco while at the same time claiming that a world in which nobody dines at Casa
Paco is also acceptable.

We know that the Ghilardi formula (9x)OPx � O(9x)Px is formally valid on
increasing domain frames and I have just argued that GF shouldn’t be valid. Now
we are in a position to answer why this happens on a formal level. Increasing
domains ensure that the person for whom it is true that s/he dines at Casa Paco
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in each acceptable world is also in the domain of each acceptable world and so
guarantees that at each acceptable world there actually exists someone who dines
at Casa Paco. Increasing domains does not allow us to look at worlds in which
John does not exist. It collapses the distinction between obligations incurred by
virtue of a condition being met and absolute quantified norms because in order
to validly assess the truth of an absolute quantified norm we have to be able to
abstract away from the actual world and the people in there. If we don’t do this
the obligations that hold because of facts about the actual world and the people
in there influence to a large extent what happens at the acceptable worlds. To
allow for the situation in which it is true that there is someone for whom it is
obligatory that s/he dines in Casa Paco at each acceptable world and that there is
still an acceptable world at which no existing person dines in Casa Paco we have
to look at models in which the domains of worlds decrease to allow for a world
in which John does not exist. It follows that we should not impose increasing
domain frames on our models.

It is at this point that we can also notice a peculiar consequence of the stan-
dard clause for the deontic operator. In order to assess whether John has to dine
at Casa Paco, OPa, it also takes into account acceptable worlds at which John
does not exist. The fact that this happens, as previously explained, is because
this clause does not discriminate between existing and non-existing people. The
Van Benthem clause performs better in this situation because it captures the idea
that the actions of John at acceptable worlds where he does not exist should not
matter deontically speaking. The standard deontic operator clause commits us to
claiming that what existing people and non-existing people do at the acceptable
worlds is equally deontically relevant. The Van Benthem clause commits us to the
claim that only what the existing people do at the acceptable worlds is deontically
relevant. In this sense the standard deontic operator clause commits us to more
and so the burden of proof seems to lie with those in favour of the standard de-
ontic operator clause. The deontic status of non-existent people remains obscure
and so my argument consists mostly of the claim that we should not take them
into account unless we have a compelling reason to do so.

To illustrate why the Buridan fomula (P(8↵)A � (8↵)PA) is problematic we need
a situation in which it is permissible that everyone A while at the same time there
being someone such that s/he ought to not A. How can this be? Suppose that
Mary has just graduated from high-school and wants to go to the prom. However,
her mother reminds her of the fact that she has bad grades and that if she had
bad grades she wouldn’t be allowed to go to the prom. This allows us to conclude
(9x)O¬Px: there is someone who is obligated to not go to the prom. The question
is now whether this clashes with the assertion that it is permissible that everyone
goes to the prom (P(8x)Px). Notice that this last assertion does not say that every
individual under consideration, which would include Mary, is permitted to go to
the prom but that a situation in which everyone goes to the prom is an acceptable
situation. It seems that there is a perfectly good sense in which these formulas do
not clash.
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Just as before. The fact that Mary is not allowed to go to the prom is an obligation
that she has incurred by virtue of a fact about the actual word: her having bad
grades and the conditional norm that she wasn’t going to be allowed to go to the
prom if she had bad grades. P(8x)Px, however, is a de dicto formula representing
an absolute quantified norm that makes abstraction of the people in the actual
world and simply states that a situation in which everyone goes to the prom is
acceptable. So in order to make this abstraction possible we need to reject the
increasing domain frame condition which allows us to look at worlds in which
Mary does not exist and make it a possibility that everyone who has graduated
does indeed go to the prom.

If one is convinced that making a difference between formulas that express ab-
solute quantified norms and formulas that express person-specific obligations is
sensible, the Ghilardi formula seems unwanted. This formula allows one to infer
from the existence of someone with a person-specific norm to the existence of an
absolute quantified person-non-specific norm and I have given some examples of
situations in which this inference is unsound. The Buridan formula is equally un-
desirable because from the fact that a situation in which everyone, whoever they
might be, A’s it does not necessarily follow that everyone has the person-specific
permission to A. Within the context of these considerations we can exclude two
possible logics as being viable candidates: QFD+CBF and QFD+BF+CBF.

4.5 The Barcan formula and the P-Barcan formula

If we impose the frame condition that the domains of accessible worlds are de-
creasing the Barcan formula and the P-Barcan formula become valid. I will argue
that there are reasons to reject those axioms and hence to reject the associated
frame condition.

Suppose that there is a conditional norm to the effect that anyone who misbehaves
ought to be punished ((8x)(Mx � OPx)). Suppose furthermore that, as a matter
of contingent fact, everyone has currently misbehaved ((8x)Mx). Then it would
logically follow that everyone ought to be punished ((8x)OPx). The semantic
condition corresponding to this would be that all the people of the actual world
are punished in all the acceptable worlds. Accepting the Barcan formula entails
that O(8x)Px must also be true. This formula, expresses an absolute quantified
person-non-specific norm stating that everyone, no matter who they be, ought to
be punished. This does not seem to be the right depiction of the situation. It is a
matter of contingent fact that everyone ought to be punished.

This example shows that “everyone”, just like “someone”, can also be used in at
least two different ways within normative discourse. On the one hand, “everyone
ought to A” is shorthand for saying that everyone under consideration has the
person-specific obligation to A which might be true as a matter of contingent fact.
On the other hand, it might also mean that the fact that everyone is obligated to
A is a feature of the obligation itself: it does not admit of any exceptions and is
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true of every person whomsoever.

Everyone ought to reduce their ecological footprint might be the sort of norm that
holds as a matter of contingent fact. Everyone ought to reduce their ecological
footprint because, as the world is right now, everyone is polluting more than their
fair share. Current affairs, however, might be different. Perhaps only some people
are polluting more than their fair share in which case it will not be true that
everyone ought to reduce their ecological footprint. In other words, “everyone
ought to reduce their ecological footprint” is in such a case a person-specific norm
applying to everyone of the domain and so should be captured by a universal
formula de re and not by a person-non-specific universal formula de dicto.

Increasing domains allows for worlds at which there are people that do not exist
in the actual world. It seems wrong that we would demand that they too reduce
their ecological footprint because there are no facts about them in the actual
world that warrants rendering a world unacceptable if they do not reduce their
footprint there. On the other hand, a formula such as O(8x)Kx where the “K”
stands for “being kind” might be the sort of norm that is applicable to everyone
without exception. People ought to be kind not by virtue of how the actual world
is but simply because they are human. Which is why O(8x)Kx is applicable to
all the people at the acceptable worlds irrespective of whether they exist at the
actual world. By also looking at how people that do not exist at the actual world
behave in the acceptable worlds we can infer how it is that people will behave
under ideal circumstances.

In Erica Calardo’s PhD thesis “Non-normal Modal Logics, Quantification, and Deon-
tic Dilemmas. A Study in Multi-Relational Semantics” we can see some similarities
to the kind of view advanced in this chapter, although Calardo’s view is stated in
more general terms and not fully worked out:

In fact, when we have formulae like ⇤8xF (x), obligations may leave the
problem of reference (application) to existing individuals out of considera-
tion, as the question of their concrete application is somehow put into brack-
ets. In other words, we may state that something is obligatory for some
individuals independently of any concern about concrete applicability. This
is not absurd as we may argue that something is deontically correct, it ought
to be [the] case, for conceivable individuals that, as far as we know, may not
exist. In the second case - when we have formulae like 8x⇤F (x) - the focus
is rather on the actual world with respect to which we want to state whether
something is or is not obligatory. (Calardo, 2013, pp. 85-86)

She summarises “In general, if we adopt the actualist interpretation of quanti-
fiers, it seems to us that de dicto and de re deontic sentences may correspond,
respectively, to non-contextual (or generic) and contextual (or concrete, actual)
obligations.” (Calardo, 2013, p. 85). This seems somewhat in line with my ac-
count, however, due to a lack of examples it is hard to know what she really has
in mind.

Let us try to set up a similar situation for the P-Barcan formula (P(9↵)A �
(9↵)PA). Suppose that it is in general permissible to eat candy which is to
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say that there is no obligation to not eat candy. We can therefore conclude that
P(9x)Cx because a situation in which there is someone who eats candy is accept-
able. However, there is a caveat, unhealthy people are not allowed to eat candy
((8x)(Ux � ¬PCx)). The actual world happens to contain only unhealthy people
((8x)Ux). We are therefore allowed to infer that (8x)¬PCx which in turn gives
us ¬(9x)PCx. So while it is not the case that any existing person is allowed to eat
candy, a situation in which someone eats candy will not be rendered unacceptable
by default. In other words, there is an absolute quantified norm that permits a
situation in which people eat candy but, as the world is right now, there is no
existing person that has the person-specific permission to eat candy.

Historically, this formula has been remarked upon in Time and modality in 1957 by
Arthur N. Prior when he claims that “Mr. P. T. Geach has suggested that intuitively
the assertion that it is permissible that there should be someone �-ing (P⌃x�x)
is weaker than the assertion that there is someone to whom it is permissible to
� (⌃xP�x)” (Prior, 2003, p. 142). Prior furthermore clarifies that “...perhaps no
existing individuals are permitted to do a certain thing, though there might in a
different state of affairs have been individuals who were.”(Prior, 2003, p. 144).

If one is convinced that making a difference between formulas that express ab-
solute quantified norms and formulas that express person-specific obligations is
sensible, the Barcan formula also seems unwanted. This formula allows one to
infer from the fact that everyone has the person-specific obligation to A to the
existence of an absolute quantified norm demanding that everyone A. Just as be-
fore, I have given some examples that show that this inference is not desirable.
The P-Barcan formula should not be valid because it does not follow that there
exists a concrete individual who is permitted to A from the fact that a situation
in which someone A’s is acceptable. Within the context of these considerations
we can exclude two possible logics as being viable candidates: QFD+BF and
QFD+BF+CBF.

4.6 The converse Barcan formula and the converse P-Barcan
formula

As proven in section 3.4, if we use the standard deontic operator clause we have to
impose the frame condition that the domains of accessible worlds are increasing to
validate the converse Barcan formula and the converse P-Barcan formula. I will
argue that there are reasons to accept those axioms but nevertheless reject the
associated frame condition. The only way in which we can do this is to reject the
standard deontic operator clause and accept the Van Benthem clause which allows
us to reject the increasing domains condition while still validating the converse
Barcan formula and the converse P-Barcan formula.

Let us first inquire into its intuitive meaning. As discussed before, its antecedent
is a wide-scope ought suggesting that it is indicative of an absolute quantified
norm. O(8x)Kx, or in words, it ought to be the case that everyone is kind will
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again do as such an example. Given my reading, the converse Barcan formula
asserts that this absolute quantified obligation logically entails that everyone in
the actual world has the absolute person-specific obligation to be kind. Intuitively
this makes sense. If everyone in the domain of every acceptable world is kind then
surely this suggests that the people living in the actual world ought to be kind.
Or in other words, if there is a norm to the effect that everyone, no matter who
they be, ought to be kind then surely everyone that exists has the person-specific
obligation to be kind ((8x)OKx).

If the converse Barcan formula seems intuitively justified it is strange that it is only
valid if we impose the increasing domain frame condition because I have previ-
ously argued that we do not want the increasing domain frame condition because
this would validate the Ghilardi formula which, I have argued, should not be
valid. The reason why the converse Barcan formula is invalid when rejecting the
increasing domain condition is the consequence of the way in which the deontic
operator is defined. The standard deontic operator clause does not discriminate
between the existence and the non-existence of a person in the acceptable worlds
and therefore leads to strange results. The invalidity of the converse Barcan for-
mula is tied to the standard formulation of the deontic operator because every
model intended to falsify the converse Barcan formula will exploit its defect by
using non-existent people to falsify the consequent of the formula. For example,
take O(8x)Px � (8x)OPx. If the antecedent is true we are guaranteed that at ev-
ery acceptable world every existing person there is in the extension of P . In order
for the consequent to be false we have to find a person in the actual world that is
not in the extension of P at one of the acceptable worlds. However, every existing
person at the acceptable worlds necessarily will be in the extension of P . The only
option left to falsify the consequent (8x)OPx is to search for the acceptable world
at which someone from the actual world does not exist and is not in the extension
of P . The invalidity of the converse Barcan formula thus hinges completely on
what non-existent people do in the acceptable worlds. Because the converse Bar-
can formula seems intuitively justified and the Ghilardi formula unjustified this is
another argument in favour of the Van Benthem clause because adopting it is the
only way in which to validate the converse Barcan formula while invalidating the
Ghilardi formula.

The converse P-Barcan formula allows us to infer P(9↵)A from the formula
(9↵)PA. If we reuse the candy example it says that if there is someone for whom
it is permissible to eat candy then it must be true that a situation in which some-
one eats candy is acceptable. This inference, just like the converse Barcan formula
itself, seems intuitively acceptable. The fact that the converse P-Barcan formula
is relatively unassuming is because its consequent P(9↵)A is the normatively least
demanding formula: its truth requires only one acceptable world in which only
one individual has to A. It follows that if we know that there is such an individual
who is permitted to A then we know that there will be at least one situation in
which eating candy is acceptable: the situation in which that person eats candy.

Given my reading, the converse Barcan formula seems like a valid inference and
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so should be considered as an axiom. This formula allows one to infer from the
existence of an absolute quantified norm demanding that everyone A that every-
one has the person-specific obligation to A. The converse P-Barcan formula is also
desirable because if there is someone who is permitted to A then there will exist
a situation in which it is acceptable that someone A’s. Within the context of these
considerations we can exclude two possible logics as being viable candidates:
QFD, QFD+BF.

4.7 Summary

In this chapter, I have tried to show that a first-order deontic logic is able to
capture the difference between people having person-specific obligations and the
representation of absolute quantified norms. If we want a sensible logic that is
able to deal with these differences, we have to give up some axiom candidates.

In section 4.3 I have shown that the invalidity of the converse Ghilardi and the
converse Buridan formula is not just a fluke of the models. The existence of an
absolute quantified norm demanding someone to A does not allow us to infer that
there is at least one specific person that has to A. It is equally not the case that if
everyone has the person-specific permission to A, a situation in which everyone
A’s is permissible.

In section 4.4 we looked at the Ghilardi formula and the Buridan formula. The
Ghilardi formula was found undesirable on my reading because we can not infer
from the fact that someone has a person-specific obligation to A that there is
also an absolute quantified norm requiring someone to A. The Buridan formula
is equally undesirable because from the fact that a situation in which everyone,
whoever they might be, A’s, it does not necessarily follow that everyone has the
person-specific permission to A. The adoption of the increasing domain condition
would validate the Ghilardi and Buridan formula and hence needs to be rejected.

In section 4.5 we looked at the Barcan and P-Barcan formula. I have argued
that both of these formulas should not be valid given my reading. The Barcan
formula should not be valid because it allows us to infer an absolute quantified
norm that everyone has to A from the fact that everyone under consideration has
the person-specific obligation to A. However, the antecedent, that everyone under
consideration has to A, might be true because of some contingent state of affairs
and so does not guarantee the existence of an absolute quantified norm demand-
ing that everyone A’s. The P-Barcan formula should not be valid because it does
not follow that there exists a concrete individual who is permitted to A from the
fact that a situation in which someone A’s is acceptable. The Barcan formula and
the P-Barcan formula become valid if we adopt the decreasing domain condition.
Because this is undesirable on my reading we have to reject the associated frame
condition.

In section 4.6 we looked at the converse Barcan and converse P-Barcan formula.
The converse Barcan formula allows us to infer that everyone under consideration
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is obligated to A if it is true that there is an absolute quantified norm to the effect
that everyone has to A. This is unproblematic on my reading because if some norm
applies to every arbitrary person then surely it also applies to the people at the
actual world. The converse P-Barcan formula is also desirable because if there
is someone who is permitted to A then there will exist a situation in which it is
acceptable that someone A’s. The validity of the converse Barcan and converse P-
Barcan formula is tied to the frame condition that domains increase when using
the standard deontic operator clause. This clashes with the undesirability of the
Ghilardi formula because we need to reject the increasing domain condition to
invalidate it. However, I have shown that the invalidity of the converse Barcan
and converse P-Barcan formula hinges on what non-existent people do at the
acceptable worlds. Luckily, this can be remedied by adopting the Van Benthem
clause which captures the fact that only what existing people do at the acceptable
worlds is deontically relevant to the people at the actual world.

All of the above considerations lead me to the view that given my reading we do
not want to impose any conditions on the frame of the models and so we will end
up with varying domain models. Moreover we want to adopt the Van Benthem
clause for two reasons. Firstly, because the standard deontic operator clause is
intuitively strange due to the fact that we are working with a free logic. It claims
more than the Van Benthem clause and we have no compelling reason to accept
its claim that non-existent people matter deontically speaking. Secondly, because
it leads to the validity of the converse Barcan formula and converse P-Barcan
formula on varying domain models. Unfortunately, none of the logics that I have
introduced in section 3.3.3 is sound with respect to varying domain models and
the Van Benthem clause.
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In this final chapter, I will first summarise what I have done so far and present
my conclusions. Thereafter I will highlight the merits of this thesis, some of its
limitations and shortcomings and present some options for future research.

In chapter 3 I have explicated some of the formal details of quantified deontic
logics. We learned that in order to preserve generality we are forced to adopt the
principles of free logics. This, in turn, prompts us to consider a revision of the
clause for the deontic operator because it takes into account what non-existent
people do at the acceptable worlds which is intuitively hard to justify. The revision
of this clause was dubbed the Van Benthem clause and it makes sure that what
non-existent people do at the acceptable words has no influence on the truth of
a deontic formula at the actual world. I have introduced the logic QFD and the
axiom candidates which we can use to extend this logic: the Barcan formula, the
converse Barcan formula, the Ghilardi formula and the converse Ghilardi formula.
On the semantical side, I presented varying domain models and three types of
frame conditions that we can impose: increasing domains, decreasing domains
and constant domains. We learned that these frame conditions can be used to
validate or invalidate some of the axiom candidates that regulate the interaction
between formulas containing quantifiers and deontic operators. I will not repeat
all of these relations here because it would be tedious and they have already been
summarised in section 3.4.5. The major takeaway from this chapter is perhaps
that if we change the standard deontic operator clause to a Van Benthem clause,
we are suddenly able to validate the converse Barcan formula while at the same
time invalidating the Ghilardi formula. This is impossible if we use the standard
deontic operator clause. However, there is a catch, adopting the Van Benthem
clause leads to a non-normal modal logic and it is as of yet unclear what this
entails precisely.

In chapter 4 I have introduced a distinction between person-specific norms and
person-non-specific norms. I have argued that we can read an existentially quan-
tified formula de re as saying that there is someone i.e. at least one person with a
specific obligation/permission while the universally quantified formula says that
everyone has the person-specific obligation/permission in question. In contrast to
these person-specific obligations and permissions, there also seem to be person-
non-specific obligations and permissions. These are what I have called absolute
quantified norms and they can be captured by using formulas de dicto either ex-
istentially quantified or universally quantified depending on the intention. By in-
terpreting these formulas expressing interactions between deontic operators and
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quantifiers in this way, we are forced to consider which axiom candidates to adopt
that regulate this interaction. I concluded that we have to give up the Barcan for-
mula, the Ghilardi formula and the converse Ghilardi formula and their syntactic
equivalents. The only acceptable axiom candidate is the converse Barcan formula.
In order to make it a semantic possibility that we can validate the converse Barcan
formula while invalidating the Ghilardi formula we have to adopt varying domain
models and the Van Benthem clause.

Unfortunately, there remain at least two open problems with respect to varying
domain models and a Van Benthem clause. The first one is what its precise seman-
tic properties are. I have demonstrated that the KD axiom scheme is not valid
but it is not yet clear which other principles are preserved and which are not. If
we discover that we have to give up some desirable principles without having a
proper substitute then perhaps we are forced to conclude that the Van Benthem
clause is undesirable after all. The second open problem is how to axiomatise this
semantics so that we have a logic that is sound and complete with respect to it.

The merits of this thesis lie mostly in the fact that I have brought attention to
the role of quantifiers in deontic logics. This was done by explicating a variety
of possible first-order deontic logics and proving some of their formal properties.
Although most of these properties were already known I have taken the time to
fully present their proofs. As far as I know, this is the first time that attention
has been paid to the way in which the deontic operator clause is semantically
defined within first-order deontic logics. This thesis also contains the first defence
of revising this deontic operator clause in favour of a clause that is able to deal
with the fact that some first-order deontic logics end up as free logics. This is also
the first study that has explicitly and systematically advanced an interpretation of
the Barcan formula, the converse Barcan formula, the Ghilardi formula and the
converse Ghilardi formula when given a particular semantic interpretation.

However, this thesis is not without its shortcomings. I have advanced an ac-
count that interprets some formulas as being about person-specific norms while
others capture some type of person-non-specific norms. However, all of my ex-
amples were fictional. My account would have perhaps been more persuasive if it
would be backed up by some empirical work that established that there are indeed
person-specific norms and person-non-specific norms and that some expressions
are ambiguous between these two interpretations. Another shortcoming is that I
have argued that we should adopt varying domain models and use a Van Benthem
clause while it is as of yet not clear what this entails precisely. We know that we
will end up with a non-normal modal logic but I have not provided arguments
as to whether this is a good thing. However, before such an investigation can be
done it is important to first find out what formulas it validates and how to axioma-
tise it. The two shortcomings that I have outlined here can thus be considered as
possible future research. This leads me to consider some other possibilities with
respect to future research.

There are, for example, some questions left with respect to substitution and iden-
tity within “ought”-contexts. Lou Goble has argued in Goble (1996) and Goble
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(1994) that deontic modalities are extensional. What he means by this is that co-
referring terms can be substituted salva veritate within the scope of the deontic
operator. There is some reason to think that this is unproblematic within deon-
tic contexts. For example, suppose that Superman ought to rescue a child and we
learn thereafter that Superman is in fact Clark Kent then it seems non-problematic
to infer that Clark Kent ought to rescue a child. However, this threatens triviality
if we take into account definite descriptions. Goble’s argument goes as follows.
Take a true statement OFa now if a = ◆x(x = a ^ p) where p can be any truth it
then follows, if we can substitute salva veritate, that OF ◆x(x = a^p) must be true
and then it follows that Op (see Goble (1996) p. 324 for the full explanation and
his solution). In general, the nature of definite descriptions, identity and substitu-
tivity within first-order deontic logic remains unclear. It would be an interesting
route to further explore this problem and perhaps investigate whether semanti-
cally defining the deontic operator by a Van Benthem clause brings anything new
to the table.

Whereas Goble argues that first-order deontic logic is extensional, Federico Faroldi
has argued that it is hyperintensional. An operator O is hyperintensional if, for ex-
ample, OA and OB can have different truth values even though A and B are
necessarily equivalent (Berto, 2017). Faroldi gave the following example at the
workshop “Logic in Bochum III”. We can have “The pope must shake hands with
Shakira” and “Shakira must shake hands with the pope”. These two statements
do not seem to express the same and so it is conceivable that the one is wrong
while the other is true. However, “Shakira shaking hands with the pope” or “the
pope shaking hands with Shakira” are two necessarily equivalent statements and
so within standard Kripke possible world semantics this implies that “The pope
must shake hands with Shakira” and “Shakira must shake hands with the pope”
will also be equivalent statements. In order to make these distinctions, however,
we need to leave standard Kripke semantics behind and adopt a different kind
of semantics. Faroldi does this by using a type of truthmaker semantics (see An-
glberger et al. (2016) to see how this type of semantics works at the propositional
level). It would be interesting to further explore whether first-order deontic logic
is in fact hyperintensional, what this entails precisely and what kind of semantics
we need to capture it.

Although the last word has definitely not been said about first-order deontic logic
within the context of standard relational Kripke semantics it might prove insight-
ful to contrast Kripke semantics with other types of semantics. As I have hinted
at before, counterpart semantics is one such plausible candidate. For starters,
within counterpart semantics the converse Barcan formula and Ghilardi formula
correspond to different semantic conditions which is not the case within Kripke
semantics if we use a standard deontic operator clause (Corsi, 2002a). This is
interesting from the point of view of the interpretation advanced in this thesis
because I argued that we want to validate the converse Barcan formula while
invalidating the Ghilardi formula. Because counterpart semantics is a generali-
sation of Kripke semantics this gives us more formal flexibility. Giovanna Corsi
has argued in Corsi (2003) that “A major step forward to the clarification of the
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meaning of BF was achieved by counterpart semantics, C-semantics. [...] As we
shall see, in counterpart semantics the meaning of BF is well captured, whereas
the meaning of CBF still remains opaque. We will introduce a generalization of
counterpart semantics that we call Lewis semantics, L-semantics, to address this
problem.” (Corsi, 2003, p. 103). Of course, the question remains whether the
formal flexibility that these types of semantics offer is a good thing and captures
the meaning of quantified deontic sentences better. It would be interesting to
investigate what these types of semantics can offer and whether they can show
us something about the limitations of Kripke semantics from the deontic point of
view.

The possibilities that I have briefly sketched above are just some of the options
before us. Suffice it to say that this thesis is only a stepping stone towards a more
extensive analysis of the role of quantifiers in deontic logics. As Gabbay et al.
(2009) put it “Up to now the focus was mainly propositional. Now the era of
the quantifier has begun!” (Gabbay et al., 2009, p. xii). Let us hope that this
sentiment extends to deontic logics as well.
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Gochet, P. and Gribomont, P. (2006), ‘Epistemic logic’, Handbook of the History of
Logic 7, 99–195.

Goldblatt, R. (2006), ‘Mathematical modal logic: A view of its evolution’, Hand-
book of the History of Logic 7, 1–98.

Hansson, S. O. (2006), ‘Ideal worlds - wishful thinking in deontic logic’, Studia
logica 82(3), 329–336.

Hilpinen, R. (2002), ‘Deontic, epistemic, and temporal modal logics’, A Compan-
ion to Philosophical Logic pp. 491–509.

Hilpinen, R. and McNamara, P. (2013), ‘Deontic logic: a historical survey and
introduction’, Handbook of Deontic Logic and Normative Systems. College Publi-
cations 80.

Hintikka, J. (1957), ‘Quantifiers in deontic logic (societas scientiarum fennica,
commentationes humanarum litter arum 23: 4)’.

Hughes, G. E. and Cresswell, M. J. (1996), A new introduction to modal logic,
Psychology Press.

Isaac, M. G. (2016), Sémiotique, syntaxe, sémantique (1879-1901). Des
conséquences de la modélisation du signe sur la théorie de la signification chez
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och kvantifierad deontisk logik’, Tidskrift för politisk filosofi 18(2), 22–34.

Rönnedal, D. (2014b), ‘Quantified temporal alethic-deontic logic’, Logic and Logi-
cal Philosophy 24(1), 19–59.

Rönnedal, D. (2015a), ‘Allmänna normer och strukturen hos normativa system:
En logisk analys’, Filosofiska notiser 2(3), 69–98.
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