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1. Introduction

Nonstandard analysis is generally perceived to be highly nonconstructive.
But, in fact, notions like infinitesimals and infinite numbers are both mean-
ingful and useful in constructive analysis, even in the strict form of Bishop
[3]. A few years before the advent of Robinson’s nonstandard analysis,
Schmieden and Laugwitz [17] introduced a more constructive approach to
infinitesimal calculus. Their approach relied on classical logic, however.
It was further developed by D. Laugwitz in a series of papers and books.
Martin-Lo6f [11] suggested a strictly constructive foundation for nonstan-
dard analysis, which was derived from his analysis of Brouwer’s choice
sequences. The basic idea was essentially the same as Schmieden and
Laugwitz’, namely to use certain constructive reduced powers instead of
nonconstructive ultra powers in building, e.g., the hyperreals. In [14] we
introduced a formal system intended for developing nonstandard analysis
along these lines. The system was an intuitionistic higher type arithmetic,
with a predicate for “standard” analogous to the internal set theory of Nel-
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son [12]. In this system, transfer principles strong enough to capture most
conditional (in)equalities were obtained (see Section 3.1 below). Conse-
quently it preserves many algebraic properties and estimates of classical
nonstandard analysis. A nonstandard proof of the fundamental theorem
of calculus was given. We also demonstrated some nonstandard charac-
terisations of standard notions, in particular the limit concept. However,
one important device of classical nonstandard analysis seems irrevocably
lost, namely the standard part map (see Section 4.2 below).

The present paper develops the matter of [14], and it may be read in-
dependently of the earlier publication. In Section 2 we remark on the
problem of formalising Bishop’s constructive analysis. The nonstandard
formal system and some of its properties are reviewed in Section 3. In
Section 4 we prove various results in nonstandard analysis: some non-
standard characterisations of standard notions, a nonstandard result gen-
eralising Toeplitz’ theorem on regular summation. S-continuity and S-
differentiability are also discussed. Section 5 contains a nonstandard ex-
istence proof for solutions to ordinary differential equations, which uses
Euler—Cauchy’s method.

2. Formalising analysis in HA* and related
theories

It has been claimed by Goodman and Myhill [7], without much elabora-
tion, that most of Bishop’s constructive analysis can be formalised within
an intuitionistic theory S of arithmetic in higher types. This theory is,
more precisely, HA“ extended with two choice schemata (AC and RDC,
see below). It is closely related to a theory suggested by Bishop himself
[2], and has an easy translation into Martin-Lof’s type theory. Our reason
for not considering the more expressive type theory, at this stage, is its
syntactical complexity; the simpler theory is more amenable to nonstan-
dard extensions. In this section, we show how to cope with the limitations
of S. Readers not interested in the more subtle points of formalisation are
recommended to skip the discussion about representation of functions.

The mathematical objects of S are elements of the types generated thus:
0 is the basic type of natural numbers; if o, T are types, then the function
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space o — 7 (also written o7) and the cartesian product o x 7 are types.
The elements of these types are induced by the usual combinators (those
of Goédel’s T and pairing and projections). The combinators make the
following constructions possible

» an operation f of type 0 — 7 can be defined by abstraction on a
variable z of type o in an expression a of type 7: f(z) = a(x);

» definition by primitive recursion (in higher types)

f0,7) = g()
fln+1,%) = h(n, 7, f(n, D)),

where g and h are given operations.

Variables ranging over type o are written 7. Note that we use the word
‘operation’ for a function which is not required to respect any equivalence
relation except the (nonextensional) equality of the system (see discussion
in Bishop [3]). Formally there are no sets in S. But there are classes,
in the sense of set theory; the class {z : A(z)} is defined by the extent
of the formula A(z). What class a particular formula defines depends on
the variable displayed. We often write x € A for A(z). In the sequel we
shall call these classes sets, keeping in mind that we cannot in general
quantify over the collection of all sets. In constructive mathematics each
set comes with an equivalence relation. A set of o-objects is represented
by two formulas: A(z) and z =4 y, where =4 is an equivalence relation
on {z : A} and z and y varies over the type o.

Let (A,=4) and (B,=p) be sets of o- and 7-objects, respectively. A
function can be given as a functional relation Ry between the sets, i.e.

(Va” € A)(Fy" € B) By(,y),
(Vz7,u® € A)(Vy",v" € B)[x =au A Ry(z,y) AN Re(u,v) =y =p vl

The function is said to be relationally presented (r.p.). In S it would be
more natural to represent a function by means of an operation. A function
is operationally presented (0.p.), if there is an operation f : ¢ — 7 such
that

(Vz? € A) f(z) € B,
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and f respects the equalities. For a fixed domain and codomain, we can
quantify over all o.p. functions, whereas this is not the case for r.p. func-
tions. This is the advantage of o.p. functions. If the domain is decidable,
an r.p. function can be converted into an o.p. function, by means of the
constructive aziom of choice (AC):

Vz? Jy" C(z,y) = F277 Va? C(z, z(x)).

This is possible for other important cases too, see remarks in Section 2.2.
Finally S has the relativised dependent choice (RDC) schema:

Yu? [B(u”) AV2? (B(z) = Jy° B(y) A C(z,y))
= 3% [f(0) =uAVnB(f(n) AC(f(n), f(n+1))]].

This intuitively valid axiom is useful, and perhaps even necessary, in cer-
tain arguments in constructive topology, e.g. Baire’s category theorem.
Note that, if B(z) is decidable, then RDC is in fact provable from AC. It
seems to be an open problem whether this is the case for arbitrary B(x).

2.1. Real numbers

We follow Bishop’s treatment. The rational numbers are unproblematic
from the constructive point of view, and can be coded as natural numbers.
A real number a = (a,) is a regular sequence of rational numbers, i.e.
a : 0 — 0 such that
1 1

Vn ap €@ A (Ym,n>0) |am —an| <o E—FE (1)
Denote this predicate by R(a). Two real numbers a and b are equal, a =g b,
if

1
(Vn > 0)|ap —by| < o

Thus (R, =g) specifies the set of real numbers.

Clearly, closed intervals can be quantified over. The same is true for the
collection of compact sets (and thus countable unions and intersections of
compact sets) in a fixed space. To see this, we need only to observe, with
Friedman [6], that a compact set is the closure of a denumerable, totally
bounded set.
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We now consider the problem of representing functions on real numbers.
For the arithmetical operations 4+, —, - and the operations max and | - |
the operational presentations pose no difficulty. The reciprocal z~! seems
unfortunately impossible to realise as an o.p. function defined on the whole
of {z € R : |z| > 0}. The construction of z—! (see [4]) depends on knowing
|z| > 0. However it can be given an operational presentation on each set
{z € R: |z| > ¢}, where ¢ is a positive rational number. The reciprocal
is thus an o.p. function of two arguments. A higher type example is the
Riemann integral as an operation: it takes a function and its continuity
modulus as arguments.

2.2. Functions defined by limits

In the relational mode of presentation, a pointwise limit f(z) = lim,, f,,(z)
is defined simply by writing down the formula R;(z,y) for y is the limit
of fn(z) as n — co. On the other hand, defining limits in the operational
mode of presentation seems to require more information about conver-
gence.

Theorem 1. Let S C R? and suppose that (f,) is a uniform Cauchy se-
quence of o.p. functions on S, each uniformly continuous. Then (f,)
converges uniformly to a uniformly continuous o.p. function f : S — R.

PrROOF. — We only show how to explicitly construct f as an operation,
and leave it to the reader to check that this construction works.

Since (f,,) is a Cauchy sequence, there is an increasing M : 0 — 0, with
M (k) > k, such that for positive k and all m,n > M (k)

(Vl‘ € S) |fm(x) - fn(x)| < k_l-

Now define f : (0 = 0)¢ — (0 — 0) as follows. Let (y,(cn))k = fn(z) and

put f(z) = (zr) where
(4k)

%k = Yn(ak)- 0

We note the following facts on quantifying over functions. Let X be a
compact subspace of R, and suppose that f : X — R is a continuous r.p.
function. Then, by the Stone-Weierstrass theorem, there are polynomial
functions f, : X — R with [|f, — flloc < n~!. These can clearly be given
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operational presentations, and form a Cauchy sequence. By Theorem 1
the sequence converges to an o.p. function, which is equal to f on X. This
means that we can quantify over all continuous functions on a compact
subspace of R?. Moreover, since any locally compact subspace X of R?
can be written as a countable union of compact subspaces X,, C R?, a
continuous r.p. function f : X — R can be expressed by a family of con-
tinuous o.p. functions f,, : X;, = R, coinciding on intersecting domains.
Thus we can quantify over all continuous f : X — R. The same is in fact
true for Lebesgue integrable functions (see [4, Ch. 6]).

3. A constructive foundation for nonstandard
analysis

We review the theory we introduced in [14], more accurately, we consider
a slight extension of that theory with the external RDC schema. The
theory iS is obtained by expanding the language of S with a constant
Q : 0, for an infinite number, and a predicate St(x) on each type o
standing for “z is standard”. Let V*'z7 A, 3*27 A denote Vx° (St(z) —
A) and Jz7 (St(x) A A) respectively. For a formula B, B** means that
all quantifiers are restricted in this way. The axiom schemas of S, now
expressed in the expanded language, are modified so that certain variables
are restricted to standard objects: the induction variable in the induction
schema, the variables x,y,z in AC, and wu,z,y, f,n in RDC (refering to
the statements in the previous section). These are schemas of iS, called
external induction, external AC and external RDC, respectively. The usual
defining equations for combinators, 0 # S(u), and equality axioms are also
axioms of iS. Moreover we have the axioms: St(c), for each S-constant c;
and for application: V*tx77 V5% St(x(y)); and the crucial limit azioms:

Vo HstyOJ [.7; — y(Q)],
Vet 407 [2(Q) = y(Q) & FEVStn > k (z(n) =y(n))].

These state that the intended model is a reduced power of the standard
type structure, modulo the Fréchet filter. In this model St(z) is inter-
preted as z is eventually constant. The generic infinity, (2, is interpreted
as the identity function. (Note the affinity to Schmieden and Laugwitz’
Q-notation [17].)
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We also consider definitional extensions of iS of the following form. For a
formula A(z]*,...,z%), we add a new predicate P and the definition

vty 07t 07 [P(y1(Q), ..., ym ()
& FUYVn =k Ayi(n),-..,ym(n))]-

We call this an ezxtension by a basic predicate. It is easy to show, using
the limit axioms, that

sty [P(yl(ﬂ), e ym(Q) © BV >k Py (n),... ,ym(n))].

Of course we may add arbitrarily many basic predicates simultaneously,
if we wish. In the sequel we consider z is a real number, R(z), and the
relations =, <, < on real numbers as new basic predicates. E.g. we take
(overloading notation)

V000 [R(r(Q) & Tk Vi > & A% (r(n))],

where A is the formula (1), page 72, defining the real numbers in the
standard theory. This extension procedure is very important since it pro-
vides nonstandard versions of standard notions, like the nonstandard real
numbers above. We refer to [14] for further examples.

3.1. Nonstandard principles

We recall the following definitions from [14], needed to state our results. A
formula A free from Q-symbols is called internal if it does not contain the
standard predicate St; the formula is almost internal if the St-predicate
occurs only in subformulas

Vi°[St(i) Ai < t = B] (2)

of A, where the free variables of ¢ are either free in A or bound by quanti-
fiers where the range is restricted to standard objects. A variable occuring
in such a t is called confining. The idea is that such subformulas are re-
ally conjunctions of variable finite length when ¢ is standard. A formula
is subgeometric if it is formed from atomic formulas using only A and 3;
the formula is almost subgeometric if it in addition can contain universal
quantifications of the form (2), subject to the same conditions on ¢. The
class of constructive Horn formulas is the least class CH such that
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» C?H contains the atomic formulas,

» CH is closed under conjunction, existential and universal quantifica-
tion,

» if A is subgeometric and B € CH, then (A = B) € CH.

One can prove that every Horn formula is classically equivalent to a con-
structive Horn formula, and conversely. If we allow almost subgeometric
A in the last clause, we call the resulting class of formulas almost con-
structive Horn. Almost internal formulas, which are almost subgeometric
are called amenable, those which are almost constructive Horn are called
light. Any amenable formula A(Z, ), where § are nonconfining variables,
is equivalent, for standard parameters & and arbitrary ¥, to a normal form

-

32 (Viy < 81(8)) .. (Vi < tm(@, i1, .. im1)) B, 7,70,

where B is a conjunction of atomic formulas. It is an easy exercise to show
this using external AC.

Theorem 2. Let A(#,n°) be a formula where n is not confining.
(a) (The Los principle.) If A is an amenable formula, then
VE [k (Vi > k) A%(E n) & A(Z,Q)].

(b) (The lifting principle.) If A is a light formula, then
VUE [k (Vi > k) A%(E,n) = A(Z,Q)].

PrROOF. — By induction on the formulas; for details see [14]. O

Remarks. The theorem corresponds to results about reduced powers in
model theory. In its first order form (b) is familiar from universal
algebra; many properties of ordered rings can be expressed by Horn
formulas. Classically, it is possible to strengthen (a) by using a result
of Palyutin [15, Section 1].

The following principle is close to Keisler’s [9] elementary form of transfer
(“the solution axiom”). Note, however, that we do not allow negative
conditions in the antecedent of the transferred formula.
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Theorem 3: The transfer principle
Let A(Z) = Vy [B(Z,¥) = C(Z,¥)], be a light formula with B and C
almost subgeometric. Then

VEUE (A () <= A(T)].

PrROOF. — By the Los principle and the lifting principle. O

One may view the saturation properties of nonstandard universes as ex-
pressing that there are always enough ‘limit points’ to satisfy any consis-
tent limit process, provided it is expressed in proper language. In the con-
structive setting, this language is as far as we can see limited to amenable
formulas. Nevertheless, the saturation principles available proves useful
cases such as Lemma 12 below or the result in Section 4.3.

Theorem 4: Saturation

Let A(i,v,w,i) be an amenable formula, where @ are non-confining
variables, and which satisfies the chain condition

Vi Vi, v, @ [A(@,v, 0,0+ 1) = A(d,v,d,i)].
(a) If v is also non-confining in A,

Vi Vet [VSti Jv A(id,v,w,i) = Fv Vi A(U,v,u‘i,i)].

(b) Let A be obtained by removing all restrictions to St in A. Then

Vi VU [V Pt A, v, 0,4) = Fo Vi A(T, v,18,6)].

PrOOF. — The proof relies on Theorem 2, and in case (a) the technique
is somewhat analogous to that used for countably incomplete ultrapowers.
For details we refer to [14]. O

Corollary 5: overspill

Let A(w,w,n) be an amenable formula, where the variables @ are non-
confining. Then:
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Vi V' [V A(@, @, n) = (v)v infinite A (Vp < v) A(iT, @, w)]-

a

Remarks. A more restricted form of the overspill principle is due to
P. Martin-Lof. In [14], the above and further results were proven
in the weaker theory iHA". There is a classical strengthening of The-
orem 4 (a): A can be any internal formula.

3.2. Relating S and iS

It is possible to give an interpretation (:)! of iS into S, by formalising the
intuitive model of iS. In [14] this was carried out for a pair of weaker
systems. The interpretation and its consequences are easily extended to
the present systems by

» checking that external RDC can be (-)f-interpreted by RDC,

» checking that S has the explicit definability property. This follows by
extending the modified realisability interpretation to RDC.

The most important consequences are the following two theorems.

Theorem 6. For closed formulas A in S, and B in iS:
(a) iS F A% if, and only if, S - A,

(b) S+ Bf if, and only if, iS - B. O

The first part says that iS is a conservative extension of S. The second
states that iS completely axiomatises the model given inside S. The theory
iS has the explicit definability property in two distinct forms.

Theorem 7. Let A(xz) be a formula with only x free.

(a) IfiS + 3z A(x), then for some closed t : o, iS F A(t).

(b) IfiS + F*z A(x), then for some closed internal t : o, iS - A(t). O
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4. Nonstandard analysis

In this section we work within the theory iS. We start with some defini-
tions.

A number a is said to be finite if for some standard k, |a| < k; and
infinite if for every standard k, |a| > k; it is infinitesimal if for every
positive standard €, |a] < e. On a metric space (X, d), we write a ~4 b
(a is infinitely close to b), if d(a,b) is infinitesimal; the subscript d is
omitted if the metric is obvious from the context. Let A(z,y1,...,yn) be
an amenable formula where all free variables are indicated. The set

{z: Az, t1,...,tn)}

is called standard if t1,...,t, are standard, and internal otherwise. Note
that in the latter case, t; = s;(2) for some standard s;. Hence any internal
set can be written in a normal form {z : Aq(z,5)} where § are standard
parameters. These notions are not as restricted as they may appear, since
we may always introduce new basic predicates. All other sets will be
called external. Some examples: define z € [a,b] iff a < z, z < b and
z € R Then [0,1] is standard, but contains infinitesimals, whereas [0, (]
is internal; the set of standard points in [0, 1] is an external set. A function
f: X =Y is standard, if X and Y are standard sets, and f is a standard
operation. The notion of internal function is more delicate. Let Xq, Yo be
internal sets. An internal function f : Xq — Yo is an operation f = gq
where (g,,) is a standard sequence such that

() (Vo > k) g Xn = Vi (3)

For every pair of internal sets Xgq,Yn the statement (3) defines a new
basic predicate Int(go; Xq, Yq). Note that if zo € Xgq, then fo(zq) € Yo.
Internal functions are called normal by Schmieden and Laugwitz [17].

4.1. Nonstandard characterisations

The standard notions that most naturally lend themselves to nonstandard
characterisations are those which explicitly involve sequential limits (see
[14]). In the case of classical, separable metric spaces there are sequential
versions of many topological notions, e.g. closure, compactness, continuity,
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uniform continuity. With a few exceptions (e.g. closure) these are not the
appropriate constructive notions (see [3]). This is one reason that we
cannot expect the constructive nonstandard analysis to be as neat as the
classical.

The most important characterisation is, of course, that of the limit.

Theorem 8. Let (a,), be a standard sequence of points in the standard
metric space (X,d), and let b € X be standard. Then

lima, =b & aq ~4b < (V infinite v) a, ~4 b.
n

PROOF. — Since a and b are standard we can use Theorem 2, with < as
a new basic predicate, to conclude

[(Votz > 0)(Ftk) (¥*tn > k) d(an,b) < €]

(4)
& (Ve > 0)d(aq,b) <e].

This establishes the first equivalence. To prove the second equivalence,
we use the lifting principle (Theorem 2) on the lefthand side of (4), and
get (Vste > 0)(3%k)(Yn > k) d(an,b) < e. Thus letting n = v be infinite
proves the case. O

Constructively, we have only the following halves of the wellknown non-
standard characterisations of uniform continuity and uniform convergence.
The converses can be proven by classical logic.

Proposition 9. Let (X,d) and (Y,e) be standard metric spaces. If f :
X — Y is a standard function, uniformly continuous on X, then f is
monad preserving, i.e. f(u) ~, f(v) for u ~4v in X.

PRrROOF. — Left to the reader (see [14]). a

Proposition 10. Let (Y, d) be a standard metric space, and let (g,) be a
standard sequence of functions g, : S — Y converging uniformly to
the standard function g : S — Y. Then for all x € S and all infinite

v, gv(x) ~q ().
ProOOF. — The assumption can be rendered formally as

(V% > 0)(FFk) (V'n > k) (V2 € S) d(gn(z),g(z)) < &.
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By the lifting principle, we can remove the last two 5’s and let n be any

infinite v. O

Example 1. The polynomial functions g,(z) = (1 +2n~!)" converge uni-
formly to e® on any compact standard interval I. Thus for infinite v
and all z € I,

x
14 =) ~e”.
1+~

4.2. Near standard points

A real number z is said to be near standard, if there exists a standard real
number y with x ~ y. Unlike classical nonstandard analysis, not every
finite real number is near standard. We shall give a characterisation of
near standard points using the order relation. A real number z is called
determined if for all standard reals z, y

r <y implies z<zorz<y.

Every standard real number is determined. (—1)% is not determined (con-
sider z = 0,y = 1/2). Q is determined, but not finite.

Proposition 11. A real number is near standard if, and only if, it is finite
and determined.

PROOF. (=) Suppose that z ~ u, where u is standard. Clearly, z is finite.
Let x < y be standard. Hence x < uw or u < y. If £ < u, then = < z since
trivially |z — u| < (u — z)/2. Similarly, z < y, if u < y.

(<) Suppose z is finite and determined. Hence there are standard real
numbers ag, by with ag < 2z < by. Now, (2ag + bo)/3 < (ao + 2bo)/3, so
there are two possible cases: (2a9 + bp)/3 < z or z < (ag + 2bp)/3. In the
first case we let a1 = (2ap + bp)/3 and by = bg. In the second case, let
a; = ap and by = (ag + 2bp)/3. Continuing in this way, we get a sequence
of intervals (ay, by,), containing z, whose diameter shrinks by 2/3 at each
step. Thus z ~ lim, a,, = lim,, b,. O

Remarks. We note that, formally, external RDC is used in the above
argument to obtain the sequences (a,) and (by,).
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One could well imagine that a strengthening ~' of ~ would make it

feasible to drop the condition of determinism, so as to obtain a classical
standard part map. If this ~' is reasonable, then continuous functions
should still respect it. However this would lead to a proof of the ezact
intermediate value theorem, see [18] or [14, Section 5.3]. But this is
known to be constructively impossible (see e.g. [1]).

The lattice points ¢ + pd, p € Z, on the real line, can be regarded as a
‘discrete’ continuum if we let d be infinitesimal. More precisely we have
the

Lemma 12. For any positive infinitesimal d, and any standard real num-
bers ¢ and a < x < b, with a < b, there exists an integer p such
that

z ~ L+ pd

and a < £+ pd < b. Moreover p can be assumed to be infinite.

PrOOF. — The standard statement
(V¥'n > 0) (I > 0) (V®'d € (0,¢)) (V*'z € [a,b]) (F¥*p € Z)
[le—0—pd <n™' Aa<l+pd<bA |p|>n]

is not too difficult to establish. We leave this to the reader.
We can lift (5) to
(V¥*n > 0) (I > 0) (Vd € (0,¢)) (Vz € [a,b]) Bp € Z) A(x,d,p,n)

where A(z,d, p,n) is the formula within square brackets in (5). Let d > 0
be infinitesimal; then for any standard e > 0, d € (0, €), so for any standard
z € [a,b]
VnaIpeZ Alx,d,p,n+1).
By the saturation principle (Theorem 4) there exists p € Z such that
Vn [z —C—pd < (n+1)"" Aa<l+pd<b A |p|>n+1].

Clearly then x ~ ¢ + pd and p is certainly infinite. a
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The usage of saturation was not really essential in this lemma; one could
equally well have constructed x directly. A more significant application is
found in Section 4.3.

The lemma below will be needed in Section 5. It is easily proven using
integrating factors. But we prove it more directly to illustrate Lemma 12.

Lemma 13. Let f : [a,b] = R be a standard, non-negative continuous
function and let L > 0 be standard so that

flz) <L /w f@®)dt (for standard x € [a, b]).

Then f vanishes identically on [a, b].

PROOF. — Let p be a continuity modulus for f. Suppose € > 0 is stan-
dard. By the usual estimate of the Riemann integral, we have for standard
N >0, with (b — a)N ! < max(e, u(¢)) and standard n =0, ..., N

Tn b —a n—1
fl@a) < L/a ftydr < L(s+ Z% f(@),
where z, = a + k(b —a)/N. Let A = L(b— a)/N. By external induction
on n it follows that forn =0,..., N
flan) < Le(1+ A)™. (6)

Letting ¢ > 0 be infinitesimal, there is, by lifting, an infinite N such that
(6) holds for all n < N. Then € ~ 0, so by Example 1, page 81,

f(xn) < Le(14+ AN ~ Leet®=9 ~ 0,

for all n < N. By Lemma 12, to any = € [a, b] there is some n < N with
T >~ x,. Since f is continuous,

f(z) = f(z,) =~ 0. o
4.3. A nonstandard summation method

We prove a nonstandard theorem about regular summation which gen-
eralises Toeplitz’ method. The result is a constructive reformulation of
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a theorem due to Robinson [16]. The main tool is Robinson’s sequential
lemma.

Lemma 14. If (ay,) is an internal sequence of real numbers with a,, ~ 0 for
all standard n, then there exists an infinite u such that a, ~ 0 when
V< .

Proor. — Consider the amenable formula
A(a,m) = (V'n<m)|ap] <27

Clearly A(a,m) holds for all standard m.
Hence by overspill, (Vn < p)|a,| < 27 for some infinite pu. O

Theorem 15. Let (a,,) be an internal sequence of real numbers with the

property that for some standard B, Y., _|an| < B holds for all v.
Then the following two conditions are equivalent.

(a) For every standard convergent sequence (s,) with limit L, there
exists an infinite ) such that

w
L ~ Zansn (n>=mn).
n=0

(b) For all standard k, ay ~ 0; and there exists an infinite np with

o
dan~1  (pzn)
n=0

ProOOF. — (a) = (b): Let (s,) be the standard sequence which is 1 at

the standard index k and 0 otherwise. Its limit is 0 and so by (a) for some
infinite u:
"
Z ansSn =~ 0.
n=0

But the left hand side is a, so ax ~ 0. This proves the first part of (b);
as for the second part we take s,, = 1 instead.
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(b) = (a): Suppose (s,) is a standard sequence converging to L. From
the first part of the assumption (b) follows that Zizo |an| ~ 0 for all
standard k. The sequence s is bounded by a standard number, C, say.
Thus for standard &

k
‘ E SnGn
n=0

k k
< Z|5n||an| < CZ|an|~
n=0 n=0

Hence Ei:o Spapn ~ 0 for all standard k. By Robinson’s sequential lemma
there is an infinite x such that

k—1 k—1
Z a, ~0 Z Span = 0. (7)
n=0 n=0

By the second part of (b) there is an infinite 7 with

I

Zanzl (n=71). (8)

n=0

Let n = max(7, k). Then for u > n

3 3 7 7
> anse =Y ank| < Y lanllsa =Ll < 8 lanl,  (9)
n=~k n=~k

n=kxk n=kxk

where § = max{|s, —L|: K < n < p}. ¢ is infinitesimal, since L = lim,, s,,.
But Y% |a,| < B by the overall assumption, so the lefthand side of (9)
is infinitesimal. Using (7) and (8) we get

I3 7 I3 I3
E ApSn ™ E AnSn E a, >~ E a, ~ 1.
n=0 n=kx n=0 n=x

Thus by (9)

Iz Iz Iz Iz
g ansnzg ansnzLE anzLE anp ~ L.
n=0 n=k n=kx n=0

Let us now see how this result generalises Toeplitz’ theorem.
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Corollary 16. Let B = (by,,,,) be a standard double sequence such that
(a) V®*n limy by, =0,
(b) IC V'K Y07 o |bkon| < C,
(¢) limg > 07 (b = 1.

For every bounded standard sequence (s,,) define

oo
tk: E bk,nsn.
n=0

If (sy,) is convergent, then (t;) converges to the same limit.

PrOOF. — Define an internal sequence by letting a,, = bq . By a suitable
lifting of (b) we see that this sequence satisfies the overall assumption of
Theorem 15. Clearly (a) implies that a,, ~ 0, for all standard n. From (c)
follows

p
(VEN) (3%0) (VK > 0) (Fm) (Vip > m) ‘Z - 1‘ <27V
n=0

By the lifting theorem, the restrictions to standard objects can be removed
in the three last quantifiers. Let k = Q. Thus

(VUN) (3w (Vo 3 i) ‘Z a — 1‘ < 27N, (10)
n=0

By saturation, there is an infinite u greater than all ux (N standard).
Hence . _,a, ~ 1, for all v > p, thus satifying condition (b) of Theo-
rem 15. For a standard sequence (s,) with limit L, we get by the theorem
L~3%"_ aps, for all p > n, where 7 is some infinite number. Suppose
w=M(Q). Thus
M (k)
hlgn 2 bi,nsn = L.

n=0

Since M may grow arbitrarily fast we have shown that limy ¢, = L. a
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Remark. Laugwitz [10, Ch.5] obtains, using his semiconstructive non-
standard analysis, a result similar to Theorem 15 together with inter-
esting applications to divergent series.

4.4. S-continuity and S-differentiability

We extend the notion of continuity and differentiability to internal func-
tions. First we introduce versions of the inequality relations compatible
with ~:

r<y g (V>0 z-n"'<y,
<y gt Fn>0z+nt<y.

It is easily checked that < and < coincide for standard arguments. The
same holds for < and <. Also, < is a partial order w.r.t. the equivalence
relation ~.

Let (X,d) and (Y, e) be internal metric spaces. An internal function f :
X — Y is uniformly S-continuous on U C X if there exists a standard
modulus m such that for standard € > 0 and any z,y € U

d(z,y) S m(e) = e(f(x), f(y)) e

Note that a standard continuous function is continuous also in the “S”
sense. We follow the usual convention in constructive analysis, and drop
the prefix “uniformly” if U is compact.

Example 2. Let § > 0 be infinitesimal. Then f(z) = (z + )2 defines an
S-continuous function [0,1] — R.

Let I C R and let (X,]| - ||) be a normed space. An internal function
f I = X is uniformly S-differentiable on I if there exist a uniformly
S-continuous function g : I — X (an S-derivative of f) and a standard
modulus d such that for all standard e > 0 and all z,y €

[z —yl<d(e) = [[f(x) - fly) —g(@)(z -yl S elz -yl

Piecewise linear functions can be constructed according to the following
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Proposition 17. Let P = (a1,b1),...,(an,by) be a finite standard se-
quence of pairs of real numbers with a; < --- < ap. Then there
exists a uniformly continuous standard function f = fp : R — R (the
polygonial function determined by P) such that

(a) f(z) =b for x < aq,

(b) f(z) = by, for x > a,,

T —a;
(¢) f(z) = a»—ialill(bi —biy1) + bip1 fora; <z < ajq.
(3 1

PRrROOF. — Define g(a, b, z) = ba~!(max(0,z) — max(0,z — a)), and let

n—1

f(@)=br+ Zg(akJrl — g, bp1 — b, T — ag).
k=1
It is easy to check that this function satisfies the conditions. O

Example 3. Let fn : [0,1] = R be the polygonial standard function given
by the points

(0,0),(N"'L, N7, ... (ENTLEENTE), .. (1,1).

Then the internal function fq is S-differentiable on [0, 1] with S-deriv-
ative g(x) = 2.

An S-continuous function f: X — Y is said to be of class S, if f(z) is
near standard, for every near standard = € X.

Theorem 18. Let [a,b] C R be a standard interval. If f : [a,b] - R is
of class S°, then there exists a unique continuous standard function
g : |a,b] — R such that f(z) ~ g(x), for all standard x € [a,b].

PRrOOF. — Unicity is clear. To prove existence, let m be an S-continuity
modulus of f. For every standard n > 0, let a = a9 < --- < ap = b be
a uniform standard subdivision of [a,b] such that a;11 — a; < m(1/n).
For i = 0,...,k, take b; to be standard with b; ~ f(a;). Let g, be the
polygonial function determined by the points (a;, b;), i =0, ..., k. Clearly
|f(x) — gn(z)| < n~?! for all standard = € [a,b]. Let g be the limit of the
Cauchy sequence (gy,). a
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Example 4. f(z) = (—1)%z defines an S-continuous bounded function
[0,1] — R which is not near any standard function.

5. Existence of solutions to differential
equations

The existence theorem for ordinary differential equations is constructively
valid under a Lipschitz condition. Beeson [1] noted that Picard’s successive
approximation technique works in this case. The numerically (slightly)
more interesting method of Euler is representative for many step methods.
We shall give two nonstandard variants of an existence proof using this
method. The first is close to the usual nonstandard proof (Laugwitz [10],
Diener and Reeb [5]). The second is closer to a standard proof by Henrici

[8].

Let (R?, || - ||) be the usual euclidean space of dimension d; vectors in
this space are denoted by boldface letters x = (zV),...,z(®). Let f :
[a,b] x R? — R? be a standard, continuous function, and let xo € R? be a
standard point. A solution to the initial value problem with these data is
a standard, continuously differentiable function v : [a,b] — R? such that

v(a) = xg
{ , ¢ . (11)

Recall that the polygonial approximations according to Euler’s method
are constructed as follows. Let N > 0 be a standard natural number,
and let h = (b —a)/N be the step size. Define lattice points on [a, b] by
t, = a+nh (sometimes written ¢ty , to emphasise the subdivision factor).
We define a polygonial function u = uy such that

u(t()) = Xp
u(tnt1) = utn) + hf(tn, u(tn)).

(Technically this is achieved using Proposition 17. Let un(t) = (ug\})(t), N
u%) (t)) be the vector valued function given by the component polygonial func-
tions uf,f,)(t), in turn determined by the points (to,a((f)), e (tN,aEf,)), where

5-1), .. .,ag-d)) and ap = Xo, ag+1 = ax + hf(tx,ar).)
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A direct consequence of this definition is

k—1
U(tnir) —u(ty) = Z(u(tn+i+1) —u(tn+i))
i=0
k—1
= Z hE (tti, utnti))- (12)
i=0

Now lifting this statement and letting N = n be infinite, u,, should be some
kind of nonstandard solution. Indeed, suppose that there is a standard
continuous function v : [a,b] = R? with v(t) ~ u,(t) for all t € [a,b]. Let
n = 0. Then

k—1 k—1
v(tr) = v(to) +6 = > hf(t;, v(t:)) + > he,

where €; = f(t;,u,(¢;)) — £(¢;,v(¢;)) and ¢ are all infinitesimal. We have
|Ef;01 hei| < khmax; |e;| and the lefthand side of this inequality is in-
finitesimal. Consequently by the hyperfinite sum expression for the inte-
gral
tr
v(ty) — v(to) ~ / £(s, v(s))ds.

to

Now v(tp) = X0, and to every standard ¢ € [a, b], there is a k with ¢ ~ t;,
(Lemma 12). Hence

v(t) = xo +/ f(s,v(s))ds.

to

This is clearly a solution to the initial value problem.

The problem is thus to find such a standard continuous function. In clas-
sical nonstandard analysis it can readily be obtained by taking standard
parts. Let v(t) = “u,(t,), where ¢, < t < tp41; continuity follows from
(12) under some boundedness condition on f. This yields Peano’s ex-
istence theorem. However, it is known to be constructively unprovable,
without further conditions on f (Beeson [1, p.15]). A constructive possi-
bility is to prove that the sequence of approximating polygonial functions
is a Cauchy sequence. Then its limit is a function v of the required kind
(Proposition 10). This can be achieved by imposing a Lipschitz condition
on f, which also gives uniqueness of the solution.
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Theorem 19

(a) Let f : [a,b] x R? — R? be a standard, continuous function satis-
fying the Lipschitz condition

I£(¢, %) — £(¢, )| < Lllx = v,

where L > 0 is standard. Let xo be any standard point in R¢.
Then there exists a unique, standard solution v : [a,b] — R? to
the initial value problem (11).

(b) Iff is required to satisfy the conditions of (a) only on the standard
set

K(bo) = {(t,x) e Rx R’ : a < t < bo, |Ix — %ol < B},
then there is a unique standard solution v to the initial value
problem (11) with b replaced by by = min(by,a + §/B), where

B = sup{|[f(w)|| : w € K(by)}, and where the graph of v lies
within K (bg).

PROOF of uniqueness. — Suppose that u and v are two solutions to (11).
Their difference can be written as

t
5(6) = u(®) = v(t) = [ £(s,u(s) - £(s.v(5)ds,
for a <t < b. By the Lipschitz condition we get

ot / lu(s) = v(s)llds = / I8(s)llds.  (13)

Thus by Lemma 13, page 83, ||0(¢)|| = 0 for all ¢t € [a,b]. Noting that
b1 < b this argument works also in case (b), with b replaced by b;.

For the proofs of existence (we will actually give two variants) some lem-
mata are needed. The estimates in the proof are based on Henrici’s [8,
pp. 15-26, 108-118] presentation. The approximating polygonial functions
uy can be bounded by a standard estimate:
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Lemma 20. For all standard t € [a,b] and all standard n € N,

(a=b)L _1q
e
I, (@) < e |lxo | + L
where ¢ = sup{||f(¢,0)|| : a < t < b}.
PRrROOF. — Henrici’s [8, pp.18—19] proof is constructive and gives the
bound at the lattice points of u,,. O

Let Y be this uniform bound of ||u,(#)|| on [a,b] and put D = [-Y,Y]%; it
is sufficient to consider f on the domain [a, b] x D. The continuity modulus
w defined in the next lemma is crucial in various estimates to follow.

Lemma 21. The standard function w : [0,00) — R defined by
w(e) = sup{||f(z,y) — f(a',y)| : |z — 2’| < &; z,2" € [a,b],y € D}

is uniformly continuous and subadditive, i.e. w(e +¢') < w(e) +w(g'),
fore, e’ > 0.

PrROOF. — The argument uses only standard objects. Note that w is
welldefined since the supremum is taken over a continuous image of a
compact set.

First we establish uniform continuity. Let m be the continuity modulus of
f. Let d > 0 and |e —€'| < m(J). We show that w(e) < w(e’)+ 6 (the proof
is similar for w(e’) < w(e) + ). Consider z,z' € [a,b] with |z — 2| < e.
Thus

|z —a'| < &' +le—¢| < e +m(d).

We can choose u € [a,b] with | —u| < & and |u — 2’| < m(J). Hence

(. y) —£(", y)ll 1£(z,y) — £(u, y)[| + If(u, y) — £, y)l]
If(z,y) — f(u,y)|l + 6.

Since y and |z — 2’| < € were arbitrary, w(e) < w(e') + 4.

<
<

We now turn to subadditivity. It suffices to prove that for each a > 0,

wle+e) < wle)+wlE) +a. (14)
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Let |z — 2’| < e+ ¢'. We construct, in turn, w,u’ € [a,b] such that
|z —u| <e, Jlu—u'| <, |u —2'| <m(a). Thus

1f(z,y) = £ Y < (2, y) — £(w, y) | + 1 (u, y) = £(u',9)]| + o
Since y and |z — 2’| < € + €’ were arbitrary, this proves (14). a
Lemma 22. v,, = uy» defines a uniform Cauchy sequence.

PROOF. — The proof is standard and is almost a copy of the proof in [8,
pp. 21-22, 113-115]. Let n and ¢ > 0 be natural numbers. We estimate
the norm of

d(z) = Vi (z) — v (2),

where m = n + £. It clearly suffices to consider the lattice points of v,,.
Write

ti =ton i, t;=tam;, h=2""(b—a), h' =2""(b—a).

Let i = k2¢ + j, 0 < j < 2¢. It is easy to check that

Vin(tig1) = Vi (t;) = WEE 5, vin (£)), (15)
Vi (tip1) = va(t;) = ME(tk, va(tr)). (16)
Thus
ld(ti1) —d@E@)l = KN vin () — £k, valte))]
< WE(E, v (t5)) — £, va () |
+ WIE(E, va(t;) — £(te, va ()]

+ W€ (te, vi(th) — £(te, valte)) |-

Using the Lipschitz condition and the w-modulus this is seen to be ma-
jorised by

WL\ A + h'w(t; —te]) + B'L||va(t) — va(te)|l.

Now, since ty = t/
than

Lot [ti—tx| < h, jh" < h and (16) hold, this is no greater

R'L||d(t})|] + h'w(h) + K'LAY.
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Thereby we have
ld(t; )l < Alld(t)] + B,

where A =1+ h'L, B = h'w(h)+h'hLY . Solving this recursive difference
inequality and noting that d(¢;) = 0 we obtain

, Al -1 AT 1
( < 1 ! < )
)] < Al + B < S B
Since 1+ A'L < e"'L it follows that
2™R'L _ (b—a)L _
, e 1 e 1
g < = .
ldEN € —7—B 7 (@(h) + hLY)

The righthand side does not depend on %, and goes to zero as n grows. O

FIRST PROOF of Theorem 19. — Let v be the (uniform) limit of the
sequence v,. Then v is standard and continuous. By Proposition 10,
page 80 we have v(t) ~ vq(t) = uye(t) for all t € [a,b]. By the remarks
preceding Theorem 19, this is a solution to the initial value problem (11).

SECOND PROOF of Theorem 19. — Here we do not rely on the fundamental
theorem of calculus.

Lemma 23. Let N > 0 be standard and t, = tn. If 0 <m,n < N are
standard, then

[un (tm) —un(tn) — £(tn, un(tn)) (tm — ta)ll

17
< LY |ty — to]® + |tm — talw(|tm — tal). o

ProOOF. — Let g(m,n) denote the lefthand side of (17). Write u(z) =
uy(z). We consider the case m > n (m < n is similar) and prove the
result by induction on k¥ = m —n. For k = 0, this is clear. By unwinding
the recursive definition of u(t,,+1) one step we get:

g(m +1,n) < g(m,n) + bl f(tm, a(tm)) — f(tn, altn))l-
The second term can be estimated by

Bl f(tm, u(tm)) — f(tm,u(tu)ll + Rl f(Em, u(tn)) — f(tn, ultn))ll
< ML ultm) — u(t)| + heo(ltm — b))
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by the Lipschitz condition and the modulus. Moreover ||u(t,,) —u(¢,)|| <
Y|tm — tn|, so from the inductive hypothesis we get

LY (|tm — tal? + hltm — to]) + (Jtm — tn] + B)w(|tm — tal)

glm+1,n) <
< LYl|tmyr — tn|2 + ltmyr — talw(|tmyr — tal)-

The last step uses also that w is increasing. a

First we find an “S-solution” to the system (11). Let v, = wus» and
gn(t) = £(t, vn(t)).

Claim: gq is an S-derivative of vo on T = {t, : 0 < n < 29},
where t, = tsa .

PrROOF. — Let d(¢) = min(e/(2LY"), M (e/2)) where M is a continuity
modulus of w. By lifting the statement of Lemma 23, and putting N = (,
we have for |t, —t,| < d(e),
[Vva(tn) — va(tn) — £(tn, va(te))(tm — ta)]l
< LY |ty — ta? + [t — tnlw([tm — tal) (18)
€ €
< Z|tm —tn tm —tn|z = tm — tnl.
lim = tal + lom — talS = eltm —tal

Clearly vq(a) = va(to) = Xo-

Let v be the (uniform) limit of the standard sequence v,,. We have for all
t € [a,b], v(t) = vq(t), and hence f(t,v(t)) ~ £(¢,vq(t)). Lemma 12 gives
that for any standard z,y € [a,b] there exist t,,, ~ = and ¢, ~ y. Hence,
by the S-solution (18), |z — y| < d(¢) implies

Iv(z) = v(y) — £y, v(w) (= — Yl < elz —yl.
v is the sought solution to (11).

As for part (b), in both variants of the proof, we need only to check that
the graphs of the approximating polygonial functions on [a, b1] lie within
K(by). Let h = (b — a)/N, t; = a + kh. By induction one easily proves
the first inequality of

lun(te) = %oll < khB < (b —a)B < B,

for K =0,...,N. By convexity the result follows. O



96 E. PALMGREN

6. Concluding remarks

As may have been observed in the above nonstandard arguments, the
standard proofs shine through in many cases! The reason for this is the
intuitive interpretation of infinite numbers embodied in the limit axioms.
In fact, these axioms yield a translation procedure which converts any
nonstandard statement into a standard statement. We sketch the method
for statements without defined basic predicates. The first limit axiom can
be used to eliminate all quantification over nonstandard objects. Using
the second limit axiom the Q’s can finally be eliminated. The method is
simple compared to Nelson’s [13] procedure for classical internal set the-
ory. This gives further evidence that the difference between nonstandard
analysis and standard analysis is greater in the classical case than in the
constructive approach presented here.

Acknowledgement. The author is grateful to Thierry Coquand and
Viggo Stoltenberg-Hansen for useful comments on an earlier version of
this paper.
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