Cahiers du Centre de logique
Volume 9

Approximate Truth and
Nonstandard Analysis

by

C. E. OrtTI1Z

University of Wisconsin—Madison

Abstract. In [9], Henson introduced a notion of approximate truth for normed
structures. He showed that for nonstandard hulls of normed spaces truth and
approximate truth were equivalent for the positive bounded formulas, i.e. for for-
mulas constructed from the atomic ones allowing finite conjunction, disjunction
and bounded existential and universal quantification.

We generalize the notion of approximate truth to formulas allowing infinite con-
junction, negation and bounded quantification. We show that for this very ex-
pressive language Henson’s result still holds. Finally, we give a brief description
of the main properties of this notion of approximate truth.
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1. Introduction

One of the most successful and widely applied techniques in analysis is
the notion of proof by approzimation:

To prove that a statement in mathematics is true it is often showed
that various approximations to the statement hold, and then spe-
cial properties of the structure in question are cited to conclude
that the statement in question is exactly true.

Examples of these proofs by approximation abound, from compactness ar-
guments in topology, weak compactness arguments in functional analysis
and probability, to existence of solutions of differential equations. Al-
though proof by approximation is constantly used, it is only recently that
a systematic treatment of it from a logic point of view has been started.

In 1976 Henson in [9] introduced a logic of positive bounded formulas in
Banach spaces to study the relationship between a Banach space E and its
nonstandard hull H(E). This logic Lpp is based on a first order language
L containing a binary function symbol +, unary predicate symbols P
and @ to be interpreted as the closed unit ball and the closure of its
complement and for every rational number r a unary function symbol f,
to be interpreted as the operation of scalar multiplication by r. Lpp is
closed under finite conjunction, disjunction and bounded quantification of
the form (3z)(P(z) A...) or (Vz)(P(z) = ...).

For any formula ¢ in Lpg and for every natural number n it is possible
to define in a purely syntactical way a formula ¢, in Lpg, called the n-
approzimation of ¢. Intuitively speaking ¢, is the formula that results
from weakening the predicates that appear in ¢ in such a way that as n
tends to oo, ¢, approaches ¢. From this notion of approximation follows
the definition of approzimate truth: a formula ¢ is approximately true in
a Banach space E (denoted by E Eap ¢) iff for every integer n, E = ¢,,.

This definition is the starting point of the model theory of Banach spaces
that has been developed on a series of papers by Henson, Heinrich and
Tovino (see in [10, 7, 8, 6, 11]). The logic Lpp has been extended to
have a language of n-ary function symbols (to be interpreted as uniformly
continuous functions from E™ to E) and n-ary real valued relation sym-
bols. The notions of approximate formula and approximate truth are
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generalized naturally, and nice theorems (in particular a compactness the-
orem, Lowenheim—Skolem theorems, etc.) were obtained. Furthermore,
the model theory of approximate truth for those structures had recently
been extended, obtaining stability results (see for example [12]).

In particular, it is easy to remark that in any model E and for any formula
¢ € Lpp, if E = ¢ then E |=4p ¢. Going the other direction, Henson in
[9] obtained the following approximation principle for nonstandard hulls:

Theorem 1: Henson's Approximation Principle

For any nonstandard hull E of a Banach space, and for any formula ¢
in LPB, (E |:Ap QS) <~ (E |: ¢)

Since usually it is easier to check that a formula is approximately true
that to verify that it is true, those results show that structures obtained
from nonstandard analysis are ideally suited to perform proof by approx-
imations. This idea has been exploited in [2, 3]. The central concept of
approximation in those papers is not the approximate formulas, but the
notion of neoforcing. In this framework, Fajardo and Keisler were able to
extend Henson’s Approximation Principle to a large collection of formulas.

The aim of this paper is to show that this approximation principle for
approximate truth holds in fact for a very expressive logic that contains
LPB~

To achieve this, we define the general logic L4 and the semantics associ-
ated with it in Section 2. This logic is closed under negations, countable
conjunctions and bounded existential quantification. We also give exam-
ples of the expressive power of this logic.

In Section 3 we introduce the notion of approximate truth for this logic
and give some examples of the difference between truth and approximate
truth. This notion is an extension of Henson’s original definition to L 4.

In Section 4 we discuss some elementary properties of our definition and
we define the rich models for a collection A of formulas in L4. A model
A is A-rich if the following approximation principle holds:

For every formula ¢ in A, A E=ap ¢ if and only if A E ¢.
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In this section we also give an easy test to verify if a model is A-rich,
and we use it to show that the nonstandard hulls of metric spaces are rich
models.

Finally, in Section 5 we give some concluding remarks.

2. Definition of the logic L 4

Our intention is to define a logic expressive enough to capture most prop-
erties of metric spaces that arise in Analysis. Most of those properties
refer to maps between the structure in question and another metric space.
Examples of such maps are the metric of a metric space, the expected
value of a random variable, etc. In order to accomodate such functions we
will need to deal with a logic that accepts multisorted predicate symbols.
The full description of such a language is as follows.

2.1. The signature ®

We will need to distinguish two different types of sorts:

» Fix a collection T of metric spaces. The elements of the collection T’
are going to be called the fized sorts of the signature.

» A true sort. Intuitively, the true sort is going to be the metric space
associated with every particular model.

A signature (F,P, AP,K) is defined as follows:

» F is a collection of symbols of functions such that each element f € F
has a corresponding arity ay < w. The sort of f could be the true
sort, or a fixed sort (My, py) in T'. Intuitively, those symbols are going
to be interpreted as maps from the model to itself, or from the model
to the sort metric space (My, py).

» P is a collection of predicate symbols such that each element C' € P
has a corresponding arity ac < w. The sort of C' could be the true
sort, or a fixed sort (Mc, pc). If the sort of the predicate is not the
true sort, then its arity ac should be 1. Intuitively, those symbols are
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going to be interpreted as closed relations in a cartesian product of
the model, or as closed relations in (M¢, po)-

» AP is a collection of predicate symbols disjoint from P, such that for
every C'in P, for every integer n, C,, is a predicate in AP with the same
arity and sort space that C. C,, is called the n-approximate predicate
of C' and it represents a metric deformation of the predicate C.

» K is a collection of predicate symbols such that each element K € I
has a corresponding arity ax < w and its sort is the true sort. The
elements of K are called the bounding predicates of ® and are going
to be interpreted as the sets bounding the quantifiers.

Let us see an example of a signature.

Example 1: Typical signatures

Suppose that the structures that we want to study are the Banach spaces
with the following basic operations:

(a) Sum of two vectors, and multiplication by scalars.
(b) Norm of a vector.

(c) We want to be able to compare the norms of the vectors, i.e. we want
to refer to the relation < on the reals.

(d) We want to quantify over all the elements in the space with norm
smaller or equal to 1.

We then can define the following signature to reflect those operations:

» F contains the following symbols of functions:
— The function (z + y) with arity 2 and true sort.

— For every real number r, the function symbol r(z) with arity 1
and true sort space.

— A function symbol ||z|| with arity 1 and sort space the reals with
the usual metric.

— A function symbol (||z||, ||y]|]) with arity 2 and sort space the real
plane with the metric of the max.
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P contains a predicate symbol (z < y) of arity 1, and sort space R?
with the usual metric of the max.

For every integer n, AP contain a predicate (z < y), of arity 1 and
sort space R? with the usual metric of the max (those are the ap-
proximations of the relation # < y). The intuitive interpretation of
(z < y)n will be the relation (z <y + 2/n).

K contains a predicate symbol By () with arity 1 (and true sort). O

We are now ready to define the terms of the language L 4.

2.2. Termsin L4

We define terms and sort spaces of the terms by induction.

Definition 1: Terms in L4

>

The variables x; are terms. Their arity is 1. Their sort is the true
sort.

Given a vector of variables & with arity ¢ < w, and a function symbol
f of arity a and sort space (Mg, py), f(Z) is a term of arity a and sort

space (Mp, pf).

Given a vector of variables Z with arity a < w, and a function symbol
f of arity a and true sort space, f(Z) is a term of arity a and true sort
space.

Given a collection of terms {tg | # < a} of arity ag and true sort
space, and a function symbol f of arity a and sort space (My, pyf),
f( f ) is a term with arity the cardinality of the collection of variables
in {tg | B < a} and sort space (My, py).

Given a collection of terms {tg | # < a} of arity ag and true sort
space, and a function symbol f of arity a and true sort space, f() is
a term with arity the cardinality of the collection of free variables in
{ts | B < a}, and true sort space. O

In summary, terms can have any finite arity and they are of two different
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types: the ones that have sorts and are going to be interpreted as maps
from the model to the sort space, and the ones that do not have sort and
are going to be interpreted as maps from the model to the model.

2.3. Formulasin L4

We are now ready to give the definition of the formulas of L 4 by induction
as follows.

Definition 2: Atomic formulas. An atomic formula would be any expres-
sion of the form:

—,

o(f)

where C' is a predicate in P and # is a vector of terms such that the arities
and sorts agree. |

Definition 3: Formulasin L4
» An atomic formula is a formula in L4.

» I d1,¢0,...,0i,... (i <w) is a collection of formulas in L4 then

oo
N\ o
i=1

is also a formula in L4.

» If ¢isaformulain L4 then —¢ is also a formula in Ly4.

» Consider a formula ¢((0,t,...,¥;,...),%) in La. For every i < w let
a; be the arity of v;, and let K; be an element of I of arity a;. Then
the following formula is also in L 4:

AT, By T ) (N K5 T) A (B Ty Ty, 8) )
j=1

a

Let us remark that the formulas in L4 only involve predicates from the
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collection P. The collection AP is not mentioned in this definition, it will
be part of the definition of the approximate formulas.

Notice also that we allow quantification over an infinite number of vari-
ables. This enhances the expressive power of L 4.

Example 2: Some formulas in L4

» The map T:(X,p) — (Y, () is continuous in the set K:

Ve K(z) = /\ \/ (‘v’y K(y (p(a:,y) <1/m=({(T(z), T(y)) < 1/”))

n=1m=1

» The bounded set K spans an infinitely dimensional subspace in the
normed space (X, || -):

w

Vo (K (z) = ||l < M) A \/ 37 (/\ K(z; /\/\ /\ lzj—znl > l/i).

i=1 j=1n=1
n#£j

» The set K is compact in the metric space (X, p):

Vw(/\leiﬂy /\/w\/w\\w/pwm, <1/k))

i=1 k=1n=1m>n
Our next step is to define the semantics for L 4.

2.4. Semantics for L4

The definitions of the structures are a natural generalization of Henson’s
notion of a Normed space structure (see [11]).

Fix a collection T of metric spaces (the sort spaces).
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Definition 4: Model

Fix a signature ® for 7. A model A for & is a collection
A= (X,{d"|i<w},F PK)

where:

» The set X is a fixed set such that for all i < w : (X d’) is a metric
space with the property, for every ¢ > 1, that the topology in X? induced
by d' is the product topology generated by the topology on (X, d').

» F={f*| f € F} with the property that: for every f € F with arity
ay and sort space (Mg, py) the interpretation f® is a continuous function
going from (X, d%) to (My, py).

For every f € F with arity ay and true sort space, the interpretation f*
is a continuous function from (X*f,d%7) to (X, d).

» P = {C* | C € P} with the property that: for every C € C with
sort space (Mc,pc) (hence with arity 1 by the definition of signatures,
see Section 2.1) the interpretation C*® is a closed set in (M¢, po)-

For every C € C with arity ac and true sort space, the interpretation C'*®
is a closed set in (X ¢, d%c).

» The interpretation of the approximate predicates is the natural one.

— For every integer n and every predicate C' in P with arity a and sort
Space (MC) PC):

Cr={zeMc|Iyel®pc(z,y) <1/n}.

— For every integer n and every predicate C' in P with arity a and true
sort space,

Cr={feX*|yeC*dC(,y) <1/n}.
» K = {K*| K € K} with the property that: for every K € K with

arity ax the interpretation K*® is a closed set in (X%, d*<). The set K*
has the additional property that it has a finite diameter on the metric
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space (X% d*s), that is, there exists an integer M such that:

Diameter(K*®) = sup {d*%(&,7)} < M. d
ZjeK®

Once the interpretation for the symbols of ® are defined for a fixed model
A, then one can define the interpretation of the terms in the model, ¢° in
the obvious way.

When the model we are dealing with and the interpretations of the
elements of the language are clear from the context we will drop the
symbol °.

The definition of truth follows in the standard way.

Definition 5: Validity

Fix a signature ® for T'. Fix a model A of ®. The truth (|=) relation in
the model A is constructed in the obvious way from the truth definition
for the Atomic case:

Let C(t(%)) be an atomic formula. Let @ be a vector of the same
arity n that &, @ € (X", d").
Then A = C(t(a@)) iff it is true that t*(a) € C*. O

Let us give some examples of models in L4.

Example 3: Models of L4

» The standard model of a metric space (X,d) for
a signature P.

Let T be an arbitrary collection of metric spaces. Let (F,P, AP,K) be a
signature for 7'.

A model A= (X,{d"|i < w},F,P,K) is standard for ® if and only if the
collection K is exactly equal to the collection of all compact sets in the
family of metric spaces {(X?,d?) | i < w}.

The standard model is related to the standard neometric family (see [2])
and to the models studied by Anderson in [1].
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» Normed space structures (Henson).

Let T containing only the reals with the usual metric. Let (F, P, AP,K)
be a signature for 7. Furthermore, suppose that for every function symbol
fin F with arity a, for every bounding predicate K in K with arity a, for
every € > 0 we select a real number 0(f, K,€) > 0.

A model A = (X,{d"|i < w},F,P,K) of ® is a normed space structure
with respect to the collection of reals {6(f, K,e) | f € F,K € K,e € R} if
and only if:

(a) X is a normed space over the field of reals, and the metric d coin-
cides with the norm. Furthermore, the interpretation of F contains
functions that make X a vector space (i.e. sum of two vectors, and for
every real number r the function that multiplies a vector by 7). The
interpretation of F also contains the norm of X as a function from X
to the reals.

(b) The interpretation of P contains all the closed subsets of the reals.

(c) Every interpretation of a function symbol f with true sort space and
arity a is a uniformly continuous function f : X% — X with respect
to every bounding predicate K with arity a in the following sense:

Whe K Ve>0 [(Bisxo®) S Be(f(b)
where B,.(¢) denotes the ball centered in ¢ and with radius r.

(d) Every interpretation of a function symbol f, with sort space the real
numbers and arity a, is a uniformly continuous function f : X% — R
on every bounding predicate K with arity a in the following sense:

Vb€ K Ve>0 f(Bssx.(b) C Be(£(5)).

(e) The interpretation of K is the collection

{{5}’ € X' : di(0,#) < r} where r € R and i is a positive integer}.

The normed space structures are introduced in [11] and extensively studied
in [11, 6, 10].
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» Nonstandard hulls of metric spaces (Fajardo & Keisler).

=

Fix a nonstandard universe (V(Z),V(*E),* ). Let us recall the basic facts
concerning nonstandard hulls.

Given a *-metric space M = (X, p), for every x in M let [z] be the equiv-

alence class of all the elements in M infinitesimally close to z. Then for
every c in M, we define the nonstandard hull of M with respect to ¢ as:

H(M,c)={[z] |z € M A p(,c) is finite}
and the metric in H(M,c) is given by the relation:

p([2], W) = °p(z, ).

Let T be the class of all the nonstandard hulls H(M,¢). Fix a signature
® for T'.

A model A = (X,{d' |i < w},F,P,K) of ® is a nonstandard hull model
if and only if:

(a) (X,d") = H(N,c) for some *-metric space N, and some ¢ in N. Fur-
thermore, for every integer i, (X! d') = H(]W, (¢,c,...,c)), where
N denotes the cartesian product on N i times, with a *-metric that
induces the product topology.

(b) If a function f belongs to F' then f is uniformly liftable, i.e. there
exists an internal function F' such that

whenever Y lifts y.

(c) If a predicate C' belongs to P (where the sort of C' is the space
H(M,c)), then C is the standard part of an internal subset of the
galaxy G(M,c).

(d) If a predicate C' belongs to P and it has arity a and true sort, then C
is the standard part of an internal subset of the galaxy G(N?,c).

(e) If a set K belongs to K then K is the standard part of a bounded
internal set of the galaxy G(N,a).
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The models just defined can be seen as particular cases of the huge neo-
metric families introduced and studied in a series of papers by Fajardo &
Keisler (see [2, 3, 4]). O

Let us now return to the logic L4. Our intention is to define a notion of
approximate formulas for formulas in L 4.

3. Approximate Formulas in L4

Our aim here is to define syntactically, for any formula ¢ in L4, approxi-
mate formulas ¢'. We want these approximations to be first order formulas
(i.e. they use only finitely many conjunctions, negations and bounded ex-
istential quantification), and to verify that their “limit” is the formula ¢.

We define then the collection of approximate formulas as follows:

Definition 6: Approximate formulas
We define the collection L4p of approximate formulas in Ly as follows:
» For any Atomic formula of the form C(t), Cy,(t) € Lap.

» If ¢ and ¢, are formulas in L 4p then the formula ¢; A ¢5 is
alsoin L p.

» If ¢ is a formula in L sp, then the formula —¢ is in L4p.
» Let ¢ be a formula in Lap with free variables among the collection
{¥i | i <w}V {Z}. Then the formula

(o]
3(171,172,...,17,»,...)(/\ K;(#) Agzﬁ((ﬁl,ﬁz,...,ﬁi,...),:f’))
=1

isin Lyp. O

Note that the logic L4p allows countably many conjunctions only at the
existential quantifier step of the induction. This implies that L4p is close
to Ly, . In particular L 4p can be seen to be a first order multisorted logic.
By the work of Heinrich, Henson, Iovino et al, we know that multisorted
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positive bounded first order logics have many nice model theoretical prop-
erties (see [6, 9, 11]).

Note also that L4p is a generalization of the positive bounded formulas
introduced by Henson in [9].

The intuition about these approximate formulas is that they should verify
that ¢ is equivalent to A, _, ¢". Unfortunately this intuition does not
seem to extend to formulas including the negation, since what one would
get, assuming that the previous equivalence is true, is that —¢ is equivalent

to \/o_, —¢™.

A natural solution to this problem would be to modify the definition of
approximation such that ¢ is equivalent to \/\_; Ay _; ®n,m- In this way
one could hope to include all the formulas in L4 on the approximation
scheme.

This idea can not be carried away in the exact form as stated above, but
something very close to it, namely:

QS = \/ /\ ¢h,n

hel(¢) n=1
is possible.

In order to do this, we will define by induction the approximations to a
formula ¢ and the set of “paths” I(¢).

The intuition behind the set of paths I(¢) is as follows:

For the atomic formula C(t), we can imagine the approximations to it
disposed in the following way,

Ci(t) = Cy(t) = ... = Cp(t) = ...~ C(1).
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But when we deal with the formula —=C(t), the picture looks different:

-Cy(t) = =Ci(t) = —Ci(t) ~ = 0(t

=Ca(t) = —Cy(t) - —Cy(t) — —  C(t)
e > . > . > —  =C(t)

-Cp (t) = =0, (t) = =0, (t) = = 7 (t)
> > — —  =C(t).

In other words, when the formulas involve negations, there can be many
different paths that an approximation may follow. In order to deal with
this fact, we need to define two indexes (h, n) for the approximate formulas.
That is, for every formula ¢, we will read ¢, ,, to be the n-approximation
of ¢ along the “path” h.

This implies then that on the definition of the approximations for a formula
¢ we will need to define simultaneously the collection of paths I(¢) that
an approximation can take.

With this in mind, let us give the fundamental definition of this paper.

Definition 7: Approximation of formulas in L4

For any formula ¢(#) in L4 we will define sets I(¢(%)), and for any h €
I(¢(£)) and n € w a formula ¢p, ,(F) € Lap in the following way:

» Atomic. — For any atomic formula C(#(%)),

The set I(C(t(Z))) = {2}

— For every h in I(C(t(Z))), for every integer n,

(C(t(f)))hm = C,(t(@)).

v

Conjunction. — For any countable collection of formulas in L4:

D1(), $2(F) ..., ¢i(D), ...

we have that:

- I(AZ 6i(@) = T1:2, 1(¢:(F))
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For every h in I(\;°, ¢:i(Z)), for every integer n,

( 7} (@), = e

=1

Negation. — For any formula ¢(Z) in L4, we have:

= {h = (hi,h2) : w = I($(ZF)) xw | h is a covering of ¢(Z)},
Where h bemg a covering of ¢(#) means that:

Vg € I(¢(F) In €w Py ho(n)(T) = Phi(n) ho(n)-

For every h in I(—¢(Z)), for every integer n,

>3

(=0(@)nn = [\ ~(Pn1(0).ha() (£))-

i=1

Existential. — For “every formula ¢((v', s, . .., Ui, . . .), Z) for every vec-

tor of bounding sets K= (Ky,Ks,...,K;,...), we have the following:

1(3(171,172, T YND Ki(5) A (T, B, T .),f)))
= (¢, Do, .., Tr,..), ).

For everyhinf(a(ﬁl,@,...,ai,...)(/\;?; K (@)A((61, 5o, ... ,m,...),f))),
for every integer n, we have that

(o0}
(3(51,172, T ) (N Ki(5) A 951, s ,m,...),f)))
i=1 h.n
is exactly

[ee]
3(171,172,...,@,...)(/\ K (@) /\¢h7n((61,172,...,m,...),f)).

i=1
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It can be proved (see [13]) that our approximation scheme coincides with
Henson’s and Fajardo & Keisler’s for the formulas that are atomic, or
countable conjunction of atomic formulas.

It is also easy to see that when the formula ¢ is constructed using only
atomic formulas, countable conjunctions and bounded existential, the
number of paths in (@) is exactly one.

Now we are ready to see some examples of approximations of formulas
in Ly.

Example 4: Example of approximate formulas

» Formula ¢:

37 (K K(z;) A K K ) — @] > l/i).

j=1 j=1n=1
n#j

This formula states that there is in K a sequence whose members are at
a distance bigger or equal that 1/i. Let us assume that the signature ®
contains in this case a function norm || - ||, with arity 1 and sort the real
numbers with the usual metric, and a predicate (y > 1/i) of arity 1 and
sort the reals with the usual metric.

The reader can verify that the collection of paths I(¢) is exactly:

1(¢) = [I [T 2

j=1ln=1
n#j

In other words, there is only one possible path for this formula. Using the
definition, we have then that for this h € I(¢), for every integer m,

O =3 (A KA NN g =zl > - ).

j=1 j=1n=1
nti
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» Formula —¢:

K@) a N\ N lleg =2l > 7).

j=1 j=1n=1
n#j

=3

—az (

This formula states that for every sequence in K there exists two distinct
elements whose distance is smaller that 1/i. This is easily seen to be
equivalent to the fact that there are only finitely many elements in K
whose distance is bigger that 1/i.

Let us assume again that the signature ® contains in this case a function
norm, with arity 1 and sort the real numbers with the usual metric, and
a predicate (y > 1/i) of arity 1 and sort the reals with the usual metric.
The reader can verify that the collection of paths I(—¢) is exactly:

I(¢) ={f =(fi,f2) : w—I(¢) xw| fis a covering of ¢}

where the meaning of f being a covering of ¢ is just that:

Vg € I(¢) In €w (d)g,12(n) = (D) £1(n), fa(n)-

In this case, things are very easy because we know that I(¢) contains
only one path. This easily implies that every function f = (fi, f2) : w
I(¢) x w is a covering of ¢.

Using the definition, we have then that for every function

f=f)w=I(¢) xw

and for every integer m,

m N f2(s) f2(s) 1 1
(=) fom = s/:\l -3z (J/:\1 K(z;) A j/:\l n/:\1 lz; — x| > T f2(s))
n#j

this can be rewritten in the following simplified form:
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(=) t,m is equivalent to say that for every s < m the following is true:

R ) f2(s) f2(s) 1 1
vz (/\1 K(z;) = j\:/1 n\:/l lej — all < - = fz—(s))
n#j

d

Let us point out that although there is a calculable procedure to obtain
the approximation of every formula ¢ in Ly4, the previous example shows
that those calculations can be cumbersome. In the coming sections we are
going to see that it is a lot easier to obtain the expressions for A, _; ¢n.»
than for the individual ¢p, ;.

In the next subsection we are going to introduce the notion of approximate
truth.

3.1. Approximate truth

Intuitivelly speaking a formula ¢ is going to be approximately true in
a model A if and only if there exists a path h € I(¢) such that every
n-approximation of ¢ along this path holds in A.

Definition 8: Approximate validity

Fix a model A for a signature ®. Let ¢(Z) be a formula in L, for this
signature. Let a be the arity of Z, let b an element of X®. We say that

-

A l=ap ¢(b)

if and only if .

Jh e I(¢(@) Vnew Ak dnn(d)

Equivalently,

-

A l=ap ¢(b)
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if and only if it is true that

hel(9(F) n=1

O

Let us remark that it can be proved (see [13]) that this definition of ap-
proximate truth coincide with Henson’s (see [11] for the definition) for the
formulas in Lpg.

The following proposition is useful, because it will simplify the verifica-
tion of the approximate truth of formulas without getting involved in the
complex computations of the Definition 7. Let us remark that this propo-
sition shows that the notion of approximate truth behaves as expected
with respect to the usual logical connectives.

The proof of this propositions is straighforward and can be found in [13].

Proposition 2: Properties of approximate truth

Fix signature ® and a model Aof ®. Let ¢(Z) be a formula in Ly.
Then the following is true:

» AkEap —¢(d) if and only if A¥p &(a).

» For every integer i, let ¢;(Z) be a formula in L 4. Then the follow-
ing is true: A Eap A\i_, ¢i(@) if and only if for every integer i,
AE=ap ¢:(a).

» AkEap Vi, ¢i(a) if and only if there exists an i such that:

AFEap ¢:(a@).

» AEap (¢(d@) = 4(d)) if and only if:

if AEap ¢(@) then A |=4p ¢(a).

Thanks to the previous propositions the manipulation of the approximate
truth for formulas is simplified.
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4. Elementary properties of approximate truth

Our intention in this section is to take a closer look at the main properties
of the notions of approximate formulas and of approximate truth.

The first property states that every set of paths I(¢(Z)) contains a “dense”
countable subset in the following way.

Lemma 3: Dense subset of I(¢(%))

Fix a collection T of metric spaces, and a signature ® over T'. Then
for every formula ¢(Z) € L4, there exists a countable set D(¢(Z)) such
that:

(a) D(o(7)) C 1(¢(7)).

(b) For every h in I(¢(&)), for every integer n there exists a path g in
D(¢p(%)) such that:

Gh,n(T) = bgm ().

ProoF. — It will be done by induction on the complexity of the formulas
in LA.

» Atomic Formulas. — Let C(t(Z)) be an atomic formula with free vari-
ables in Z.
Then we know that I(C(t(Z))) = {@} and for every n € w and every
h e I(C(t(F))):

C(HE))hn = Colt(7)).

Define then: D(C(t(%))) = {@}.
It is easy to see that those sets verify the conditions (a), (b).
For the connectives and quantifier steps let us assume as induction hy-

pothesis that for formulas ¢ of less complexity than the formula ¢(F),
D(%) has been defined and verify the properties (a), (b).
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» Conjunction. — Consider the formula

[e%

$(F) = J\ ¢:(@) € La.

Recall that:

and that for all integers n and for all h € I(¢(Z)),

3

(G = NG @i

=1

The construction of the set D(¢(%)) is as follows: for every n € w consider
the set [, D(¢:(Z)). Let

w n

pn: [[ D(¢:(®) = [ D(4:(#))

i=1 =1

the usual projection map. Since by induction hypothesis for every ¢ < w,
D(¢;(Z)) is at most countable, it is always possible to find for every integer
n a countable set Q(n) C [T;_, D(¢:(Z)) C I(A\;_, ¢i(Z)) such that

n

Pn(Q(n)) = H D($:(7)).
Let then D(¢(Z)) = U“_, Q(n).

Using the induction hypothesis it is easy to see that these sets verify the
conditions (a), (b).

» Negation. — Consider the formula ¥(Z)= —¢(Z) in L4.
Recall that:

I(—¢(2)) = {h € (I(¢(Z)) x w)“ | his a covering of (Z)}.
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Here, a covering of ¢(Z) for a function h = (hi,h2) : w — (D(¢) X w means
that for all g € I(¢(Z)) there exists an integer n such that:

(D@ b1 (n),ha(n) = (D(E)) g ho(n)-

Recall also that for every n € w and every h = (hy, ha) € I(—¢(%)),

n

(=@ hn = \ ~(SE)n (1).1209)-

i=1

The construction of the set D(—¢(%)) is as follows:

By induction hypothesis we know that for every n € w the set
(D(6()) x )T}

is at most countable since D(¢p(Z)) is at most countable. Let

proj, : (I(¢(Z)) x w)* = (D(p(Z)) x w){l,...,n}

the natural projection map. Then it is possible to find for every integer n
a countable set O(n) C (D(¢(Z)) x w)¥ C I(=¢(Z)) such that

proj, (0(n)) = proj, (I(=¢(Z)))-

Let then D(=¢(2)) = *_, O(n).

n=1
Let us verify conditions (a) and (b).
It is clear that D(—¢(Z)) is a countable subset of I(—¢(Z)).

Fix now an integer n and an arbitrary h € I(—¢(Z)). Then by definition of
D(=¢(Z)) there exists an f € O(n) C D(—¢(%)) such that proj,, (h) = f.
This implies in particular that for all i < n, h(i) = f(i). We have then:

n

/\ _'(d)(f)hl(i),hz(i)) = /\ _'(¢(f)f1(i),f2(i))
i=1

i=1

that is: (=¢(Z))nn = (A(T)) f.n-
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» FExistential. — Fix a formula ¢ in L4 with free variables among the
collection {; | i < 8} U {Z#}. Consider the formula:

G(@) = 3@, b, ) (N KT A GG, T ), 8))

i=1
Recall: T((Z)) = I(G((Br, T, - ., T, ..), 7)) and Vn € w¥h € T((F)),

(¢(f))h,n = 3(1717172) . 717i; . )(/\ Kz(ﬁl) A ¢h,n((ﬁlaﬁ2) .. )ﬁia .. ))f))
i=1

Define then: D(¢(%)) = D(¢((01,T2,-..,T;,...), %))

The verification of the properties (a), (b) is trivial.

This completes the proof of the Lemma. O

This lemma allows us to prove that the approximate formulas behave
nicely enough to guarantee that truth and approximate truth coincide for
quantifier free formulas.

We will abbreviate for all except a finite number of integers k by V*.

Proposition 4: Basic properties of approximations

Fix a collection T' of metric spaces. Fix a signature ® for T'. The
following statements are true:

(a) For any formula (&) in L 4, for any model A of ® for any b € X%,
for any integer n and for all F' € I(y(Z))

-

A= ¢F,n+1(g) = Yrn(b).

(b) For any quantifier free formula ¢(Z) in La, for every model A =
(X, {d'|i < w},F,P,K) of ®, for “every vector b in X% and every
sequence f in X7 converging to b in the metric d' we have that:

A= ()
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if and only if

-

dh € I(¢(%)) Vnew Yk Ak donn(f(k)).
ProOF. — Straightforward using induction in formulas and the Lemma 3
(page 45). Item (b) follows from item (a). Left to the reader. a
Let us point out to some easy consequences of this proposition.

First, item (b) implies that for quantifier free formulas:

- -

A ¢(b) iff Al=ap ¢(b).
This shows that our definition of approximation is sound: truth and ap-
proximate truth coincide for quantifier free formulas.

Second, item (b) also implies that approximate truth is well behaved with
respect to the notion of convergence for quantifier free formulas.

The next example shows that item (b) of the previous proposition is not
true for arbitrary formulas in L.

Example 5: Proposition 4 fails in general for existential step.
The essential parts of this example are taken from [5].

The collection 7" of metric spaces contains only the real numbers with the
usual metric. The signature ® on T consist of

» a symbol of function 7" with arity 1 and true sort,

» a symbol of function || - || of arity 1 and sort the real numbers,
» a symbol of function (- — -) of arity 2 and true sort,

» a predicate C of arity 1 and sort the real numbers,

» a bounding predicate K of arity 1.

Consider the following model A = (X,{d" | i < w},F,P,K) of ®: X =
C[0,1] the space of continuous real valued functions on [0,1], and the
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metric d coincide with the supremum norm. For every i > 2 let d’ be any
metric that coincide with the product topology in X".

Let T : X — X such that for every z € X = C[0,1], (T'z)(t) = tz(t). It is
easy to see that this map verifies that for every z,y in X, ||T(z) - T (y)|| <
||z — y||. Hence this map is continuous.

Let || - || be interpreted as the sup norm (easily seen to be continuous).

Let (- —-) be interpreted as the difference between 2 functions in X (triv-
ially continuous).

Let K ={z e X : 0=2x(0) < z(t) < (1) = 1}. Clearly this set is closed
and bounded.

Let C = {0}.

Note first that the map 7" does not have a fix point in K, i.e. for every x
in K, T'(z) # z. If this were not true then it would exist an z in K such
that for every 0 < ¢t < 1, z(t) = tz(t): a contradiction.

In other words, we get that:
A —3z(K(2) AC(|le = T(@)]])-
Finally, for every € > 0 select any map x € K with the property that:
vVt € 10,1] |lz(¢)|| < e. Then it is easy to see that |T'(z) — z|| < e.
In other words, we get that:
A Fap (K (x) ANC(|T(x) — =[]))-
This completes the example. |

This prompts us to study the models where item 2 of the previous Lemma
holds for arbitrary formulas in Lg4.

Definition 9: Rich Models

Fix a signature ® for a collection of metric spaces T', and a model A =
(X, {d'|i<w},F,P,K) of ®.
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Let A be a collection of formulas in L. We say that the model A is
A-rich if and only if for every formula ¢(&) in A, for every vector b € X 7|
it is true that:

- -

A o(B) iff A ap 6().

If A is A-rich where A is just all the formulas in L4, we say that A is a
rich model. O

We can think of the A-rich spaces as spaces where Henson’s principle
works for A.

In order to decide when a model is rich, let us prove the following test.

Theorem 5: Test for rich models
Fix a signature ® and a model A = (X,{d' | i < w},F,P,K). The
following are equivalent:

-

» For every formula ((vy,¥s,...,¥;,...),b) with parameters in A,
for every vector of bounding sets K = (Ki,...,K;,...) and for
every vector of sequences f in K, if

—

3h Vo Yk A= Yna(f(k),b)

then there exists a (@y,ds,...,d;,...) in K such that:

AEap (@1, da,...,d,...),b).

» The model A is rich.

ProoF. — The direction (<) is trivial.

(=) We want to prove that A |= ¢ and A [=4p ¢ are equivalent for every
formula ). We are going to achieve this by induction on the complexity
of the formulas in L. By the item (b) of Proposition 4 we already took
care of the atomic, conjunction and negation steps. There remains only
to prove the existential step.

Assume then that for every formula ¢ with complexity less than the com-
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plexity of ¢((¢,0s,...,0;,...),7) it is true that:

A = ¢ is equivalent to A |=ap ¢.

Existential. Let

o0

() = 3(171,172,...,@,...)(/\ K(7) /\¢((171,172,...,ai,...),f)).
i=1
(=) Direct.
(<) Suppose that there exists an h € I(¢((v, s, ...,0;,...), Z)) such that
for every integer n we have:
o0
AR 3@, T ) (N KB A bnn (51,5, T5,), )
i=1

This implies that there exists sequences (a(;))n in K; such that for every
integer n we have that

Visew A dna((al)s,a?),,...,@{)s...),b)

using the hypothesis of the lemma we can affirm then that there exists a
vector (dy,ds,...,d;,...) € K such that

A Eap 6((@1,ds,...,d,...),b).
It follows then by induction hypothesis:

B8
A 3@, T, Ty ) (N KilG) A (@1 B, T,

i=1

S
~—r
N——

This completes the proof. O

The previous theorem gives us a way to check that a model is rich by
focusing on the behavior of sequences of bounding sets elements.

Using the test for rich models, we leave to the reader to verify the following:
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Theorem 6: Standard Models are rich

Fix & a signature, and A a standard model of a metric space (X,d)
for ®. Then A is rich.

A first version of this result, for the notion of approximate truth in for-
mulas that admit finite conjunction, disjunction and bounded quantifica-
tion, was proved by Anderson ([1]). Fajardo & Keisler obtained a similar
approximation result in a logic that admits countable conjunctions and
disjunctions using the concept of neoforcing (see [2]).

Let us now check that the nonstandard hulls models are also rich models.

Theorem 7: Nonstandard hulls models are rich

Fix ® a signature and A a nonstandard model of ®.
Then A is L s-rich.

PrOOF. — Recall the definition of nonstandard hull model given in Ex-
ample 3 (page 34).

From the definition of the nonstandard model, it is easy to prove that for

every formula ¢(Z, %) in Lap, for every be X9, for every K1,..., K, € K

-

(e K : A ¢(@b)}

is the standard part of an internal set on the galaxy G(NIZl, (c,¢,...,c)).

Recall also that if A,, is a chain of internal subsets of N, then

“(M4n) =)

n

Now suppose that for a formula ¢(#, ) in Ly, for a vector of bounding
sets K = (K1, K»,...K;...) there exists an h in I() such that for every
integer n: .

i, € K A= Ynn(@n,b).

Using Proposition 4, the previous remarks and the fact that countable
intersection of internal sets is not empty, it is easy to find an @ € K such
that for every integer n,

A ': ¢h,n(67 b)

This completes the proof of the Theorem. O
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5. Concluding remarks

We want to point out that similar studies of the nice properties of non-
standard analysis with respect to some approximation principles have been
done already by Fajardo & Keisler (see [2, 3]). The central notion of their
study is the neoforcing of a formula instead of the notion of approximate
truth of a formula.

In particular, for the notion of neoforcing, and for a collection of struc-
tures that generalize the nonstandard hull models (the huge neometric
family), they proved an approximation theorem along the same lines that
Theorem 7.

The main interest of our approach is that it enables us to develop a model
theory of this notion of approximate truth following the footsteps of Hen-
son and his school. For example it can be proved (see [13]) that the logic
L 4 verifies a compactness principle of the form:

For a given family T (verifying some mild hypothesis) of models
and any sentence ¢, if there exists a path h € I(¢) such that for
every integer n there exists a model A,, in I with the property:

An |: ¢h,n
then there exists a model A in T' such that A = ¢.

On the other hand, in [13] it is proved that the neoforcing can be inter-
preted in terms of our notion of approximate truth. It is also proved that
Theorem 7 can be extended to the huge neometric families, and in general
that, under very mild conditions, any structure where truth and neoforc-
ing coincide is a rich structure in our sense. Hence both approaches are
equivalent.
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