
     1Much of the information on the state of logic in Belgium at the time Bayart was working has been obtained with the assistance
of Jacques Riche, who is preparing an account of the history of logic in Belgium. That article will be provided on line, and,
hopefully, in printed form, and will provide an essential complement to the story told here. I was able, with Riche’s assistance,
to interview Paul Gochet and Hubert Hubien, who supplied us with helpful information. Other help is acknowledged in the
acknowledgements section at the end of this article.

     2I have restricted myself here to mentioning work which appeared before or at the same time as Bayart’s work. In some cases,
e.g., Montague 1960, authors have claimed that the work published was available much earlier, so this article cannot be held to
making definitive historical claims about priority. I have been assured that the relevant issues of Logique et Analyse  did appear
in 1958 and 1959. There is no indication of when they were accepted for publication.

     3Certainly Kaplan 1966, p. 121f gives the impression that no Henkin completeness proof has been produced for modal systems.
Kaplan of course is thinking of systems with a relational semantics, and hints at the construction which subsequently became
known as the canonical model construction. Kaplan claims that it is foreshadowed in Kanger 1957. Presumably he is referring
to the section on pp. 36-39, where Kanger defines a relation which holds when everything that is necessary at one place is true
at another, but this relation is defined semantically and not through maximal consistent sets, and is not really an anticipation of
a Henkin completeness proof. Pp. 13-15 of Hintikka 1957 could also be seen with hindsight as suggesting a Henkin construction.

     4Kripke 1963b does provide a semantics and an axiomatisation for modal predicate logics, but the paper does not contain any
completeness proofs.

ARNOULD BAYART’S MODAL COMPLETENESS THEOREMS

Translated with an introduction and commentary by M.J. Cresswell

1. Historical introduction1

Contemporary modal logic originated in 1912 with an article by C.I.Lewis in Mind, and was developed

by him in other articles, and most particularly in two books, Lewis 1918 and Lewis and Langford 1932.

But until the late 1950s there was no adequate semantics for it which would allow a definition of validity

to be compared with the various axiomatic systems. Axiomatic modal predicate logic appeared in Barcan

1946a. 1946b and 1947. The first attempt to provide a semantics for modal predicate logic occurs in

Carnap 1946 and 1947, but it was not until 1958 and 1959 that the breakthrough came. In Bayart 1958 we

have a definition of validity for first and second-order S5, and in Bayart 1959 and Kripke 1959 we have

two quite different completeness proofs for modal predicate S5. Kripke’s article in The Journal of

Symbolic Logic became widely known, and Kripke developed his semantics to include other systems

based on the relational semantics for propositional modal logic developed by such authors as Meredith

and Prior 1956, Hintikka 1957, Kanger 1957 and others.2

Bayart’s work discusses only S5, and there is no evidence that he was familiar with the relational

semantics for other systems. There are however a number of respects in which his work deserves

acknowledgement. What makes Bayart’s work most significant is the fact that the later paper, Bayart 1959,

is the first completeness proof for modal predicate logic based on the Henkin construction of maximal

consistent sets (Henkin 1949), and indeed may be the earliest application of the Henkin method even to

propositional modal logic.3 Kripke’s paper proves the completeness of first-order S5 by the method of

Beth trees. Kripke hints in his paper at the extensions needed for other systems, but does not cover them

in the 1959 paper, and indeed Kripke’s later completeness proofs, with the exception of his proof for first-

order intuitionistic logic with its connection to S4 (Kripke 1965), mainly concerned propositional logic.4

Carnap’s work predates both Bayart’s and Kripke’s by more than a decade, and like Bayart’s

articles and like Kripke 1959 Carnap dealt only with S5. But Carnap attempted to derive necessity from

validity, and it is at least controversial whether such a procedure can work. The important insight, often

credited to Kripke 1963a, is that if we think of the necessary as that which it is true in all possible worlds

then it does not matter what the worlds are. They can, as earlier theorists, including Kripke 1959, had often

supposed, be models or assignments or some such linguistic entity, but they do not have to be. The

opening sentence of Bayart 1958 states that ‘it is not sufficient to define for example, the necessary as that



     5Bayart may have been influenced by Kemeny 1956, since Kemeny is critical of Carnap’s use of state descriptions (see p.2
of Part I of Kemeny 1956), and suggests a ‘new’ style of semantics in which expressions are interpreted with reference to models
which provide a domain of individuals and functions built up from them. Unfortunately Bayart gives no discussion of the articles
listed in his bibliography.
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which is true in every model and the possible as that which is true in some model’, and at the end of that

article Bayart is adamant that necessity and validity are quite distinct, though whether his argument there

is a good one may be debatable.5 At the beginning of the 1958 article he explicitly acknowledges that the

idea he is trying to formalise is the Leibnizian view of necessity as truth in all possible worlds, and of

possibility as truth in some world. He disavows any judgement on the worth of this metaphysics, and

simply assumes a set of worlds without saying what they are. Unlike Kripke 1959, Bayart does not make

use of a distinguished ‘actual’ world, though, among the senses of ‘valid’ that he distinguishes, he does

define the validity of a formula in a world in terms of its truth at that world in relation to all interpretations

to its variables, which, for Bayart, include individual, propositional and predicate variables. When it comes

to proving completeness Bayart is well aware of the limitations of the Henkin method in higher-order

logic, and well aware of the sense of validity (which he calls ‘quasi-validity’) in which a Henkin proof is

available.

Bayart lived from 1911-1998. The list of books in the bibliography to Bayart 1958 gives some

indication of what he was familiar with. There was a strong tradition of modal logic in Belgium, notably

in the work of Robert Feys, and Bayart cites Feys 1950. (The system T in fact comes from Feys 1937, and

Feys 1965 shews a tradition familiar with modal logic.) Bayart also lists Lewis’s two books, Barcan’s

articles and Carnap’s work. Although the article has a bibliography there are no citations in the text, so,

for instance it is not clear whether he had Carnap in mind when he protested against trying to derive

necessity from validity. He was also familiar with the 8 notation from Church 1940. In Bayart 1959 there

is no bibliography, but there is a reference to Henkin in connection with Bayart’s completeness proof,

which he modestly describes as being ‘no more than Henkin’s theorem adapted for S5’.

It seems highly likely that Feys’s work in modal logic was a significant influence on Bayart. The

only work of Feys that Bayart cites is Feys 1950, but in the editorial introduction to Feys 1965 the editor

(Joseph Dopp) says on p. vi

In the course of the years 1948 to 1953 (year wherein occurred the death of McKinsey), Feys

repeatedly reworked the part which had fallen to him, «McKinsey acting as advisor». One of these

editions was even mimeographed and sent to several different colleagues, who referred to it at

times in their writings under the title: FEY’S MCKINSEY, Modal Logics I. 

Bayart does not refer to this ‘edition’ in either of the articles included here, but it is difficult to believe that

he was not familiar with the material. On p. 152  Feys 1965 there is a rather cryptic reference to a ‘lambda

function 8"M’. Feys’s own notation is the circumflex, whereby 8x" would be written as x̂. In explaining

his notation Feys says

When writing a propositional function under the form of an abstract, we replace each lambda

before the variable by a circumflex above the variable.

Feys appears to take the 8-notation as requiring no explanation, and Bayart treats it in the same way when

he introduces his letter Z. Bayart’s axiomatic basis for S5 is a version of Prior’s 1953 basis (see footnote

32) presented in the style of a Gentzen sequent calculus. There is in Feys 1965 an appendix added



     6Although Kripke 1959 lists no institutional affiliation Kripke was subsequently at Harvard and at Princeton.

     7In this section, and whet follows the personal pronouns ‘I’, ‘me’ and so on, refer to Cresswell.

     8This may be found at www.***
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posthumously by Dopp, on pp. 173-185, in which an account is given of various axiomatisations of modal

logic in the style of Gentzen 1934. (Professor H. Hubien has informed me that this way of doing logic was

very popular in Belgium at the time Bayart was writing.)

There are several reasons for the fact that Bayart’s work has not been appreciated as well as it

should be by historians of modal logic, at least in the English speaking world. Some of the explanation

is that histories of modal logic have tended to ignore modal predicate logic, but there are other factors.

Bayart’s articles appeared in the first issue of the Belgian journal Logique et Analyse, in contrast to the

contemporaneous Kripke 1959 which appeared in the US based Journal of Symbolic Logic.6 Second,

Bayart does not seem to have persisted with his work on the semantics of modal logic, although he did

produce other work in logic, particularly in its application to the philosophy of law. Third, Bayart’s

notation and terminology, although more common when he wrote, are less common today, and his formal

work makes for difficult reading. Fourth, and perhaps most important in the development of modal logic

in the international community of logicians, it was published in French. The present article contains an

English translation, using more common notation, of Bayart’s two articles.

2. Remarks on the translation7

There is always a tension in translating a work like this. On the one hand there is the demand to be faithful

to the original, and on the other hand there is the demand to make the translation as accessible to the

audience as possible. This is made more difficult in Bayart’s case by two features. The first is that the

work was published in 1958 and 1959, in the very earliest days of the development of the semantic study

of modal logic. Indeed that is the principal reason for its importance, as I have explained in the historical

introduction. Because of this, some of Bayart’s terminology may seem strange to modern readers. Thus

for instance, Bayart uses the term ‘proposition’, where we would now use the word ‘formula’, for the

linguistic item which expresses a proposition in a logical language. But he uses the term ‘predicate’, not

for a linguistic item, but for its value — particularly in the expression‘n-place intensional predicate’. I have

adopted the word ‘formula’ — sometimes ‘well-formed formula or wff — for Bayart’s ‘proposition’, and

I have used the phrase ‘n-place intensional relation’ for Bayart’s ‘n-place predicate’. I have however

retained Bayart’s ‘propositional variable’ and ‘predicate variable’, since these are still in common use. The

second feature which has caused problems in making a translation accessible is that the original French

text seems to have been set from a ms which had no logic symbols or italicising or subscripting. It is not

clear how much Bayart’s choice of notation was determined by his typewriting facilities. For instance his

use of the Polish notation may be as much for historical reasons — it is used for instance in Feys 1950,

where you find what seems to be the first published use of L as a necessity operator — as for typographical

reasons. I have adapted Bayart’s notation, first by adopting a modified Russellian, rather than a Polish

notation, except for retaining Bayart’s L and M for necessity and possibility, and second by making

extensive use of Greek letters and of italicisation, subscripting and superscripting. For those who wish to

consult Bayart’s own terminology and notation we have put onto a website both the original French

version and a version of this translation in which Bayart’s own notation and terminology are retained.8

Here are some of the specific changes found in the present version. To a considerable extent I have

expressed Bayart’s formal passages in the notation of Hughes and Cresswell 1996. For Bayart’s N, K, A,



     9A generalisation of Bayart’s completeness proof to the system T appeared in Cresswell 1967 and later in Hughes and
Cresswell 1968. A more recent proof method for systems with the Barcan Formula is found in Thomason 1970.

     10Translation by M.J. Cresswell of ‘La correction de la logique modale du premier et second ordre S5’,  Logique et Analyse,
1, 1958, pp. 28–44. In this version I have corrected obvious typos. Some of these are indicated in the website version in square
brackets [..]. I have changed Bayart’s notation in this version as explained in the introduction or commentary or in footnotes. (All
footnotes are my comments on the translation.)

4

C and E, I have used ~, v, w, e and /. For Bayart’s Px and Sx I have used �x and �x. (Bayart takes all

these as primitive, which leads to some repetitions in his proofs, especially those by induction on the

construction of wff, but I have not changed this.) For Bayart’s abstraction symbol Z I have used the

standard 8. (Bayart himself points out that he is using Z in place of ‘lambda’.) As metavariables for wff

(well-formed formulae) I have used ", $ etc. For predicate variables I have followed Whitehead and

Russell 1910 and used n, R, P, etc. I have followed Bayart in using ‘universe’ rather than Kripke’s ‘model

structure’ or Scott’s ‘frame’, but have referred to a domain D of individuals and a set W of possible

worlds. I have referred to the members of W as w, wN, etc, rather than as M, MN etc. In place of Bayart’s

‘value system S’ I have spoken of an interpretation V, and where Bayart would say that ‘a proposition f

is true for value system UMS’ I have frequently written V(",w) = T, it being understood that V is relative

to D and W. (Where both +D,W, and V are clear, I have sometimes written simply ‘" is true in w’.)

Otherwise the terminology in this translation is explained explicitly in footnotes or made clear by the

context. In the 1958 article Bayart uses many short paragraphs separated by a line space, and does not

indent the fist word. In the 1959 article new paragraphs within a section begin on the next line with the

first word indented. I have followed Bayart’s setting out for easy reference, unless clarity demands

otherwise, so that a comparison between the translation here and the version on the website or the original

French should not be difficult. Part of this translation was begun in the early 1960s when I was making

a survey of work then available in modal logic, in preparation for what became Hughes and Cresswell

1968.9 This translation lay dormant until I had the opportunity of a residential Fellowship with the Flemish

Institute for Advanced Studies of the Royal Flemish Academy of Belgium for Science and the Arts in the

latter part of 2010.

3. Bayart 195810

THE SOUNDNESS OF FIRST AND SECOND-ORDER S5 MODAL LOGIC

I Semantic definitions

0. To formulate a semantic theory of modal logic it is not sufficient to define for example, the necessary

as that which is true in every model and the possible as that which is true in some model. These definitions

would do no more than introduce the notions of ‘necessary’ and ‘possible’ in the metalanguage. A

semantics of modal logic demands that we assume an object language containing modal symbols and that

we define under what conditions to attribute the values ‘true’ or ‘false’ to the formulae of this object

language.

One can then very easily define the validity and satisfiability of formulae in this language and shew the

soundness of such and such a deductive system, this soundness consisting in the fact that all derivable

formulae in the considered systems are valid.

It is a theory of this kind which we propose to develop in the present article, inspired by the Leibnizian
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definition of necessity as truth in all possible worlds.

It is not, in our opinion, the task of the logician to examine the value of this Leibnizian metaphysics. We

can confine ourselves to shewing that if one takes this metaphysics one can formulate for the modal logic

S5 a semantical theory analogous to the formal semantic theories of non-modal logic.

The modal semantic theory leads us to consider relations of a special kind. These are relations whose

extension varies in one world or another, and we give them the name of ‘intensional relations’.

1. Letting D and W be two non-empty sets, not having any common elements, call D the ‘set of

individuals’ and W the ‘set of worlds’. We say that these sets D and W constitute a universe +D,W,, For

each natural number n we mean by ‘n-place intensional relation’ a function of n+1 arguments, taking the

value T, ‘true’, or F, ‘false’, having a world as its first argument and for n � 0, having n individuals as its

last n arguments.

Letting a and b be the cardinal numbers of D and W, for any natural number n there are c = 2ban

 n-place

intensional relations.

2. We assume a language �. For the moment we confine ourselves to considering a language without

axioms or rules of deduction. This language contains a denumerable infinity of individual variables, and

for each natural number n, a denumerable infinity of n-place predicate variables. It does not contain

constants for individuals or predicates.

In the following exposition the different types of variables will be designated by small letters which play

the rõle of syntactical variables. Certain Greek letters can also designate other expressions than variables.

We indicate each time in the context what sort of expressions are designated by the syntactical variables.

These syntactical variables may be followed by numbers, and we write e.g., x0, x1, x2,..., xn.

We shall adopt the following notation. The language � contains the symbols ~, v, w, e, and / for

negation, conjunction, disjunction, implication and equivalence, the symbols � and � for the universal and

existential quantifiers, and the symbols L and M for necessity and possibility. We introduce these symbols

not only in the object language but also in the metalanguage, where they are combined with syntactical

variables to form complex syntactical expressions.

Formation rules are as follows:

a.) a 0-place predicate variable is a wff (well-formed formula.)

b.) an n-place predicate variable followed by n individual variables is a wff.

c.) If " is a wff ~" is a wff.

d.) If " and $ are wff then (" v $) is a wff

e.) If " and $ are wff then (" w $) is a wff

f.) If " and $ are wff then (" e $) is a wff

g.) If " and $ are wff then (" / $) is a wff



     11Where, as here, variables of all kinds are intended, individual variables, propositional variables and predicate variables, I
have followed Bayart in using a single letter (I have used x where Bayart uses v.) But where it is clear that a propositional variable
is intended I have used p, and where it is understood that a predicate variable is intended I have used n.

     12I am using V(",w) = T as an abbreviation for Bayart’s ‘" is true according to w and V’, and V(",w) = F as an abbreviation
for Bayart’s ‘" is false according to w and V’. Bayart spells it out each time.
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h.) If " is a wff and x is a variable then �x" is a wff11

i.) If " is a wff and x is a variable then �x" is a wff

j.) If " is a wff L" is a wff.

k.) If " is a wff M" is a wff.

l.) There are no other wff

We have thus a pure modal second-order language.

3. Let +D,W, be a universe composed of the set D of individuals and W of worlds. We agree that the

variables for individuals of the language � can take as values individuals of the set D and that for each

natural number n the variables for n-place predicates take as values n-place intensional relations defined

on the universe +D,W,.

We take a universe +D,W,, a world w of this universe and an interpretation V relative to this universe. We

then define the notions ‘true for universe +D,W,, the world w and the interpretation V’, and ‘false for

universe +D,W,, the world w and the interpretation V’.12 Let " be a wff of language �.

If " is a variable p for 0-place predicates, then if T is the 0-place intensional relation given by V as the

value of p, V(",w) = T(w).

If " is nx1...xn, where n is an n-place predicate variable (n � 0) and where x1,...,xn are individual variables

if T, a1,..., an are respectively the n-place intensional relation and the individuals given as values of n,

x1,..., xn, V(",w) = T(w,a1, ..., an).

If " has the form ~$, where $ is a wff, V(",w) = T if V($,w) = F, and V(",w) = F if V($,w) = T.

If " has the form $ v (, where $ and ( are wff, V(",w) = T if V($w) = V((,w) = T, and V(",w) = F

otherwise.

If " has the form $ w (, where $ and ( are wff, V(",w) = T if V($,w) = T or if V((,w) = T, and V(",w)

= F otherwise.

If " has the form $ e (, where $ and ( are wff, V(",w) = T if V($,w) = F or if V((,w) = T, and V(",w)

= F otherwise.

If " has the form $ / (, where $ and ( are wff, V(",w) = T if V($w) = V((,w), and V(",w) = F otherwise.

If " has the form �x$, where $ is a wff and x a variable for individuals or predicates, V(",w) = T if, for

each interpretation VN relative to +D,W, which gives to all the variables other than x the same values as
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V, VN($,w) = T. Otherwise V(",w) = F.

If " has the form �x$, where $ is a wff and x a variable for individuals or predicates, V(",w) = T if there

is an interpretation VN relative to +D,W, which gives to all the variables other than x the same values as

V, and VN($,w) = T. Otherwise V(",w) = F.

If " has the form L$, where $ is a wff, V(",w) = T if for every world wN of the universe +D,W,, V($,wN)

= T. Otherwise V(",w) = F.

If " has the form M$, where $ is a wff, V(",w) = T if there is a world wN of the universe +D,W, such that

V($,wN) = T, and otherwise V(",w) = F.

4. We take a universe +D,W, and a world w of this universe. We define for formulae of the language �

the notions of ‘valid in ++D,W,,w,’ and ‘satisfiable in ++D,W,,w,’. Let " be a wff of �.

The wff " will be valid in ++D,W,,w, if and only if, for each interpretation V relative to +D,W,, V(",w)

= T.

The wff " will be satisfiable in ++D,W,,w, iff there is an interpretation V relative to +D,W, such that

V(",w) = T.

The wff " will be valid in +D,W, iff it is valid in every ++D,W,,w, (for every world w).

The wff " will be satisfiable in +D,W, iff there is some world w such that " is satisfiable in ++D,W,,w,.

We define for the language � the notions ‘valid’ and ‘satisfiable’.

The wff " will be valid iff it is valid in all universes.

The wff " will be satisfiable iff it is satisfiable in some universe.

We transform the language � into a system of deduction DS5 by giving axioms and rules of deduction. DS5

will be sound if one can only prove valid formulae. DS5 will be complete if one can prove any valid

formula of the language �.

II Auxiliary language

5. From the expressions of the language � we form an auxiliary language �N by introducing the symbol

8.

The expressions of �N will play a syntactical role and so appear in the metalanguage. They designate

certain expressions of � which will be called the resultants of corresponding expressions of �N.

In the exposition which follows we continue to use small letters to indicate syntactical variables and

combine them with the logical constants ~, v, w, e, /, �, �, L, M and the operator 8 to form complex



     13Bayart calls an n-place individual abstract a ‘parapredicate’. He adds ‘or an n-place individual abstract.’

     14I have used ‘paraformula’ for Bayart’s ‘paraproposition’ in line with my use of ‘formula’ or ‘wff’ for Bayart’s ‘proposition’.
A paraformula is an expression of �N which is not a wff of �, though its resultant is. I explain what is going on here in more detail
in the commentary.
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syntactical expressions.

The symbol 8 followed by a finite number n (n � 0) of individual variables is an n-place individual

abstractor.

The symbol 8 followed by a 0-place predicate variable is a propositional abstractor.

The symbol 8 followed by an n-place predicate variable (n�0) is an n-place predicate abstractor.

An n-place individual abstractor followed by a wff is an n-place individual abstract.13

A propositional abstractor followed by a wff is a propositional abstract.

A predicate abstractor followed by a wff is a predicate abstract.

An n-place individual abstract followed by n individual variables (not necessarily distinct) is a primary,

simple, paraformula.14

The expression obtained by substituting, in any way whatever in a wff, n-adic individual abstracts for n-

adic predicate variables is a primary complex paraformula.

One sees that in a complex primary paraformula the individual abstracts of n0, n1, n2, ... variables for

individuals are followed respectively by the n0, n1, n2, ... variables for individuals which follow the

variables for predicates of n0, n1, n2, ... places in the original wff. These individual abstracts will thus form,

with variables for individuals, simple primary paraformulae.

A propositional abstract followed by a wff is a propositional secondary paraformula. A predicate abstract

where the abstractor is an n-place predicate variable (n�0) followed by an n-place individual abstract is

a predicate secondary paraformula.

(Note: In the exposition which follows we introduce parentheses into expressions of the auxiliary language

for ease of reading.)

6. In an abstract the free variables are the variables which occur free in the formula which follows the

abstractor, other than the variables in the abstractor.

In an abstract the bound variables are the variables of the abstractor, the bound variables which follow the

abstractor and the free variables of this formula which occur also in the abstractor. One says of these last

variables that they are bound by the abstractor. In particular in an individual abstract 8x1...xn("), where

" is a wff, if the variable xi (i = 1,2,...n) appears free in " it is said to be bound by the i-th variable of the



     15I take it that by ‘simultaneous’ Bayart means ‘uniform’ in the sense that the same variable must be replaced on each
occurrence by the same expression.

     16I have used 2 as a metavariable for an individual abstract, or on occasions for a predicate or propositional abstract.
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abstractor.

The resultant of a simple primary paraformula 8x1...xn(")y1...yn is the wff "N which is obtained by

simultaneously substituting in the wff " individual variables y1,...,yn for the individual variables x1,...,xn

wherever they occur free in ".

Substitution is simultaneous if at each place in " where a variable occurs bound by the abstractor one

makes one and only one substitution.15

The resultant of a complex primary paraformula is a wff "N which one obtains by replacing in " each

simple primary paraformula by its resultant.

The resultant of a propositional paraformula 8p(")$ is the wff "Nj which is obtained by substituting in the

wff " the wff $ for the propositional variable p wherever it occurs free in ".

The intermediate resultant of a predicate paraformula 8n(")2, where 2 is an individual abstract of the

same number of places as the variable n, is the complex primary paraformula obtained by substituting in

the wff " the individual abstract 2 for the variable n wherever the latter occurs free in ".16

The final resultant, or more briefly the resultant, of a predicate paraformula is the resultant of the

intermediate resultant.

7. A simple primary paraformula 8x1...xn(")y1...yn is well-formed if for every i (i = 1, 2, ...n) the variable

xi does not occur free in " in the scope of a quantifier �yi or �yi. A complex primary paraformula is well-

formed if all its simple primary paraformulae are well-formed.

A propositional paraformula 8p(")$ is well-formed if the variable p does not occur free in " within the

scope of a quantifier �x or �x where x is any variable which occurs free in $.

A predicate paraformula 8n(")2 is well-formed if

1. The variable n does not occur free in " in the scope of a quantifier �x or �x where x is any

variable which occurs free in the individual abstract 2

and if also

2. The intermediate resultant of 8n(")2 is well-formed.

III Sematic properties of paraformulae



     17I have translated Bayart’s «proposition couverte» here not as ‘closed formula’ but as ‘modalised formula’, since this is in
accordance with standard usage in modal logic. Strictly speaking it should probably be ‘completely modalised formula’
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8. Definition. We give a recursive definition of the notion ‘modalised wff’.17

1. Formulae of the form L" and M" are modalised

2. If " is a modalised wff then ~" is a modalised wff.

3. If " and $ are modalised wff then " v $, " w $, " e $ and " / $ are modalised wff.

4. If " is a modalised wff and if x is a variable then �x" and �x" are modalised wff.

5. There are no other modalised wff than those defined by rules 1-4.

9. Definition. The value of an individual abstract 8x1...xn(") for a universe +D,W, and an interpretation V

relative to +D,W, is the n-place intensional relation which, for every world w and any series of individuals

a1, ..., an, takes the value T or F according as VN(",w) = T or F, where VN is an interpretation which assigns

individuals a1,..., an as values to the individual variables x1,..., xn respectively and which gives to all other

variables the same values as V.

10. Theorem I: Consider a universe +D,W,, two worlds w and wN of W and any

interpretation V relative to +D,W,. If " is a modalised wff then V(",w) = V(",wN).

Proof by induction on the definition of modalised wff.

11. Theorem II: Let " be a wff containing only x1,..., xn as free variables. Consider any universe

+D,W,, a world w of W and two interpretations V and VN relative to +D,W, which do not differ in the

values assigned to x1,..., xn. Then V(",w) = VN(",w). In particular if " is a closed wff (i.e., does not contain

free variables) then for any two interpretations V and VN relative to +D,W,, V(")(w) = VN(")(w).

Proof by induction on the construction of ".

12. Theorem III: Let 2 be an individual abstract 8x1...xr(") which contains only the variables y1,...,

yn free. Take any universe +D,W,, any world w of W and any two interpretations V and VN relative to

+D,W, which do not differ in the values given to the variables y1,..., yn. Then V(2) = VN(2). In particular

if 2 is a closed abstract (i.e., does not contain free variables) then for any two interpretations V and VN

relative to +D,W,, V(2) = VN(2).

In the proof we rely on the definition of an individual abstract and on the result of theorem II.

13. Theorem IV: For any universe +D,W,, and world w of W and any interpretation V relative to

+D,W,, if 8x1...xn(")y1...yn is a well-formed simple primary paraformula and "N is the resultant of this

formula then V("N,w) = VN(",w), where VN is an interpretation which gives to the individual variables

x1,...,xn the individuals a1,..., an respectively, being the same individuals as assigned by V to the variables

y1,..., yn respectively, and which gives all other variables the same values as V does.

Proof by induction on the construction of ".



     18I have retained Bayart’s word «series» here, though perhaps ‘sequence’ would be more appropriate, and I have used
‘sequence’ in the commentary. I have translated Bayart’s word «sequence» in the context of Gentzen systems as ‘sequent’.

     19I have translated Bayart’s «conséquent» as ‘consequent’, although the term ‘succedent’ is sometimes used for Gentzen’s
‘Sukzedens’. ‘Succedent’ is used in Kanger 1957, and in Szabo’s English translation of Gentzen’s papers. Feys and Ladrière 1955
also uses ‘conséquent’. I have used / rather than Gentzen’s 6 because the letter is easily confused with a propositional operator.
Both ‘consequent’ and / are used in Dopp’s appendix to Feys 1965,
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14. Theorem V: For any universe +D,W,, any world w of W, and any interpretation V relative to

+D,W,, if 8x1...xn(")y1...yn is a well-formed simple primary paraformula, and if T is the n-place intensional

relation which is the value given by V to the individual abstract 8x1...xn("), the value V("N,w) of the

resultant "N of this paraformula will be T(w,a1,..., an) where a1,..., an are the values given by V to the

variables y1,..., yn.

The proof relies on the definition of an individual abstract and the result of theorem IV.

15. Theorem VI: For any universe +D,W,, any world w of W, and any interpretation V relative to

+D,W,, if 8p(")$ is a well-formed propositional paraformula and "N is its resultant then V("N,w) =

VN(",w), where VN is the interpretation such that VN(p)(w) = ($,w), and which gives all the other variables

the same value as V.

Proof by induction on the construction of ".

16. Theorem VII: For any universe +D,W,, any world w of W, and any interpretation V relative to

+D,W,, if 8n(")2 is a well-formed predicate paraformula where n is an n-place predicate variable and 2

is an n-place individual abstract, and "N is the final resultant of this paraformula, then V("N,w) = VN(",w),

where VN is the interpretation which assigns to the variable n the value which the individual abstract 2

takes for V, and which gives all the other variables the same values as V.

Proof by induction on the construction of ".

IV Soundness of the second-order S5.

17. We formulate S5 by means of Gentzen systems. A sequent comprises: first a finite series,18 possibly

empty, of formulae of the language �, which is called the ‘antecedent’; second the symbol /, and third

a finite series, possibly empty, of formulae of the language �, called the ‘consequent’.19

The system S5 comprises an axiom schema and twenty eight rules of deduction divided into four groups:

structural rules, propositional rules, quantificational rules and modal rules. The rules permit the passage

from one or two sequents called premises to another sequent called the conclusion.

To formulate the axiom schema and the rules of deduction we use a metalanguage containing, among other

things, the expressions which we used in formulating the theory of paraformulae. We will also include the

symbol / in the metalanguage.

In particular, in the present section IV, the letters " and $ will designate formulae and the letters M, MN

and ), )N will designate series of formulae. In an expression of the form �x" or �x", the letter x



     20In this case M and ) are both simply ".
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designates an individual variable, a propositional variable or a variable for an n-place predicate. (n > 0)

In an expression of the form 8x(")2 the letter 2 designates an individual variable, a wff or an n-place

individual abstract, according as x is an individual variable, a propositional variable or an n-place predicate

variable. An expression of the form 8x(")2 designates a paraformula, but it is understood that it is not the

paraformulae but the resultants of the paraformulae which figure in deductions.

In the antecedent and consequent, expressions designating formulae or series of formulae are separated

by commas.

18. We define the notions ‘true’ and ‘false’ for Gentzen sequents relative to a universe +D,W,, a world w

and an interpretation V.

A sequent M / ) is true in w if M contains a wff false in w or if ) contains a wff true in w. Otherwise the

sequent M / ) is false in w.

Following from this definition we can, as we have done in paragraph 4 for wff, define for sequents the

notions ‘valid for ++D,W,,w,’, ‘valid for +D,W,’, ‘valid’, ‘satisfiable for ++D,W,,w,’, ‘satisfiable for

+D,W,’, ‘satisfiable’.

We shew that the system S5 is sound in the sense that all deductions are valid sequents. We shew, in

particular, that the axioms are valid, and that the rules of deduction are such that, if the premises are valid,

the conclusion is valid. It is convenient here to recall that ‘valid’ is synonymous with ‘true for every

universe +D,W,, every world w of this universe, and every interpretation V relative to this universe’.

We shew the soundness of the axiom (or, what comes to the same thing, the axiom schema) and the rules

of deduction as we present them.

19. The axiomatic schema (which we label ‘Ax’) is the following

" / "

The axioms which are instances of this schema are obviously valid. If " designates a true formula, )

contains a true formula and if " designates a false formula then M contains a false formula.20

There are seven structural rules; to be precise, addition, permutation and contraction in the antecedent

(designated, respectively, by ‘ADI, ‘PEI’, and ‘COI’), addition, permutation and contraction in the

consequent (designated, respectively, by ‘IAD, ‘IPE’, and ‘ICO’) and cut (designated by ‘Cut’).

The rules are as follows:
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M / ) M / )

ADI ___________________      __________________ IAD

",M / ) M / ),"

M,",$,MN / ) M / ),",$,)N

PEI ___________________      __________________ IPE

M,$,",MN / ) M / ),$,",)N

",",M / ) M / ),","

COI ___________________      __________________ ICO

",M / ) M / ),"

M / )," ",M / )

_________________________________ Cut

M / )

The soundness of the rules with one premise is obvious. The proof of the soundness of Cut is as follows.

Assume a universe +D,W,, a world w in this universe, and an interpretation V in this universe. By

hypothesis the two premises are true in w. So M will contain a formula false in w or ) will contain a

formula true in w, for otherwise " would have to be true for the first premise to be true, and " would have

to be false for the second premise to be true. It follows that the conclusion is true in w.

20. There are ten propositional rules; to be precise, the introduction of ~, v, w, e and / in the antecedent

(designated respectively by ‘~I’, ‘vI’, ‘eI’ and ‘/I’, and the introduction of ~, v, w, e and / in the

consequent (designated respectively by ‘I~’, ‘Iv’, ‘Ie’ and ‘I/’.

The rules are as follows:

M / )," ",M / )

~I ___________________      __________________ I~

~",M / ) M / ),~"
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",$,M / ) M / )," M / ),$

vI ___________________      ____________________________ Iv

" v $,M / ) M / )," v $

",M / ) $,M / ) M / ),",$

wI __________________________ __________________ Iw

" w $,M / ) M / )," w $

M / )," $,M / ) ",M / ),$

eI __________________________ __________________ Ie

" e $,M / ) M / )," e $

M / ),",$ ",$,M / ) ",M / ),$ $,M / ),"

/I __________________________     _____________________________ I/

" / $,M / ) M / )," / $

We prove the soundness of /I and I/

For /I: Consider a universe +D,W,, a world w and an interpretation V relative to this universe. If M

contains a formula false in w, or if ) contains a formula true in w the conclusion is true in w. If M does

not contain a formula false in w and if ) does not contain a formula true in w, then, since by hypothesis

the first premise is true in w, it is necessary that one of the formulae " or $ is true in w, and, since by

hypothesis the second premise is true in w it is necessary that one of the formulae " or $ is false in w. If

one of the two formulae " and $ is true and the other is false, " / $ will be false in w, and so the

conclusion will be true in w.

For I/: Consider a universe +D,W,, a world w and an interpretation V relative to this universe. If M

contains a formula false in w, or if ) contains a formula true in w the conclusion is true in w. If M does

not contain a formula false in w or if ) does not contain a formula true in w, two cases are possible: If "

is true in w then, since by hypothesis the first premise is true in w it is necessary that $ will be true in w.

If " is false in w then, since by hypothesis the second premise is true in w it is necessary that $ is false in

w; if " and $ are true in w or if " and $ are false in w. " / $ is true in w, and so the conclusion will be true

in w.

21 There are four rules of quantification; to be precise the introduction of � and � in the antecedent

(designated, respectively, by ‘�I’, ‘�I’) and the introduction of � and � in the consequent (designated,

respectively, by ‘I�’, ‘I�’).



     21In �I x indicates a variable of any type, individual, propositional or predicate, and 2 indicates that the argument of 8x(")
can be a complex abstract of �N of the same type as x. Of course (the resultant of) 2 can also be another variable, as it always is
when x is an individual variable. (Recall that Bayart is explicit that it is the resultants of the �N expressions which are the wff of
� which are involved in these rules.)
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The rules are as follows:

8x(")2,M / )21 M / ),"

�I ___________________ __________________ I�

�x",M / ) M / ),�x"

",M / ) M / ),8x(")2

�I ___________________ _____________________ I�

�x",M / ) M / ),�x"

Restriction (1): In the rules �I and I�, 8x(")2 must be a well-formed paraformula.

Restriction (2): In the rules I� and �I the variable x cannot occur free in the formulae of M or of ).

We prove the soundness of �I and of I�.

For �I: Consider a universe +D,W,, a world w and an interpretation V relative to this universe. If M

contains a formula false in w, or if ) contains a formula true in w the conclusion is true in w. If M does

not contain a formula false in w and if ) does not contain a formula true in w, then, since by hypothesis

the first premise is true in w, 8x(")2 will be false in w. It follows by virtue of theorems IV, VI or VII that

there is an interpretation VN, which gives the value to x that V gives to 2, and which gives all other

variables the same value that V gives, and is such that " is false in wN. There is thus an interpretation VN,

which is no different from V except for the value given to x, and is such that " is false in wN. So �x" is

false in w, and so the conclusion will be true in w.

For I�: Consider a universe +D,W,, a world w and an interpretation V relative to this universe. If M

contains a formula false in w, or if ) contains a formula true in w the conclusion is true in w. If M does

not contain a formula false in w and if ) does not contain a formula true in w, since the formulae in M and

in ) do not contain free x, it follows, in virtue of theorem II that, for every interpretation VN which gives

to all variables except x the same values as V, M will not contain formulae which are false in w with

respect to VN, and that ) will not contain formulae which are true in w with respect to VN. So, by

hypothesis, for all these interpretations VN, the premises are true in wN. Thus, for all these interpretations

VN(",w) = T. Thus V(�x",w) = T, and so the conclusion will be true in w.

22. There are four modal rules; to be precise the introduction of L and M in the antecedent (designated,

respectively, by ‘LI, ‘MI’) and the introduction of L and M in the consequent (designated, respectively,

by ‘IL’, ‘IM’).
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The rules are as follows:

M / )," ",M / )

LI ___________________ __________________ IL

L",M / ) M / ),L"

",M / ) M / ),"

MI ___________________ __________________ IM

M",M / ) M / ),M"

Restriction (3): In the rules IL and MI the formulae of M and ) must be fully modalised.

We prove the soundness of LI and of IL

For LI: Consider a universe +D,W,, a world w and an interpretation V relative to this universe. If M

contains a formula false in w, or if ) contains a formula true in w the conclusion is true in w. If M does

not contain a formula false in w and if ) does not contain a formula true in w, then, since by hypothesis

the first premise is true in w, it is necessary that " will be false in w. So L" is false in w and the conclusion

will be true in w.

For IL: Consider a universe +D,W,, a world w and an interpretation V relative to this universe. If M

contains a formula false in w, or if ) contains a formula true in w the conclusion is true in w. If M does

not contain a formula false in w and if ) does not contain a formula true in w, since the formulae in M and

in ) are fully modalised, it follows, in virtue of theorem I that, for every world wN, M will not contain

formulae which are false in wN, and that ) will not contains formulae which are true in wN. Now, by

hypothesis, for all worlds wN, the premises are true in wN. Thus, for all worlds wN, " will be true in wN.

Thus L" is true in w, and so the conclusion will be true in w.

V First-order logic

23. From the preceding one can easily extract the theory of first-order modal logic.

First-order modal logic contains a denumerable infinity of individual variables, and, for each natural

number n, a denumerable infinity of variables for n-place predicates.

The formation rules are the same as for second-order logic, except that, in expressions of the form �x"

or �x", x must be an individual variable.

24. The semantic definitions are the same as for second-order modal logic.

25. In first-order modal logic we need only consider abstractors containing just an individual variable, and

so simple primary paraformulae of the form 8x(")y, where x is an individual variable.
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26. We only need theorems I, II and IV. In the last theorem we only need to consider paraformulae formed

by abstractors containing a single individual variable.

27. The deduction rules are the same as in second-order logic but the scope of the quantification rules is

automatically reduced, when we note that, in expressions of the form �x", �x" and 8x(")y, x designates

an individual variable, and excludes predicate variables.

The soundness of first-order modal logic can be proved in the same way as in second-order modal logic.

VI Necessity and validity

28. One might perhaps combine the notions of necessity and validity. One might then formulate the

following semantic theory:

Instead of providing a universe consisting of a domain and a set of individuals one might simply give a

domain D, i.e., a set of individuals. One then gives a set of extensional relations. For each natural number

n, an extensional relation is a function of n arguments, these arguments being individuals, and able to take

the values T or F.

Individual variables can take individuals as values, and n-place predicate variables can take n-place

extensional relations as values. Propositional variables can take T or F as values.

29. Assume a domain D and an interpretation V.

A propositional variable p is true or false in +D,V, according as V(p) = T or F.

A wff of the form nx1...xn, where n is an n-place predicate variable and x1,...,xn are individual variables,

will be true in +D,V, if, where V(n) is the extensional relation T and the individuals a1,..., an are the values

given in this order to x1,..., xn respectively, T(a1,..., an) = T; and nx1...xn will be false in +D,V, if T(a1,...,

an) = F.

A wff of the form ~" is true in +D,V, if " is false in +D,V,, and otherwise false in +D,V,.

A wff of the form " v $ is true in +D,V, if " and $ are true in +D,V,, and otherwise false in +D,V,.

A wff of the form " w $ is true in +D,V, if " is true in +D,V, or $ is true in +D,V,, and otherwise false in

+D,V,.

A wff of the form " e $ is true in +D,V, if " is false in +D,V, or $ is true in +D,V,, and otherwise false in

+D,V,.

A wff of the form " / $ is true in +D,V, if " and $ are both true in +D,V, or if " and $ are both false in

+D,V,, and otherwise false in +D,V,.

A wff of the form �x" is true in +D,V, if for every interpretation VN, which gives all variables except x
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the same values as V does, " is true in +D,VN,, and otherwise it is false in +D,V,.

A wff of the form �x" is true in +D,V, if there is an interpretation VN, which gives all variables except x

the same values as V does, and " is true in +D,VN,, and otherwise it is false in +D,V,.

A wff of the form L" is true in +D,V, if for every interpretation VN, " is true in +D,VN,, and otherwise it

is false in +D,V,.

A wff of the form M" is true in +D,V, if there is an interpretation VN, such that " is true in +D,VN,, and

otherwise it is false in +D,V,.

30. A wff is valid in D if, for every interpretation V it is true in +D,V,.

A wff is satisfiable in D if, there is an interpretation V such that it is true in +D,V,.

A wff is valid if it is valid in every domain D.

A wff is satisfiable if, there is a domain D such that it is satisfiable in D.

We can turn our language � into a deductive system by giving axioms and deduction rules.

The deductive system is sound if one can only prove valid wff.

The deductive system is complete if one can prove all valid wff.

31. The semantic rules that we have just given make first-order S5 unsound, and equally in the second-

order case.

In first-order modal S5, and a fortiori in second-order modal S5, we have the following deduction:

nx / nx

______________________ I~

/ nx,~nx

______________________ Iw

/ nx w ~nx

______________________ IL

/ L(nx w ~nx)

______________________ I�

/ �yL(nx w ~ny)

The conclusion of this deduction is not valid in the semantics proposed in section VI.
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Assume a domain D composed of two individuals 0 and 1. Let T be a one-place predicate such that T(0)

= T and T(1) = F. Let V be an interpretation which gives the value T to n and 1 to x, whatever values it

gives to the other variables of �. The wff �yL(nx w ~nx) will be false in +D,V,.

For let VO be an interpretation such that V(n) = T, V(x) = 1 and V(y) = 0, and where it does not matter

what values VO gives to the other variables of �. We have successively:

VO(nx) = F

VO(ny) = T

VO(~ny) = F

VO(nx w ~ny) = F

For any interpretation V�, V�(L(nx w ~ny)) = F.

In particular, for every interpretation VN which gives all other variables the same values as +D,V,, VN(L(nx

w ~ny)) = F. So V(�yL(nx w ~ny)) = F.

32. In second-order modal S5 we have the following deduction:

nx / nx

____________________ I~

/ nx,~nx

____________________ Iw

/ nx w  ~nx

____________________ IL

/ L(nx w  ~nx)

____________________ I�

/ �RL(nx w ~Rx)

The conclusion of this deduction is not satisfiable in the semantics proposed in section VI.

Assume a domain D and an interpretation V. Let a be an individual in the domain D. Let T be a one-place

predicate such that T(a) = F. Let TN be a one-place predicate such that TN(a) = T.

Then let +D,VO, be an interpretation which gives the value a to x, T to n and TN to R, whatever values

it gives to the other variables of �. We have successively:

VO(nx) = F



     22There follows a bibliography, which has been incorporated in the list of references to the present article.

     23I shall follow Bayart 1959 in referring to Bayart 1958 as CLM, and I shall refer to Bayart 1959 as QA. Following Bayart,
an expression like CLM, II will refer to section II of CLM, and an expression like CLM, 9 will refer to paragraph 9 of CLM —
and analogously with QA.

     24The use of 8 is found in the higher-order completeness proof in Henkin 1950, which Bayart was familiar with. For a hint
of some of the complexities of substitution rules in higher-order logic see Henkin 1953 and Church 1956 p. 289f.
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VO(Rx) = T

VO(~Rx) = F

VO(nx w ~Rx) = F

So for all interpretations V�, V�(L(nx w ~Rx)) = F

In particular, for every interpretation VN which gives all other variables the same values as +D,V,, VN(L(nx

w ~Rx)) = F. So V(�RL(nx w ~Rx)) = F.

The proof holds for every domain D and interpretation V.

33. The problem with the sematic theory presented in section VI lies in the fact that it treats the symbols

L and M as abbreviations for universal and existential closures. So that in expressions of the form �yL(nx

w ~ny) or �RL(nx w ~Rx) the variables y and R are considered to be bound by L and M and not by the

quantifiers �y or �R, as they are in modal logic. Modal logic does not treat L and M as abbreviations for

universal or existential closure. In other words modal logic does not identify the notions of validity and

necessity.22

A. BAYART. (Brussels).

4. Commentary on CLM23

In CLM, 3 it should be noted that an interpretation V assigns values to the predicate and propositional

variables, as well as to the individual variables. This is made plausible by Bayart’s treatment of

propositional and predicate symbols, as well as individual symbols, as variables which can all be bound

by quantifiers. So we do not have the distinction, common in current treatments of first-order logic,

between an interpretation to the predicates and an assignment to the individual variables. The use of

‘propositional variable’ and ‘predicate variable’, even for symbols never bound by quantifiers, as in

propositional and first-order logic, was quite common at the time. It occurs in the contemporaneous Kripke

1959. The use of the interpretation V to give values to individual variables occurs also in Hughes and

Cresswell 1968 (though not in Hughes and Cresswell 1996) where V in an LPC model assigns all values,

alike to the predicate symbols and to the individual symbols.

A word of explanation needs to be said about the auxiliary language �N introduced in CLM, II. It

is important to appreciate that �N contains symbols not in the object language �, in particular the

abstraction operator 8, which can be used to form complex predicate expressions. Although this is not said

explicitly, the use of �N is motivated by the fact that Bayart is producing a semantics for second-order

modal logic, in which both propositional and predicate variables can occur in quantifiers.24 To see what



     25In a Gentzen system of the kind Bayart is using in this work, (1) would be written
  $,' / 7  
�x",' / 7

     26Bayart uses lower case letters for variables of all kinds as well as for complex expressions. I follow him when principles are
stated to hold for variables of all kinds, but in examples like (2) and (3) I have used �n of �R rather than �x or �v.

     27In this case z and v have been used to avoid confusion with x and y, though in fact that is not strictly necessary, since in
8zv(Rz / Rv)xy you can think of 8zv as a variable-binding operator whose scope does not extend to xy, and so even if 8zv(Rz
/ Rv)xy had been written as 8xy(Rx / Ry)xy the scope of 8xy would still not have extended to the final x and y.
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the problem is look first at a principle of ordinary first-order logic. This is the principle which can be stated

by the schema

(1) �x" e $

where $ (which can be written "[y/x]) is just like " except in having free y wherever " has free x.25 The

simplest instances of (1) are wff like �xnx e ny — what is true of all is true of each. But more complex

instances are such wff as �x�z�v(nxz e nvx) e �z�v(nyz e nvy), but not �x�z�y(nxz e nyx) e

�z�y(nyz e nyy), since in the latter y becomes bound in $ in a place where x was free in ". So much is

standard, and is not difficult to articulate in first-order logic, where the replacement for x in " to get $ is

just another individual variable. (There are to be sure formulations of first-order logic which contain

complex terms made up by the use of individual constants or function symbols, but in CLM, 2 Bayart

excludes these.)

In the case of second-order logic we can have instances like

(2) �n�x�y(nxy v nyx) e (�x�y((Rx / Ry) v (Ry / Rx))

where the simple two place predicate n has been replaced by a complex expression, in such a way that nxy

becomes Rx / Ry, and nyx becomes Ry / Rx. Of course we must rule out cases like

(3) �R�y(Rx / nyy) e �y(nxy / nyy)26

in which nxy is substituted for Rx, since that would cause a variable free in the substituting formula to

become bound as a result of the substitution.

What has happened in (2) is that we have replaced a simple two-place predicate variable n by a

complex expression, ensuring that the variables which follow n in the antecedent are retained in the

consequent. So Bayart uses Church’s device of lambda abstraction to systematise this fact. For any

individual variable x you can read 8x" as ‘is an x such that "’, and 8xy as ‘are an x and y such that "’, and

in (2) one can think of replacing the simple predicate n by the complex predicate expression, 8zv(Rz /

Rv), which reads ‘are a z and a v such that z is R iff v is R’. One can then represent (2) as

(4) �n�x�y(nxy v nyx) e (�x�y(8zv(Rz / Rv)xy v �x�y(8zv(Rz / Rv)yx)27

What is going on in (4) is that n has been replaced in each case by the complex two-place predicate

8zv(Rz / Rv), and this predicate takes the arguments x and y in that order when it replaces nxy, and the

arguments y and x in that order when it replaces nyx. In (4) 8zv is what Bayart calls an n-place individual

abstractor and 8zv(Rz / Rv) an n-place individual abstract (or an n-place parapredicate). In the present



     28Bayart’s actual phrase is ‘paraproposition’, but recall that I am referring to Bayart’s ‘propositions’ as formulae.
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example n = 2 and we have a two-place abstract.

Bayart’s use of the expression ‘parapredicate’ is to signal that this expression is not an expression

in the object language �. So what are we to say of

(5) 8zv(Rz / Rv)xy?

(5) could be read: x and y are a z and v such that Rz / Rv. The wff of � that (5) designates is what Bayart

calls the resultant of (5). It is what you get by taking Rz / Rv and replacing z by x and v by y, i.e., it

would be Rx / Ry. So 8zv(Rz / Rv)yx would be what you get by taking Rz / Rv and replacing z by y and

v by x, i.e. it would be Ry / Rx. This procedure would turn (4) into (2). To take care of problems raised

by examples like (3), where a variable becomes bound when replacing one which is free, Bayart, in CLM,

7, defines what he calls a ‘well-formed abstract’. (5) itself is what Bayart calls a ‘simple primary

paraformula’.28 In CLM, 17 Bayart reminds us, at the end of the third paragraph, that the paraformulae are

not themselves part of the deduction system — that it is their resultants which are.

Bayart also has propositional abstracts, and n-place predicate abstracts. A propositional instance

of (1) would be

(6) �p(p / q) e ((r v s) / q)

which could be written

(7) �p(p / q) e 8v(v / q)(r v s)

and then the rules for obtaining the resultant of 8v(v / q)(r v s) would give (r v s) / q.

There will be some occasions on which the resultant will have to be obtained in several stages. Thus for

instance in the expression

(8) 8n�x(nx / Rx)(8yPyy)

where 8yPyy is the predicate argument of the predicate abstract 8n�x(nx / Rx) we first obtain the

‘intermediate resultant’

(9) �x((8yPyy)xx / Rx)

by eliminating the predicate abstract, and then obtain the final resultant by eliminating the individual

abstract to get

(10) �x(Pxx / Rx).

Theorems I-VIII in CLM, III should now be straightforward results about the semantics of 8-expressions.

Among the things they do is establish the semantic equivalence of a paraformula and its resultant.



     29Although not strictly necessary this expression could do with some bracketing to make its meaning clear. We could write
(8x")y or 8x"(y), though Bayart writes 8x(")y. (In his notation Zx(p)a looks less odd than 8x(")y. At CLM, 5 he points out that
his introduction of brackets is for ease of reading.)

     30In my commentary on Bayart’s Henkin completeness proof, I shall frequently speak as if the components in a sequent are
simply sets of wff rather than sequences. In QA, 23 (except for ä and ë) Bayart uses the same style of variable for sequences and
sets.

     31I have used Bayart’s names for these except in adopting the Russellian symbols in place of Bayart’s Polish symbols. So for
instance Bayart’s CI and IC become eI and Ie. I have not replaced ‘I’ by / in the names of these rules since I suggests
‘introduction’ and all Bayart’s rules are introduction rules.
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In CLM, 25 Bayart notes that the only abstracts required in first-order logic have the form 8x" where x

is an individual variable, so that (1) can be written as

(11) �x" e 8x"y29

where 8x"y is a paraformula whose resultant, provided 8x"(y)is well-formed, is simply " with free y

replacing free x.

In a Gentzen formulation of logic, in place of deriving theorems which are single wff, one derives

what are called sequents. The usual way of understanding a sequent is as a pair +M,), where M and ) are

sets of wff. Where +M,), is a theorem of the logic we can write M / ). Bayart’s treatment in CLM, IV

follows Gentzen’s original paper more closely, except of course for the addition of the modal rules. (See

Szabo 1969, pp. 83-85.) In the first place M and ), which he writes as ä and ë, are not sets but finite

sequences. (That is why he needs ‘structural’ rules which guarantee that the order of wff does not matter,

and that the repetition of wff does not matter.30) In the second place the symbol /, Gentzen’s 6, which

Bayart writes as I, is not a sign that a sequent is derivable, but is a sign which separates M from ). So that

where M is "1,..., "n and ) is $1,..., $m then the sequent "1,..., "n / $1,..., $m is the n + m + 1 termed

sequence whose first n terms are "1,..., "n, and whose next term is /, and whose final m terms are $1,...,

$m. So that instead of letting M / ) indicate that +M,), is a derivable sequent Bayart is forced to say that

M / ) is derivable. (Of course with I in place of / this looks less strange that it seems with /.) What I

have done in the translation is amalgamate these two uses of /, since, even if, in strictness, this involves

some blurring of the use/mention distinction, it seems to me that no serious confusion arises. Again,

readers can be referred to the versions on the website. Since M and ) are finite, if M is "1,..., "n and ) is

$1,..., $m one can write "1,...,"n / $1,...,$m, and one can also write such things as M," / ),$. Sequents can

be given a semantics which describes them as true or false. Bayart calls M / ) true if either one of the wff

in M is false or one of the wff in ) is true, and false otherwise. With this interpretation "1,...,"n / $1,...,$m

will be true iff ("1 v... v "n) e ($1 w ... w $m) is true, and so "1,...,"n / $1,...,$m is equivalent to / ("1 v...

v "n) e ($1 w ... w $m), where / ) indicates a sequent in which M is empty. While this use of / ) is

common, M / is less so, though Bayart, again following Gentzen, makes extensive use of it. It would have

to mean that M yields nothing, so if we let i denote the empty sequence then M / would be an

abbreviation for M / i, and this would be true iff either some " in M is false or some $ in i is true. Since

there is no $ in M this is equivalent to saying that not every " in M is true, and so can be written M / z.

This enables "1,..., "n / to be understood as / ("1 v... v "n) e z, or equivalently / ~("1 v... v "n), and I

have used M / z rather than M / in the translation.

The rules that define the axiomatic Gentzen-style system for S5 predicate logic consist of one

axiom and twenty eight transformation rules, what Bayart calls ‘Rules of deduction’.31 I shall illustrate the

rules by looking at one of the rules for quantification, since this will also shew how abstraction is used by



     32This axiomatisation is derives from A.N. Prior. See Prior 1955 pp. 202 and 306f, where Prior dates it from 1953. Prior’s
formulation in 1955, p. 202, is slightly defective, and, as noted in footnote 2 on p. 347 of Lemmon 1956, was corrected by Prior.
Lemmon proves that the axiomatisation gives precisely S5 as formulated by Lewis. These facts are noted on p. 121 of Feys 1965
(added posthumously by Dopp).

     33Translation of ‘Quasi-adéquation de la logique modale de second ordre S5 et adéquation de la logique modale de premier
ordre S5’, Logique et Analyse , 2, 1959, 99–121.
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Bayart. The rule is �I, which is

8x(")2,M / )

___________

 �x",M / )

where 2 might be a complex expression of the same type as x, as for instance when x is n and 2 is 8zv(Rz

/ Rv). In the first-order case we have seen that (the resultant of) 8x"(y) is just "[y/x], so that in the first-

order case �I is

"[y/x],M / )

___________

 �x",M / )

I.e., whatever you can deduce from "[y/x] together with M you can deduce from �x", together with M.

As far as the modal rules are concerned Bayart relies on an axiomatisation of S5 which is not so

popular nowadays because it does not generalise to other modal systems. For L the rules say first that if

you can get something from " you can get it from L", which is the equivalent of the T axiom L" e ", and

second that if you can get " from wff which are all fully modalised — in the sense that all of their atomic

wff are in the scope of a modal operator, then you can get L" from the same wff.32 The rules for M are

analogous.

5. Bayart 195933

QUASI-COMPLETENESS OF SECOND-ORDER S5 AND COMPLETENESS OF FIRST-ORDER S5

In the present article we frequently refer to our earlier article ‘La correction de la logique modale du

premier et second ordre S5’ (Logique et Analyse, 1). We refer to this as ‘CLM’.

This article contains six sections and thirty three paragraphs. The references will take the form

‘CLM, IV’ or ‘CLM, 12’, referring respectively to the fourth section and to the twelfth paragraph.

I Quasi-semantic definitions for second-order logic

The language of second-order modal logic includes all the wff of second-order non-modal logic; these are

the wff of the language � defined in CLM, 2 which do not contain modal symbols. If the second-order

modal logic defined in CLM, IV is complete in the sense defined in CLM, 4 it follows that all the wff valid

in non-modal second-order logic will be derivable in second-order S5.

Now the set of derivable wff in second-order S5 is clearly recursively enumerable. In particular



     34Bayart uses ‘quasi-true’ and ‘quasi-false’ in line with his terminology for the sense of validity used to prove higher-order
completeness in Henkin 1950, but, while I have retained such phrases as ‘quasi-valid’, ‘quasi-universe’, ‘quasi-complete’ and
so on, I have simply used ‘true’ and ‘false’ or T and F, since, once an quasi-universe is given, with respect to that quasi-universe
the notion of truth is so defined as to constrain the range within which higher-order quantifiers are evaluated, since in quasi-
universes the higher-order variables must be given values from the allowable relations taken from P0, P1 etc. (This does mean
that the truth clauses as given in this translation are almost verbatim repetitions of the truth definitions in CLM.)
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the set of non-modal wff is recursively enumerable. But from Gödel’s incompleteness theorem it follows

that the set of valid formulae of non-modal second-order logic is not recursively enumerable. We must

conclude that second-order S5 (which we shall call S52) cannot be complete.

This impossibility does not exist for first-order S5 and we shall prove the completeness of this

logic.

All the same Henkin has shewn that non-modal second-order logic is complete in an extended

sense which we may call ‘quasi-complete’. We prove that S52 is quasi-complete in an analogous sense.

In effect our exposition is no more than Henkin’s theorem adapted for S5.

1. Let +D,W, be a universe composed of a set D of individuals and a set W of worlds and let a and b be

the cardinal numbers of D and W respectively. In CLM, 1 we assumed, for each natural number n, a

number c = 2ban

 of n-place intensional relations.

Assume, for each natural number n, a non-empty set Pn of n-place intensional relations based on

+D,W,. The sets D, W, P0, P1, P2, ... based on +D,W, constitute a quasi-universe +D,W,Q, based on +D,W,.

If for every natural number n, Pn contains all the n-place intensional relations in +D,W,, +D,W,Q,

will be a complete quasi-universe based on +D,W,. In such a case we say that all the intensional relations

in +D,W, are equally relative to +D,W,Q,.

2. We take a second-order modal language � defined as in CLM, 2. Consider a quasi-universe +D,W,Q,

composed of the set D of individuals and W of worlds and sets of intensional relations P0, P1, P2, ... We

agree that the variables for individuals of the language � take as their values the individuals of the set D

and that for each natural number n the variables for n-place predicates take as their values the intensional

relations in Pn.

If, in accordance with this convention, we are given a value to each of the variables of � we are

given an interpretation V relative to the quasi-universe +D,W,Q,.

3. We take a quasi-universe +D,W,Q,, a world w of this universe and an interpretation V relative to this

universe. We then define the notions ‘true for quasi-universe +D,W,Q,, world w and interpretation V’, and

‘false for quasi-universe +D,W,Q,, the world w and the interpretation V’.34

Let " be a wff of language �.

If " is a variable p for 0-place predicates, then if T is the 0-place intensional relation given as the

value of p, V(",w) = T(w).

If " is nx1...xn, where n is an n-place predicate variable (n � 0) and where x1,...,xn are individual

variables, if T, a1,..., an are respectively the n-place intensional relation and the individuals given as values

of n, x1,..., xn, V(",w) = T(w,a1, ..., an).

If " has the form ~$, where $ is a wff, V(",w) = T if V($,w) = F, and V(",w) = F if V($,w) = T.

If " has the form $ v (, where $ and ( are wff, V(",w) = T if V($,w) = V((,w) = T, and V(",w)

= F otherwise.

If " has the form $ w (, where $ and ( are wff, V(",w) = T if V($,w) = T or if V((,w) = T, and

V(",w) = F otherwise.
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If " has the form $ e (, where $ and ( are wff, V(",w) = T if V($,w) = F or if V((,w) = T, and

V(",w) = F otherwise.

If " has the form $ / (, where $ and ( are wff, V(",w) = T if V($,w) = V((,w), and V(",w) = F

otherwise.

If " has the form �x$, where $ is a wff and x a variable for individuals or predicates, V(",w) =

T if, for each interpretation VN relative to +D,W,Q, which gives to all the variables other than x the same

values as V, VN($,w) = T. Otherwise V(",w) = F.

If " has the form �x$, where $ is a wff and x a variable for individuals or predicates, V(",w) =

T if there is an interpretation VN relative to +D,W,Q, which gives to all the variables other than x the same

values as V, and VN($,w) = T. Otherwise V(",w) = F.

If " has the form L$, where $ is a wff, V(",w) = T if for every world wN of the quasi-universe

+D,W,Q,, V($,wN) = T. Otherwise V(",w) = F.

If " has the form M$, where $ is a wff, V(",w) = T if there is a world wN of the quasi-universe

+D,W,Q, such that V($,wN) = T, and otherwise V(",w) = F.

4. We take a quasi-universe +D,W,Q, and a world w of this universe. We define for formulae of the

language � the notions ‘valid in ++D,W,Q,,w,’ and ‘satisfiable in ++D,W,Q,,w,’. Let " be a wff of �.

The wff " will be valid in ++D,W,Q,,w, if and only if, for each interpretation V relative to

+D,W,Q,, V(",w) = T.

The wff " will be satisfiable in ++D,W,Q,,w, iff there is an interpretation V relative to +D,W,Q,

such that V(",w) = T.

The wff " will be valid in +D,W,Q, iff it is valid in every ++D,W,Q,,w, (for every world w).

The wff " will be satisfiable in +D,W,Q, iff there is some world w such that " is satisfiable in

++D,W,Q,,w,.

We define for the language � the notions ‘quasi-valid’ and ‘quasi-satisfiable’.

The wff " will be quasi-valid iff it is valid in all quasi-universes.

The wff " will be quasi-satisfiable iff it is satisfiable in some quasi-universe.

We can express � in a deductive system DS5 by being given axioms and rules of deduction.

Assume a quasi-universe +D,W,Q,.

The deductive system DS5 is quasi-sound for +D,W,Q, if one can only prove in DS5 formulae which

are valid in +D,W,Q,.

The deductive system DS5 is quasi-complete for +D,W,Q, if one can prove in DS5 all formulae

which are valid in +D,W,Q,.

5. It is easy to check that S52 is not sound with respect to every quasi-universe. Consider for instance a

quasi-universe which for 0-place intensional relations contains only the function which takes the value F

at every world. In S52 one can easily deduce the sequent / �pp, where p is a propositional variable. But

�pp is not satisfiable in the present quasi-universe. So, to develop the quasi-soundness of S52 we must

invoke the notion of a ‘regular quasi-universe’ as follows.

In CLM, 9 we gave a semantic definition of the value of an n-place individual abstract. We must

now give the definition of the value of a wff for a universe +D,W, and an interpretation V. Let " be a wff

of �. The value of " for V is the 0-place intensional relation T such that for every world w of W, T(w)

= V(",w).

We now give the following quasi-semantical definitions for a quasi-universe +D,W,Q, based on

an interpretation V relative to +D,W,Q,.



     35This looks like a repetition of what was said two paragraphs earlier. But Bayart is now defining truth and falsity in a quasi-
universe . (If we were to follow Bayart’s use of ‘quasi-true’ and ‘quasi-false’ the impression of repetitiveness would disappear.)
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The value of a wff " for +D,W,Q, and an interpretation V is the 0-place intensional relation which,

for any world w of W, takes the value T or F according as V(",w) = T of F.35

The value of an n-place individual abstract 8x1...xn(") for a quasi-universe +D,W,Q, and an

interpretation V relative to +D,W, is the n-place intensional relation which, for every world w and any

series of individuals a1, ..., an, takes the value T or F according as VN(",w) = T or F, where VN is an

interpretation which assigns individuals a1,..., an as values to the individual variables x1,..., xn respectively

and which gives to all other variables the same values as V.

It is easy to see that the value of a wff or of an individual abstract is not always an intensional

relation relative to +D,W,Q,. Thus, in the quasi-universe described above the propositional variable p can

only take a single value, and in the given value-system the value of ~p is not relative to +D,W,Q,.

A quasi-universe +D,W,Q, is regular if, for every wff " of the language �, for every individual

abstract 8x1...xn(") constructed in the language �, and for every interpretation V relative to +D,W,Q,, the

value of " and the value of 8x1...xn(") is an intensional relation relative to +D,W,Q,.

It is clear that regular quasi-universes exist, notably the complete quasi-universes. The present

exposition will shew that there also exist regular incomplete quasi-universes.

6. We can now present the series of our quasi-semantical definitions:

A wff is quasi-valid if and only if it is quasi-valid in all regular quasi-universes.

A wff is quasi-satisfiable if and only if there is a regular quasi-universe in which it is quasi-

satisfiable.

A deductive system DS5 is quasi-sound if all wff derivable in DS5 are quasi-valid.

A deductive system DS5 is quasi-complete if one can prove in DS5 all formulae which are quasi-

valid.

II Sematic properties of paraformulae

7. In what follows we adapt the semantic theorems of CLM, III. Certain of the quasi-semantical theorems

which follow hold for every quasi-universe, others only hold for regular quasi-universes. We will indicate

each time which of these is the case.

8. Theorem I: Consider a universe +D,W,Q,, two worlds w and wN of W and any interpretation relative

to +D,W,Q,. If " is a modalised wff then V(",w) = V(",wN).

9. Theorem II: Let " be a wff containing only x1,..., xn as free variables. Consider any universe +D,W,Q,,

a world w of W and two interpretations V and VN relative to +D,W,Q, which do not differ in the values

assigned to x1,..., xn. Then V(",w) = VN(",w). In particular if " is a closed wff (i.e., does not contain free

variables) then for any two interpretations V and VN relative to +D,W,Q,, V(",w) = VN(",w).

10. Theorem III: Let " be a wff containing only x1,..., xn as free variables. Consider any universe

+D,W,Q,, and two interpretations V and VN relative to +D,W,Q, which do not differ in the values assigned

to x1,..., xn. Then V(") = VN("). (For V(") see paragraph 5 above.) In particular if " is a closed proposition
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then for any two interpretations V and VN relative to +D,W,Q,, V(") = VN(").

We could have formulated a semantic analogue of theorem III in CLM, III.

11. Theorem IV: Let 2 be an individual abstract 8x1...xn(") which contains only the variables y1,...,

yn free. Take any universe +D,W,Q, and any two interpretations V and VN relative to +D,W,Q, which do

not differ in the values given to the variables y1,..., yn. Then V(2) = VN(2). In particular if 2 is a closed

abstract then for any two interpretations V and VN relative to +D,W,Q,, V(2) = VN(2).

The value of the wff " in theorem III and that of the abstract 2 in theorem IV are values relative to +D,W,

and not necessarily values relative to +D,W,Q,.

12. Theorem V: For any universe +D,W,Q,, and world w of W and any interpretation V relative to

+D,W,Q,, if 8x1...xn(")y1...yn is a well-formed simple primary paraformula and "N is the resultant of this

formula then V("N,w) = VN(",w), where VN is an interpretation which gives to the individual variables

x1,...,xn the individuals a1,..., an respectively, being the same individuals as assigned by V to the variables

y1,..., yn respectively, and which gives all other variables the same values as V does.

13. Theorem VI: For any universe +D,W,Q,, any world w of W, and any interpretation V relative to

+D,W,Q,, if 8x1...xn(")y1...yn is a well-formed simple primary paraformula, and if T is the n-place

intensional relation which is the value given by V to the individual abstract 8x1...xn("), the value V("N,w)

of the resultant "N of this paraformula will be T(w,a1,..., an) where a1,..., an are the values given by V to

the variables y1,..., yn.

The relation T relative to +D,W, is not necessarily relative to +D,W,Q,.

14. Theorem VII: For any regular quasi-universe +D,W,Q,, any world w of +D,W,Q,, and any

interpretation V relative to +D,W,Q,, if 8p(")$ is a well-formed propositional paraformula, and "N is the

resultant of this paraformula then V("N,w) = VN(",w) where VN is the interpretation which assigns the

propositional variable p the 0-place relation T such that T = V($), and which gives all the other variables

the same value as V.

(The analogous theorem VI of CLM, 15 could have been stated as follows: For any universe +D,W,, any

world w of +D,W,, and any interpretation V relative to +D,W,, if 8n(")2 is a well-formed propositional

paraformula, where n is an n-place predicate variable and 2 is an n-place individual abstract, the value

given by V in w of the final resultant "N of this paraformula is the same as VN("), where VN is the

interpretation which assigns to the propositional variable p the 0-place relation T such that T = V($), and

which gives all the other variables the same value as V.)

15. Theorem VIII: For any regular quasi-universe +D,W,Q,, any world w of W, and any interpretation

V relative to +D,W,Q,, if 8n(")2 is a well-formed predicate paraformula, where n is an n-place predicate

variable and 2 is an n-place individual abstract, the value in w of the final resultant V("N) = VN(") where

VN is the interpretation which assigns to the variable n the value V(2) and which gives all the other

variables the same values as V.
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In theorems VII and VIII, from the fact that +D,W,Q, is a regular quasi-universe, the intensional relation

T is relative to +D,W,Q,, and so it is possible to use the interpretation VN described in these theorems.

16. Theorem IX: Let " be a wff. Let x be a variable. Let y be a variable of the same type as x which

does not occur, either free or bound, in ".

Let $ be the wff obtained by substituting in " the variable y for the variable x wherever the latter

occurs bound ($ being identical with " if x is not bound in ".) Then, for any quasi-universe +D,W,Q,, any

world w and any interpretation V relative to +D,W,Q,, " and $ have the same value in w.

Proof by induction on the construction of ", distinguishing between cases where " has the form �x" or

�x", and those where " has the form �z" or �z", z being a variable distinct from x and y.

In CLM, III we could have formulated a sematic theory analogous to the present theorem IX, but such a

theorem is not needed.

III Quasi-soundness and quasi-completeness of S52

17. We say that a wff " is derivable in S52 if the sequent / " is derivable in S52.

We say that a sequent M / ) is true in w (for a quasi-universe +D,W,Q, and an interpretation V)

if M contains a wff false in w or if ) contains a wff true in w. Otherwise the sequent M / ) is false in w.

One can then easily define quasi-validity and quasi-satisfaction for sequents.

We say that the wff " represents the sequent M / ) if " is a disjunction whose disjuncts, in order,

are the negations of the wff in M followed by the wff in ). One can easily shew that M / ) is derivable

in S52 iff " is derivable in S52.

One can equally easily shew that M / ) is true or false in w, iff " is true or false in w.

It follows that the quasi-soundness and quasi-completeness of S52 can be equally defined in terms

of wff or in terms of sequents.

18. Theorem X: If all wff derivable in S52 are quasi-satisfiable in a quasi-universe, then all wff

derivable in S52 are quasi-valid in +D,W,Q,.

Proof from the fact that if a wff " is derivable in S52 the wff L�" is equally so. �" designates here the

universal closure of ".

19. Theorem XI:If S52 is quasi-sound for a quasi-universe +D,W,Q,, +D,W,Q, is a regular quasi-universe.

Proof: From the definitions of a quasi-sound system and a regular quasi-universe, and from the fact that

all wff of the form �nL�x1...�xn(nx1...xn / "), where n is an n-place predicate variable, and where x1,...,

xn are n distinct individual variables, and where $ is a wff not containing free n, and thus all wff of the

form �pL(p / ") where p is a propositional variable, and where $ is a wff not containing free p, are

derivable in S52.

20 Theorem XII: S52 is quasi-sound

The proof is analogous to the proof of the soundness of S52, given in CLM, IV. It must take account of
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the fact that quasi-soundness has been defined in paragraph 6 above in terms of regular quasi-universes.

The soundness proof for �I (see CLM, 21) is based on the quasi-semantical theorems V, VII or

VIII. Because the universes considered are regular it is possible to provide an interpretation V which gives

to the variable x the value given by V to the argument 2 of the paraformula 8x(")2.

21 Theorem XIII: If " is a consistent wff, i.e., if the sequent " / z is not derivable in S52, " is quasi-

satisfiable.

Proof: Section IV of the present article will establish, for every consistent wff ", a regular quasi-universe

+D,W,Q, such that " is satisfiable in +D,W,Q,.

22. Theorem XIV: S52 is quasi-complete

Proof: If " is quasi-valid, ~" will be a wff which is not quasi-satisfiable. By contraposition of theorem

XIII we obtain that the sequent ~" / z is derivable, from which it easily follows that the sequent / " is

derivable.

IV Proof of theorem XIII

23. In what follows we understand by ‘well-formed formula’ (wff) a wff of language � defined in CLM,

2 and by ‘wff or derivable sequent’ we mean a wff or sequent derivable in S52.

We use ", $, ( etc. to designate wff. These letters may be followed by one or two numerical

indices.

The capital letters B, D, F etc., and Greek letters like 7, M, ) etc., designate series or finite or

infinite sets of wff. These expressions may be followed by one or two numerical indices.

Use of these syntactical notations may be combined with the preceding syntactical notations.

If all the wff of a set or series B of wff are elements of a set E of wff we say that the set or series

B is drawn from the set E.

24. A finite or infinite set B of wff is consistent if there is no finite series M included in B such that M /

z is derivable.

A finite or infinite series of wff is consistent if it is included in a consistent set.

A wff " is consistent with a set B of wff if B c {"} is consistent.

It is easy to shew that if M is a finite series of wff included in a consistent set B, and if M / " is

derivable then " is consistent with B. A fortiori, if / " is provable it is consistent with every consistent

set.

25. Let "* be a consistent wff. We order the set of wff of the form M$ in a series M$0, M$1, M$2,... We

order the set of wff of the form �x* where x is any variable in a series �x1*1, �x2*2, �x3*3,... 

Consider the set of ordered pairs of natural numbers and order it diagonally as follows: 00, 01, 10,

11, 20,03, ... Assume the following series of wff (0.0, (0.1, (1.0 ...

For each natural number n, (n.0 is the wff M"* v (M$ e $) where M$ = M$n.

For each pair of natural numbers n and m such that m � 0, (n.m is the wff �xm*m e *m[y/xm] where

y designates the first variable in alphabetical order of the same type as x which does not occur free in �x*

nor in any wff (r.s where r.s is an index which precedes ‘n.m’.
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We assume the following set of wff .0.0, .0.1, .1.0 ... For each natural number n, .n0 is M(n.0.

For each pair of natural numbers n and m such that m � 0, .n.m is the wff M((n.0 v ... v (n.m).

26. Consider the set G of wff .0.0, .0.1, .1.0 ...

Lemma I The set G as defined above is consistent

Proof by reductio. Let 7 be a finite series included in G such that 7 / z is derivable. Let .n.m be the wff

of 7 such that no other wff of 7 has an index of higher rank than n.m. let 7N be the series composed of

all the wff .r.s appearing or not in 7 whose index is lower than n.m. It is clear that if 7 / z is derivable

then .n.m,7N / z is also.

We shew that the latter is impossible by induction on the rank of the index n.m.

Suppose n = m = 0. Then .0.0 is a wff of the form M(M"* v (M$ e $)) and 7 is empty. We then

suppose that M(M"* v (M$ e $)) / z is provable. As we have M"* v (M$ e $) / M(M"* v (M$ e $))

we obtain by a cut that M"* v (M$ e $) / z is derivable. As we have M"*,M$ e $ / M"* v (M$ e $)

we obtain by a cut that M"*,(M$ e $) / z is derivable. Since M"* is modalised we have that M(M$ e

$),M"* / z is derivable.

But / M(M$ e $) is derivable as follows:

M$,$ / $

______________________

M$ / $,M$ $ / M$ e $

_____________________ ______________________

/ M$ e $,M$ $ / M(M$ e $)

_____________________ ______________________

/ M(M$ e $),M$ M$ / M(M$ e $)

__________________________________________

/ M(M$ e $)

Hence by a cut with M(M$ e $),M"* / z we obtain that M"* / z is derivable, contrary to the hypothesis

according to which it is a consistent wff.

Suppose n � 0 and m = 0. .n.m then has the form M(M"* v (M$ e $)) but 7N is no longer empty.

Suppose then that M(M"* v (M$ e $)),7N / z is derivable. We deduce successively that the

following sequents are derivable:

M"* v (M$ e $),7N / z

M"*,M$ e $,7N / z

M(M$ e $),M"*,7N / z (since all the wff in 7 are modalised.)

M"*,7N / z (since / M(M$ e $) is derivable.)
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But 7 contains the wff .0.0 which has the form M(M"* v (M$N e $N)). Call this wff ‘$*’. Now we have

the following proof:

M"*, M$N e $N / M"*

_________________________

M"* v (M$N e $N) / M"*

_________________________

M(M"* v (M$N e $N)) / M"*

I.e., that $* / M"* is derivable, whence by a cut with M"*,7N / z we obtain $*,7N / z.

But $* is a wff of 7N. Thus we have 7N / z contrary to the induction hypothesis.

Suppose n is any number and m � 0. Then .n.m has the form M((0 v ... v (m) where (m has the

form �x* e *[y/x]. We then suppose that M((0 v ... v "m),7N / z is derivable. As .n.m has an index of

higher rank than all the other wff of 7N, and as (m is the wff (n.m of which the index is of greater rank than

all the other wff which enter into the composition of .n.m
36 or of a wff of 7N, we have that the variable y

does not occur free or bound except in *[y/x].

Hence, if M((0 v ... v (m),7N / z is derivable, the following sequents are also:

((0 v ... v (m),7N / z

((0 v ... v (m!1),(m,7N / z or, what amounts to the same

((0 v ... v (m!1),�x* e *[y/x],7N / z

�y(�x* e *[y/x]),((0 v ... v (m!1),7N / z

(in virtue of what has been said about the variable y.)

But / �y(�x* e *[y/x]) is derivable as follows:

�x*,* / *

______________________

�x* / *[y/x],�x* * / �x* e *

______________________ ___________________ (1)

/ �x* e *[y/x],�x* * / �y(�x* e *[y/x])

(3) __________________ ___________________ (2)

/ �y(�x* e *[y/x]),�x* �x* / �y(�x* e *[y/x])

__________________________________________________

/ �y(�x* e *[y/x])
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To enable verification of the legitimacy of this proof it is pointful to make the following remarks

(1) *[y/x] = 8x(*)y where y does not occur in *. It follows from this that * = 8y(*[y/x])x and

that �x* e * = 8y(�x* e *[y/x])x

(2) The variable y does not occur free in �y(�x* e *[y/x]).

(3) �x* e *[y/x] = 8y(�x* e *[y/x])y

From �y(�x* e *[y/x]),(0 v ... v (m-1,7N / z and from / �y(�x* e *[y/x]) we obtain by a cut, (0 v ... v

(m-1,7N / z. Noting that all the wff of 7N are modalised we obtain M((0 v ... v (m-1),7N / z. But M((0

v ... v (m-1),7N is a wff of 7N. Hence we obtain 7N / z contrary to induction hypothesis. This completes

the proof of the lemma.

27. Consider the set of all modalised wff and order this in a series 01, 02, 03, ... We assume the following

series of sets of wff H0, H1, H2, ...

H0 = G.

Hn+1 = Hn if the wff 0n+1 is inconsistent with Hn and otherwise Hn+1 = Hn c {0n+1}

We see immediately by induction on n, and noting that G is consistent, that for every n, Hn is

consistent.

Let H be the union of H0, H1, H2,...

Lemma II: H is consistent

Proof by reductio. Let 7 be a series included in H such that 7 / z is derivable. Let 0n be the wff with the

highest index in 7. It is clear that all the wff of 7 appear in Hn. Then Hn will be inconsistent, contrary to

construction.

Lemma III: If 0 is a modalised wff then if 0 is consistent with H then 0 is an element of H.

Proof: Let the index of 0 in the series 01, 02, 03 be n. If 0 is consistent with H then it is consistent with

Hn!1. From this we have by construction that Hn = Hn!1 c {0}. So 0 is an element of H.

28. Assume the series F0, F1, F2 containing respectively the wff (0.0, (0.1, (0.2, ..., (1.0, (1.1, (1.2, ..., (2.0, (2.1,

(2.2, ..., 

Assume the series Q0, Q1, Q2, ... defined as follows: Q0 = H c F0; Q1 = H c F1; Q2 = H c F2, ...

Lemma IV: The sets Q0, Q1, Q2, ... are consistent

Proof by reductio. Consider some series Qn. Let 7 be a series included in Qn such that 7 / z is derivable.

Let 7N be the series composed of those elements of 7 which are elements of Fn and let 7O be that which

remains in the series 7 when all the elements of 7N are removed. Let 7� be the series (n.0, ..., (n.m where

m is the highest number occurring in the second index of a wff in 7N. It is clear that if 7 / z is derivable

then 7�,7O / z is equally. Consider the wff ((0 v ... v (m) where (0,..., (m are respectively the wff (n.0,

..., (n.m. We would have that ((0 v ... v (m),7O / z is derivable. Taking account of the fact that all the wff

of 7 are elements of H and thus are modalised wff we would have that M((0 v ... v (m),7O / z is

derivable. But M((0 v ... v (m) = .n.m, and .n.m, like all the wff of 7, is an element of H. It follows that H
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would be inconsistent, contrary to lemma II.

It is clear that identical reasoning holds equally for the case where 7 contains only the wff (n.0.

29. Consider the set of all wff and order them in a series "1, "2, "3 ... defined as follows:

For each number n Rn.0 = Q0n. For each number m+1 Rn.m+1 = Rn.m if "m+1 is inconsistent with Rn.m and

otherwise Rn.m+1 = Rn.m c {"m+1}. We see immediately by induction on m, and considering that Qn is

consistent, that for each m Rn.m is consistent.

Consider the sets R0, R1, R2 ... which are respectively the unions of the sets R0.0, R0.1, R0.2 ...R1.0,

R1.1, R1.2 ... R2.0, R2.1, R2.2, ...

Lemma V: The sets R0, R1, R2 ... are consistent.

Proof by reductio. Let 7 be a series included in Rn such that 7 / z is derivable. Let "m be the wff of 7

whose index m is the highest. It is clear that all the wff of 7 appear in Rn.m. Hence Rn.m is inconsistent,

contrary to construction.

Lemma VI: Let " be a wff. If " is consistent with Rn " is an element of Rn.

Proof: Let the index of " in the series "1, "2, "3 be m. If " is consistent with Rn it is consistent with Rn.m+1.

from this we have, by definition, that Rn.m = Rn.m!1 c {"}. So " is an element of Rn.

Lemma VII: If " is a modalised wff and if " appears in a set Rn then, for all m, it appears in Rm

Proof: Let i be the index of " in the series "1, "2, "3, ... If " belongs to Rn then " is consistent with Rn.i!1.

But Rn.i!1 contains H. So " is an element of H. From this, in virtue of the manner of definition of the set

R0, R1, R2 ... " is an element of each of these sets.

30. Assume a quasi-universe +D,W,Q, containing a denumerably infinite set of individuals, and a

denumerably infinite set of worlds.

Assume a 1-1 correspondence between individual variables and the individuals of +D,W,.

Assume a 1-1 correspondence between the sets R0, R1, R2 ... and the worlds of +D,W,. Consider

the set of intensional relations which are given by +D,W,. For each natural number n we establish a

correspondence between n-place predicate variables and certain n-place intensional relations such that to

each variable corresponds a single predicate, though several variables may correspond to the same

predicate.

If p is a propositional variable we let correspond to p the 0-place intensional relation T which takes

the value T for the worlds corresponding to the sets Rn which contain p, and the value F for the other

worlds.

If n is an n-place predicate variable (n�0) we let correspond to n the n-place intensional relation

T which, when given as arguments a world w and the individuals a1, ..., an (not necessarily distinct), takes

the value T or F according as the wff nx1...xn is contained or not in the set Rw, the set Rw being that which

corresponds to the world w and the variables x1,..., xn being those which correspond to the individuals a1,

..., an respectively.

Consider the set of intensional relations of +D,W, which we have made correspond with the

variables of �. This set of predicates constitutes, with the set of individuals and the set of worlds of +D,W,,
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a quasi-universe +D,W,Q, based on +D,W,. Further, the system of correspondences established constitutes

an interpretation V, relative to +D,W,Q,. It is clear that the quasi-universe +D,W,Q, permits the

establishing of other interpretations than V.

31. Lemma VIII: Let +D,W,Q, be a quasi-universe and V the interpretation relative to +D,W,Q,

corresponding with the set Rw. Let " be a wff. Then " is true or false in w according as " occurs or not in

Rw.

Proof by induction on the construction of ". (v. remarks at the end of the present paragraph.)

If " is an atomic wff the lemma follows from the correspondences established between the variables of

� and the quasi-universe +D,W,Q,.

If " has the form ~$ and if ~$ is in Rw then $ is not in Rw, for otherwise Rw would be inconsistent.

So $ is false in w and ~$ is true in w.

If ", i.e. ~$, does not appear in Rw, then $ appears in Rw, for if not it would follow that ~$ and $

are both inconsistent with Rw. We would then have the derivable sequents ~$,7 / z and $,7N / z where

7 and 7N are sequents taken from Rw. Let 7O = 7 c 7N. We then have ~$,7O / z and $,7O / z and

easily obtain 7O / $. By a cut with $,7O / z we obtain 7O / z and therefore that Rw is inconsistent. If

$ is in Rw, $ is true in w, and so ~$ is false.

If " has the form $ v ( and " appears in Rw, $ and ( appear in Rw. For $ v ( / $ and $ v ( / (

are derivable. So $ and ( are consistent with Rw, and from this are clearly in Rw. So $ and ( are true in w,

and so $ v ( is true in w.

If ", i.e. $ v ( does not appear in Rw. $ and ( cannot both appear, for otherwise, since the sequent

$, ( / $ v ( is derivable, $ v ( would be in Rw. One of the two wff $ and ( will not be in Rw, and this

one will be false in w. So $ v ( is false in w.

If " has the form $ w ( and " appears in Rw, one of the wff $ and ( will appear in Rw, for

otherwise ~$ and ~( will appear, and since ~$,~(,$ w ( / z, Rw will be inconsistent. Whichever wff $

or ( appears in Rw will be true, and so $ w ( will be true in w.

If ", i.e., $ w ( does not appear in Rw, then neither $ nor ( appear in Rw. For otherwise, since $

/ $ w ( and ( / $ w ( are derivable $ w ( will appear in Rw. So $ and ( are false in w, and from this $

w ( is false in w.

If " has the form $ e ( and " appears in Rw, ( will appear in Rw or $ will not be in Rw, for

otherwise $ and ~( will appear, and since ~(,$,$ e ( / z is derivable, Rw will be inconsistent. If (

appears in Rw then ( will be true in w, and if $ does not appear in Rw then $ will be false in w, and in either

case $ e ( will be true in w.

If ", i.e., $ e ( does not appear in Rw, then ( will not appear in Rw and $ will appear in Rw. For

otherwise, ( or ~$ will be in Rw, and since ( / $ e ( and ~$ / $ e ( are derivable $ e ( will appear in

Rw. So ( is false in w and $ is true in w, and from this $ e ( is false in w.

If " has the form $ / ( and " appears in Rw, $ and ( will both be in Rw or neither $ nor ( will be

in Rw, For if one of these wff is in Rw and the other is not, one will have, for instance, that $ and ~( are

in Rw. But ~(,$,$ / ( / z is derivable. It follows that $ and ( are both true in w or that $ and ( are both

false in w, and so $ / ( is true.

If ", i.e., $ / ( does not appear in Rw, then one of the wff $ and ( will appear in Rw and the other

not. For, if both wff appear then one notes that $,( / $ / ( is derivable, and if neither $ nor ( is in Rw

then ~$ and ~( are in Rw, and ~$,~( / $ / ( is derivable. So one of the two wff must be true in w and
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one false in w, and from this $ / ( is false in w.

If " has the form �x$ and if " occurs in Rw, then for every interpretation VN which gives all

variables other than x the same value as V, $ is true in w according to VN. For let T be the entity

(individual or relation) VN makes correspond with the variable x, and let y be the variable, of the same type

as x, which V makes correspond with T. Two hypotheses arise according as 8x($)y is a well-formed

paraformula or not.

If 8x($)y is well-formed let ( be its resultant. Then, since �x$ / ( is derivable, (, appears in Rw

and is thus true in w. But in virtue of theorems V, VII or VIII, ( has, in w, the value which $ has in w

according to VN. Thus VN($,w) = T.

If 8x($)y is not well-formed it will be because x occurs free in $ in the scope of a quantifier �y

or �y. let $N be the wff obtained by replacing in $ the variable y everywhere it occurs bound by a variable

z of the same type which does not occur in �x$, hence not in $, free or bound. �x$ / �x$N is derivable

and hence �x$N is an element of Rw. Further 8x($N)y is well-formed and hence its resultant (N is an

element of Rw and so true in w. It follows, in virtue of theorem IX, that $ and $N have the same value in

wN. Thus VN($,w) = T. So, for all interpretations VN which give to all variables other than x the same value

as V, VN($,w) = T, and so V(�x$,w) = T.

If ", i.e. �x$, does not appear in Rw there is an interpretation VN which gives to all variables other

than x the same values as V, such that $ is false in wN. For, if �x$ does not appear in Rw, ~�x$ appears

in Rw and as ~�x$ / �x~$ is derivable, �x~$ appears in Rw. But Rw contains a wff of the form �x~$ e

~$[y/x] where ~$[y/x] is 8x(~$)y, this paraformula being well-formed. It follows that ~$[y/x] appears in

Rw since �x~$,�x~$ e ~$[y/x] / ~$[y/x] is derivable. So ~$[y/x] is true in w and $[y/x] is false in w. Let

VN be the interpretation which gives x the same value as V gives to y and to all variables other than x the

same value as V. We have that $ has the same value in wN as $[y/x] has in w. VN($,w) = F. It follows that

V(�x$,w) = F.

If " has the form �x$ and if " occurs in Rw, then there is an interpretation VN which gives all

variables other than x the same value as V, and $ is true in w according to VN. (We leave the proof to the

reader who can adapt the proof given above for the case where " has the form �x$ and does not appear

in Rw.) It follows that �x$ is true in w.

If ", i.e. �x$, does not appear in Rw, then for every interpretation VN which gives to all variables

other than x the same values as V, such that $ is false in w according to VN. It follows that �x$ is false in

w. (We leave the proof to the reader who can use the proof given above for the case where " has the form

�x$ and appears in Rw.)

If " has the form L$ and if " appears in Rw, then, since L$ / $ is derivable $ is in Rw and so $ is

true in w.

Further, in virtue of lemma VII, for any world wN, L$ appears in RwN. It follows that for every world

wN, $ is true in wN, and from this that L$ is true in w.

If ", i.e. L$, does not appear in Rw, ~L$ appears in Rw, and as ~L$ / M~$ is derivable M~$

appears in Rw. Further for every wN, M~$ appears in RwN. Suppose that the wff M~$ is the wff M~$n (v.

paragraph 25) where wN corresponds with Rn, so that RwN = Rn. Then since M("* v (M~$ e ~$)),M~$ /

~$ is derivable, ~$ is an element of RwN. It follows that since wN is the world corresponding to RwN, $ is

false in wN and hence $ is false in wN and hence L$ is false in w.

If " has the form M$ and if " appears in Rw there is a world wN such that $ is true in wN. (We leave

the proof to the reader, who can adapt the proof given above for the case where " has the form L$ and

does not appear in Rw.) It follows that M$ is true in w.

If ", i.e. M$, does not appear in Rw, then ~M$ appears in Rw, and as ~M$ / L~$ is derivable L~$
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will be in every RwN, and from this, for every world wN, $ is false in wN, It follows that M$ is false in w.

Remark: The proof cannot strictly be said to be by induction on the construction of ", but by induction

on wff with an identical structure. Two wff are said to have the same structure if each can be obtained from

the other by substitution of free or bound variables. Then, where " has the form �x$ and " is in Rm we

can assume that the lemma has been proved, not only for $, but also for 8x($)y. Note also that, for

instance, where " has the form �x$ and is not in Rw we can suppose that the lemma has been proved, not

only for $[y/x] ($[y/x] = 8x($)y) but also for ~$[y/x]. This is clearly legitimate because we have already

proved that if the lemma holds for $[y/x] it holds for ~$[y/x].

32. Lemma IX: The wff "* is quasi-satisfiable in the quasi-universe +D,W,Q,.

Proof: Suppose that M"* is the wff M$n (see paragraph 25.) Then M"* v (M"* e "*) is the wff (n.0, and

it is in Rn. Now, since we have M"* v (M"* e "*) / "* it follows that "* is in Rn and thus is true in w,

where w is the world corresponding to Rn.

33. Lemma X: The quasi-universe +D,W,Q, is regular.

Proof: For any number m all theorems are in Rw. So all theorems are satisfiable in +D,W,Q,. By theorems

X and XI +D,W,Q, is regular.

With the proof of theorem XIII we have established that if "* is a consistent wff there is a regular quasi-

universe +D,W,Q, in which "* is quasi-satisfiable.

V Completeness of S51

34. Recall that we are given the following: (1) the language S51, defined in CLM, 23; (2) the semantic

definitions of CLM, 3 and 4, which, as observed in CLM, 24, are applicable to the language S51; (3)

theorems I, II and IV of CLM, adapted, as has been said in CLM, 26, to the language S51; (4) a semantic

(not quasi-semantic) theorem analogous to theorem IX of the present article; for S51 the variables x and

w of this theorem are individual variables; (5) the deductive system S51 defined in CLM, 27.

35. We can make sets and series of wff of the language S51 analogous to the sets and series defined in

paragraphs 25-29 of the present article. Lemmas I-VIII can be proved as in those paragraphs.

36. We assume a universe +D,W,, and establish the correspondences described in paragraph 30 of the

present article. We no longer need the quasi-universe +D,W,Q, containing just those intensional relations

which correspond with predicate variables. Lemma VIII can be read as follows:

Lemma VIII: Let +D,W, be a universe and V an interpretation relative to +D,W,. Let w be a world in

+D,W, corresponding to the set Rw. Let " be a wff. Then V(",w) = T or F according as " is or is not in Rw.

The proof is as in paragraph 31. We have the truth or falsity of " rather than quasi-truth or falsity because

we don’t have second-order quantifiers in the language S51. So if one looks at the series of quasi-

semantical definitions of truth and falsity given in paragraph 3 of the present article, one can see that they
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are equivalent to the notions of truth or falsity with respect to a universe +D,W, except for being restricted

by Q. In other words, for the language S52, the definitions of truth and falsity in quasi-universe +D,W,Q,

based on a universe +D,W, are no different from those for truth and falsity in +D,W,Q, except where x is

a propositional or predicate variable. The difference in those cases arises because one doesn’t consider all

the intensional relations in +D,W,, but only those which occur in the quasi-universe +D,W,Q, based on

+D,W,. It follows that for the language S52 a wff containing second-order quantifiers might be true or false

in w without being true or false in w in +D,W, with respect to the corresponding V, and vice versa. The

absence of second-order quantifiers in S51, makes this difference disappear.

It follows that we can proceed as follows: Apply the quasi-semantical definitions of paragraph 3

(not those of paragraph 4) to the language S51. In Lemma IV choose the quasi-universe +D,W,Q,, and not

the Universe +D,W,. Prove, as in paragraph 31, that " is or is not true or false in w with respect to an

interpretation V according as " is or is not in Rw. We can claim that " is true or false for according as "

is or is not in Rw, which is essentially lemma VIII relative to S51, as formulated above.

37. We can prove, as in paragraph 32:

Lemma IX: "* is satisfiable in a Universe +D,W,.

Lemma X falls out of the collection of lemmas I-IX proved for S51

Theorem XV: If "* is a consistent wff in S51 then "* is satisfiable.

From this one can conclude

Theorem XVI: S51 is complete

38. It has been possible to adapt the Henkin proof method to S52 and S51. One might have considered

adapting the Gödel proof method to S51.37 But one encounters a difficulty from the fact that the Gödel

method rests on the technique of prenex formulae, and this technique is unavailable in modal logic.38

6. Commentary on QA

The completeness proof in QA is a proof of what Bayart calls ‘quasi-completeness’, defined in terms of

‘quasi-universes’. This is because second-order logic is known to be unaxiomatisable when the n-place

predicates range over all sets of n-tuples from the domain of individuals.39 Henkin 1950, however,

establishes a form of completeness whereby the range of the n-place predicates can be arbitrarily restricted

by a subset of ‘allowable’ sets of n-tuples. Bayart refers to this set as Pn and calls such a restricted universe

a ‘quasi-universe’. Following Henkin 1950 (p. 81, note 5), Bayart notes that soundness requires that the

quasi-universe be ‘regular’ in the sense that the range of an n-place predicate must include every n-place

condition definable in the language. I.e., we have to have, for every wff ", the validity of:
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�n�x1...�xn(nx1...xn / ")

where n does not occur free in ". This is necessary to ensure the quasi-validity of principles like �I and

I�, as illustrated in the discussion of (2) in the commentary on CLM above.

The completeness proof in Bayart 1959 is a standard Henkin proof, though Bayart only proves

what is sometimes known as ‘weak completeness’ — that every consistent wff has a model rather than that

every consistent set of wff has a model. I.e. he proves that where "* is a consistent wff then "* is

satisfiable. I shall consider later how his proof might be modified to establish strong completeness. In the

modal case satisfiability of course means the existence of a model in which "* is true in some world, for

some assignment of values to its free variables. The proof can be divided into three stages. The first stage

(QA, 25-27) consists in the construction of a (consistent) set H of wff which has the following properties:

1. H contains M"*

2. For every wff of the form M$, and for every collection of wff of the form �x1*1,..., �xn*n, there

are variables y1,..., yn such that M(M"* v (M$ e $) v (�x1*1 e *1[y1/x1]) v ... v (�xn*n e

*n[yn/xn])) is in H. (Note that ‘variables’ includes individual variables, propositional variables and

predicate variables.)

3. Where ( is a fully modalised wff either ( or ~( is in H.

Before I discuss how Bayart proves that there is such an H, I will look at the second stage of his proof.

What has to be achieved in this. In a model for modal predicate logic constructed in accordance with the

Henkin method, the ‘worlds’ correspond to sets of wff in such a way that truth in a world is equivalent to

membership of the corresponding set. Because Bayart is concerned only with S5 we don’t need to talk

about one world’s being accessible from another. But we do need to prove that whenever M0 is in a (set

corresponding to a) world w then 0 itself is true in some world wN in the model, and vice versa. The

purpose of H is to provide a recipe for constructing such a set of worlds, and this procedure is described

in QA, 28 and 29. Bayart first constructs a family of sets of wff Q0, Q1, Q2, etc. For every wff M0 in H

there is one of these Qns which contains, not only M"*, but also M0 e 0. That particular Qn, like every

member of Q, also contains, for every �x*, �x* e *[y/x] with respect to some variable y of the same type

(individual, propositional or n-place predicate) as x is. The need to have wff like �x* e *[y/x] is well-

known in first-order logic, where it is sometimes referred to as the witness property. Finally each Qn is

extended to a maximal consistent Rn, and it is the Rns which correspond to the worlds. Bayart puts a set

of individuals into 1-1 correspondence with the individual variables, and a set of worlds into 1-1

correspondence with the Rns. On this basis, in the third stage of his proof, Bayart associates propositional

and predicate variables with appropriate intensions, and thus establishes a value assignment V. He then

proves by the usual kind of induction that V(",w) = T iff " 0 Rw.

I now proceed to indicate how Bayart proves the existence of a suitable H, and then how he

constructs the family Q out of it. First assume two separate enumerations of wff. First an enumeration $0,

$1, ... etc. of all wff. Second a separate enumeration �x1*1, �x2*2, �x3*3, ... etc. of all wff beginning with

�. Then assume an enumeration of all pairs of natural numbers nm in such a way that if m < k then nm

precedes nk, and if n < k then nm precedes km.40 Associate with each nm a wff (nm, where the (nms look

like this:
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(00: M"* v (M$0 e $0) (01: �x1*1 e *1[y01/x1] (02: �x2*2 e *2[y02/x2] ...

(10: M"* v (M$1 e $1) (11: �x1*1 e *1[y11/x1] (12: �x2*2 e *2[y12/x2] ...

(20: M"* v (M$2 e $2) (21: �x1*1 e *1[y21/x1] (22: �x2*2 e *2[y22/x2] ...

... ... ... ...

and so on. I.e., the (nos are the leftmost column, and (nm is the m’th wff in the nth row. The reason for this

series of wff is that for every M$ we need a world where $ is true, and where every true existential wff

can be ‘instantiated’ by a witnessing variable. In this construction the variable ynm is chosen to be one

which does not occur in *m or in any (hk where hk is earlier than nm in the enumeration of pairs of

numbers.

Let G consist of all wff .nm, where .nm = M((n0 v ... v (nm). The point of this is to ensure that any

finite subset of wff in the nth row is jointly possible. Bayart’s proof that G is consistent is by induction

on the ‘rank’ of .nm, i.e., by the place of its highest variable in the enumeration of the nm pairs. First prove

that {(00} is consistent, and then, for the induction, let Gnm denote the set of all .hk of lower rank than .nm,

assume that Gnm is consistent, and prove that in that case so is Gnm c {.nm}.

.00 is M(M"* v (M$0 e $0))

By standard principles of S5, if .00 is not consistent then

/ M(M$0 e $0) e ~M"*

But since / M(M$0 e $0) we have / ~M"*, contradicting the assumed consistency of "*. So G00 is

consistent.

Now assume that Gnm is consistent but that Gnm c {.nm} is not. There are two cases according as

m = 0 or m � 0. If m = 0 then we would have, for some finite subset 7 of Gnm, that

M(M"* v (M$n e $n)),7 / z

By standard principles of S5, bearing in mind that 7 is fully modalised, we would have

M"*,7 / ~M(M$n e $n)

But / M(M$n e $n) and so

M"*,7 / z.

But 7 f Gnm and Gnm is consistent and contains M(M"* v (M$0 e $0)), and so, since M(M"* v (M$0 e

$0)) / M"* this would make Gnm inconsistent, which contradicts the induction hypothesis that 7 is

consistent, since all its members are of lower rank that (nm. While I have appealed in this commentary to

‘standard principles of S5’, Bayart provides all the necessary proofs, as should be apparent from the

translation.
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e �xM". Since he is working within S5 BF is provable, but it is interesting to note where this fact is used in his proof. In fact
it is at (13), since the proof here claims that since 7 is fully modalised we may move from a sequent of the form ",7 / z to one
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obtain M�x" / �xM" by MI.) The structure of the proof given in the text from (12) to (13) is to remove a modal operator using
IM, apply certain quantificational principles to the result, and then put the operator back at (13).
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For m � 0 we have that .nm is

M((n0 v ... v (nm!1 v (�xm*m e *m[ynm/xm])).

Suppose that

M((n0 v ... v (nm!1 v (�xm*m e *m[ynm/xm])),7 / z

where 7 is a subset of Gnm (all of whose wff are therefore of lower rank that .nm). Then

(12) (n0 v ... v (nm!1,7 / ~(�xm*m e *m[ynm/xm])

And since ynm is not free in 7 or in *m or in (n0, ..., (nm!1 we have

(n0 v ... v (nm!1,7 / ~�ynm(�xm*m e *m[ynm/xm])

But

/ �ynm(�xm*m e *m[ynm/xm])

and so

(n0 v ... v (nm!1,7 / z.

Since 7 is fully modalised we have

(13) M((n0 v ... v (nm!1),7 / z41

i.e. that {.nm!1} c 7 is inconsistent. But all its members are of lower rank than .nm, and so are in Gnm,

which is assumed consistent. So Gnm c {.nm} is consistent. Since G is the union of all the Gnm its

consistency follows from their consistency in the usual way. Finally let G be extended to H by ordering

all modalised wff of �, and adding each if it is consistent to do so, and its negation if not. This ensures

that H has the three properties mentioned above.

H itself does not correspond with any of the worlds — indeed it is not maximal, and all its

members are fully modalised. But it can be used to obtain sets which do so correspond. For each n Bayart

forms a set Qn which consists of H together with all the (nms for 0 # m. He then proves that each Qn is

consistent. Suppose it were not. Then there will be some finite subset 7 of Qn such that 7 / z. Now,

among the (s in 7 there will be one, say (nm, such that no other ( in 7 has a higher rank than (nm. And

in that case, every ( in 7 will appear as a conjunct in M((00 v ... v (mn) in H and so {(00,..., (nm} is

consistent, and since 7 f {(00,..., (nm} then 7 is also consistent.
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Finally each Qn is extended to a maximal consistent Rn, and it is these Rns which correspond to the

worlds. We note some features of each Rn. First, all the Rns have the same modalised wff. This is proved

in lemma VII. This means that if L0 0 Rn then it appears in every Rm and so 0 appears there also. Second,

if M0 0 Rm then, where M0 is the nth wff beginning with M. M0 e 0, being a conjunct of (n0 will appear

in Rn and since M0, being modalised, will also be in Rn, then 0 will appear in Rn. So, where M0 0 Rm then

0 will appear in Rn. Third, each Rm contains Qm, and therefore, for every n, where �x* is the nth wff

beginning with � there will be some y such that �x* e *[y/x] 0 Qm. Finally, since M"* 0 H, there will be

some Rn such that "* 0 Rn. All these properties ensure that the model that Bayart constructs in QA, 30

enables the ‘truth lemma’ he proves there to be established by a standard induction on the construction

of wff of �.

In QA, 30, Bayart asks us to assume that we have put the individual variables of � into a 1-1

correspondence with a denumerable set of individuals.42 It is more common nowadays to let the domain

simply be the individual variables, but of course any denumerable domain will do. Bayart perhaps has in

mind that while there may be some particular intended domain of individuals, it is not the business of logic

to commit to it. He also assumes a 1-1 correspondence between a denumerable set of ‘worlds’ and the

maximal consistent sets Rw. Notice that, in contrast to the worlds in the usual kind of canonical model,

there are only denumerably many maximal consistent sets in Bayart’s model.

Based on these correspondences Bayart is able to define the Pns which, together with D and W,

constitute the quasi-universe +D,W,Q,. The intensional relations of each Pn (where propositions are 0-place

intensional relations) are those which correspond to predicate variables in the sense that an n-place

intensional relation T is in Pn if there is an n-place predicate variable n such that, for any w 0 W, and any

individuals a1,..., an 0 D which correspond with individual variables x1,...,xn of �, T(a1,...,an,w) = T iff

nx1...xn 0 Rw. This system of correspondences automatically generates a ‘canonical’ interpretation, which

I will here call V*. For V* we have

V*(nx1...xn,w) = 1 iff nx1...xn 0 Rw

This is because, where a1,..., an correspond to x1,..., xn and w corresponds with Rw, by the correspondences

assumed at the beginning of QA, 30, V*(n) is the function T such that T(a1,...,an,w= T iff n(x1,...,xn) 0

Rw. The task of QA, 31 is to prove the ‘truth lemma’ (Lemma VIII) that for any wff " of �

V*(",w) = T iff " 0 Rw.

Bayart does not signal the canonical interpretation in any way, and does not reserve a special name for it.

He does say at QA, 30 that the quasi-universe permits the establishing of other interpretations, and in fact

reference to these is necessary at the induction step for the quantifiers in the proof of Lemma VIII. Here

is why. If �x$ is in Rw then we have to prove that V($,w) = T for every V just like V* except for what it

assigns to x, where x is any kind of variable. So V(x) is either an individual from D, or else an n-place

intensional relation in Pn, for n $ 0. Then there will be a variable y which corresponds with V(x), so that

V(x) = V*(y). By �I we have that $[y/x] is in Rw. We have of course to make provision for first forming

a bound alphabetic variant of $ which contains no y quantifier which would prevent y from occurring free

when it replaces x in $. Bayart presents "[y,x] as a paraformula, 8x($)y, and uses his notion of a ‘well-
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formed’ paraformula as defined at CLM, 7 to guard against the possibility of the accidental binding of y.

Notice that since y is a variable the resultant of 8x($)y is just $[y/x]. Since $[y/x] is in Rw then

V*($[y/x],w) = T, and then Bayart uses the theorems of QA, II to establish that V($,w) = T, and so that

V*(�x$,w) = T. The converse is more straightforward, and requires no additional commentary.

It should be observed that in the completeness proof, and in particular in the proof of the truth

lemma, no mention is made of the need for the quasi-universe to be regular. It is however required for

soundness, but this easily follows from the truth lemma, given the derivability of the comprehension

principle, that for any wff " not containing free n

�n�x1...�xn(nx1...xn / ")

is derivable, and so is in every Rw, and so is valid. This fact is stated in Theorem X in QA, 33.

Now to the matter of strong completeness. We know of course that strong completeness (or strong

quasi-completeness) holds for modal predicate S5, but the question of interest here is how much adaptation

Bayart’s proof needs to accommodate it. For strong completeness, in place of a consistent wff "* assume

a consistent set A* of wff. In this extension we need to allow the antecedent and consequent of a sequent

to include infinitely many wff. Let A* be a set in a language �0 of modal predicate logic, and let � be a

language with infinitely many new variables (of all types) not in �0. We then assume that the ordering of

variables used in Bayart’s proof only concerns the variables of � which are not in �0. The principal idea

behind what follows is this. Where Bayart uses the single wff M"* as a component of each of the wff .nm

which make up G we now have to use a whole family 'nm of wff, where each member of 'nm has as a

component M" for some conjunction " of wff in A*. Just as the .nms can be enumerated on the basis of

the enumeration of the nm pairs, so can the 'nms. We then make G the union of all these 'nms. Specifically

we proceed as follows. Change the definition of each (n0 so that it is simply M$n e $n. Now assume that

" is a conjunction of wff from A*, and let .nm["] be M(M" v (n0 v ... v (nm). Let 'nm be the set of all

.nm["], where " is any conjunction of wff in A*, and let Gnm be the set of all wff .hk["] (for every

conjunction " of wff in A*) whose rank is lower than nm. From this definition it follows that, where (nm

is �xm*m e *m[ynm/xm], then ynm does not occur in *m or in any member of Gnm.

We prove that each Gnm is consistent. The proof is by induction on the rank of 'nm. G00 will be the

set of all M" where " is a conjunction of wff in A*. G00 is consistent, since A* is consistent. Now suppose

that m = 0 and n > 0. Since Gn0 is of lower rank than 'n0 we assume for induction that Gn0 is consistent.

Suppose that Gn0 c 'n0 is inconsistent. Then, for some "1, ..., "k such that each "i (1 # i < k) is a

conjunction of members of A*, and for some 7 f Gn0, you would have

M(M"1 v (M$n e $n)), ..., M(M"k v (M$n e $n))),7 / z.

So, since 7 is fully modalised, by principles of S5:

M"1,..., M"k,7 / z.

But this would make Gn0 inconsistent, since 7 f Gn0 and M("1 v ... v "k) is in G00 and G00 f Gn0.

For m � 0, suppose that Gnm is consistent, but that Gnm c 'nm is not. That would mean that there

will be some 7 f Gnm, and some wff "1, ..., "k which are conjunctions of wff from A*, such that, where

( is ((n0 v ... v (nm!1),
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M(M"1 v ( v (�xm*m e *m[ynm/xm])),..., M(M"k v ( v (�xm*m e *m[ynm/xm])),7 / z.

So

M"1 v ... v M"k v (,7 / ~(�xm*m e *m[ynm/xm]).

So, since ynm does not occur in * or in any wff in Gnm, we have

M"1 v ... v M"k v (,7 / ~�ynm(�xm*m e *m[ynm/xm])

But / �ynm(�xm*m e *m[ynm/xm]), and so

M"1 v ... v M"k v (,7 / z

and so, since all members of 7 are modalised,

M(M"1 v ... v M"k v (),7 / z

But this would make Gnm inconsistent, since M(M("1 v ... v "k) v () is in Gnm and 7 f Gnm.

Let G be the union of all the Gnms. Since each Gnm is consistent then so is G.

In order to ensure that there is a world satisfying A* we add to the Qns an extra set QA*, which

includes every member of A* together with every (1m for m � 0. (The choice of 1 is arbitrary here, and

is only for definiteness.) We shew that QA* is consistent. Suppose it were not. Then you would have 7 /

z for some finite subset 7 of QA*, which contains some "1,..., "k from A*, and some finite collection of

the wff (1h, for h � 0. Among these there will be a greatest, say (1m. Now suppose that M("1 v ... v "k)

is $n. Then let 7N be

{M$n, (M$n e $n), (11[yn1/y11], ..., (1m[ynm/y1m]}

Clearly if 7 / z then 7N / z since none of the ynis occur in 7. But

M(M$n v (M$n e $n) v (11[yn1/y11] v ... v (1m[ynm/y1m])

is in Gnm and therefore in H. So 7 is consistent.

I have tried, in this extension of Bayart’s proof to the case of strong completeness, to use methods

which seem no more elaborate than those found in Bayart’s own proof. This should give at least an

indication of how Bayart’s proof might be adapted to the case of strong completeness, even though Bayart

himself does not consider doing so.
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