
Three-va-l,ued logic and computer science
Albert Eoogewijs

(Rijksuniversiteit Gent)

A three-valued logic considers besides the classical truth-values ? (tme)
and F (false), a third value t/ (undefined). According to the interpretation
of this value such as meaningless, intermediate, neutral or indeterminate, one
gets different truth-tables for the logical counectives and hence different for-
malizations for the three-valued logic (see [9] and IfO]).

Now we want to consider some practice of this notion in Computer Science
and deduce the appropriate interpretation and formalization for the third value
in this context.

1. Digital networks and switchiog theory

Switching theory or the logical design of digital networks, deals with the
developing of digital systems that are to carry out particular information-
processing tasks. Since binary coding provides for an adequate way to handle
this process, the whole theory relies on the realization of functions of the form

f , {0 , l } - - {0 ,1 } " ,

which can be decomposed into n functions of the form

f ; r { 0 , l } * * { 0 , t } , i : t , , . . , n .

trbom the existence of the disjunctive normal form for such functions, they can
be represented in the form

31

f (r r , . . . ,2^) : V rT ' . . .2 i ;
((t r , " ' , c -)

. f (c1 , - . . , c -)= 1

where uL .: r and t0 :: a (the complement of z)

Eence digital networks can be composed of elementary AND-, O-R- and

COMPLEMENFgates which are the realizations of the classical logical con-

nectives A, V, - and where 1 stands for ? and 0 for F. Since the disjunctive

normal form can easily be obtained from the function-table, as the following

ocample shows, the whole problem seems to be solved.

However in the majority of the cases, this normal form must be simplified

in some way to provide an ecomical hardware solution-

1.1. Example

11 t2 tg î4 l (r t , 12 , rs , r 'a)

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 l l

I
I
I
I
0
0
1
1
0
I
1
0
0
0
0
0

32

l b t , r ' 2 , r s r r a) î1î,2îsîa
î1i2rsîa
î172îsra

î t t Z t e r +
î t rzrs i+
I172tsâa

V î1i2Tsîa

V r l r 2 rg ta

:
V
V

L.2. Minimization methods

A first way to simplify the canonical form is usiug the following rule of
Boolean Algebra :

AsBv AiB - AB

where C and B are any formulas of the form tit. . rr, or 1. This method has
been systematized into two procedures one of which we will illustrate on the
considered example. For more details we refer the reader to [7] et [2].

The Karaaugh map method is a graphical procedure which is easy to
use for functions with at most four arguments. The starting point is a picture
(called the map of the function), containing 23 iabelled squares (where z is
the number of arguments). The labels consist of binary codes and stand at the
top and the left side of the picture (as on ordinary maps). They are arranged
in such a $ray that the labels of two adjacent squar$ (note that the first and
the last line [column] are considered to be adjacent) differ only in one variable.
Each square contains a binary code according to the value of the function
(which has to be represented) applied to the label of the that square.

In thig way the map of the fonction / from the example becomes :

(R)

33

xl o001 1 1 10

00

A

0 0 0I

01

C

0 0

C

ll [T-

1 1

B
0 0I 1

l0

D
I 0

D

['

The next step in this procedure is combiuing an even number of adjacent

squares containing l, in order to form rectangles or squares which refer to the

terms that can be simplifred. For the cousidered example we get :

I (q ' t 2 r E s r T 4) : î t i z v i t t e v i 2 i s r a v E 2 t s î , a

A B C D

where each of this terms is obtained by eucoding the common pa.rt of the labels
of the squares in.the corresponding blocks.

For a larger number of variables there is the Quiue-McCluekey pro-
cedure which consists of a systematic enumerative technique to find out on
which terms the reduction rule (R) may apply (See the given references).

1.3. Practical design of a logic circuit

Assume that we have to devise a circuit that will control a cofee-and-tea
machiue which offers the possibility to add sugar and/or milk. Coding the
possibilities we get :

34

INPUT
t1 12 Dg t4

OUTPUT

0
0
1

0
I
0

no output
cofee
tea
without sugar
with sugar
without milk
with milk

Eence we have to consider a 4-bits input.

Since the circuit must coutrol 5 relays Rt,...,Æs for the dosage of the
coffee, the tea, the sugar, the milk-powder and the water resp., we have to
coneider 5 functions .û t {0, l}n * {0, l i .

Now it is clear that one may not ask for coffee and tea in the same cup.
Hence the machiue must be constructed in such a way that an input ..11 is
impossible. This leads to the so-called udon't care conditionsn in the function-
table (see [7], [2]). If we denote them U we get the following function tables :

If we interpret U as "not important', we may take it as 0 and we get for

35

11 12 rg 14 It lz îe fq fs
0 0 0
0 0 0
0 0 1
0 0 1
0 1 0
0 1 0
0 l l
0 1 1
1 0 0
1 0 0
1 0 1
1 0 1
1 1 0
1 1 0
1 1 1
l l l

0
I
0
I
0
I
0
I
0
I
0
I
0
I
0
I

0 0 0 0 0
1 0 0 0 1
0 1 0 0 1
U U U A U
0 0 1 0 1
1 0 1 0 1
0 1 1 0 1
UUUUU
0 0 0 1 1
1 0 0 1 1
0 1 0 1 1
UUUUU
0 0 1 1 1
r 0 1 1 1
0 1 1 1 1
U U U U U

the function /3 :

f "b r ,1 ,21rs ,ea) : î1 r2 is îa v 7vr2 is îa v E1r2rs îa

V ryî2Esîa V ryr2îsr4 V r1x2rsî4

Applying the Karnaugh map method we get :

Combining terms as shown on the maP gives us :

| r @ t 7 r 2 r r s r z 4) : t z î s v r z î + '

A B

Eowever, looking at the DèP, we see that if Ut : U+ - 0 and Uz - Ue : 1

then we can consider a rectangle of 8 squares. Hence /3 becomes :

| r @ t t T 2 t E 3 , î t) = x z '

This means that we have considered the U's of the function'table as snot

yet defined" with the possibility to become either 0 or 1 in the Karnaugh map.

x 00 01 1 1 10

00 0 0

B

01 0

I

I' 1 0

A

1 1 U1 U2 Us U+

10 0

B
01 1

36

With this interpretation in mind
V.

the following truth-tables for -r Â,

then
elee

COR T F A
T IT

the interpretation

one gets

IU
0 0 0
0tu
OUU

0
I
U

2. The third value U in programming

2.L. Introduction

Consider the expression (y:0 ORîly - 5) where z and y are integers.
Since rf yls not defined in the case that y:0, there is no classicalway to use
the statement

l f (y :0 OR r f y =g) tben ,91 e lse ,S2 .

One has to trauslate this statement iuto the forms :

i f 9 : 0 t h e n 5 1
else l f sly - 5

In [3], Gries introduces two operators :

,91
S2

CAND: conditionl AND
COR: couditional O.R

defined in the following truth tables :

T FU
F F F

They can be explained considering

,b, CAND , c , : : i f

TT
FU
UU

37

' ô ' then ' c ' e lse F .

A computer is supposed to evaluate that expression from left to right. If

the nalue of, 'b' is I he will evaluate 'c' and acording to this value the result

willbe T, F, orU (where tI means abortion of the program). If 'ô'is.F tbe
whole ecpressiou is ̂ F. Tî, tb' is t/ the program aborts, hence the result is U.

Similary oue gets an interpretation f.or COR as

'b ' COR'c ' : : l f 'ô ' then T e: .ee 'c t .

A eerious objection against the use of these operators is the fact that they

are not commutative.

Gries uses the CAND and COR in his nProgra"'ming languageo :

o which more or less looks like Pascal or Algol,

o is much simpler in use,

. offers some facilities in proving programs correct.

Eowever there are still no interpreters Bor compilers available to nrn such
programs.

The usefullness of the language may be compared to the use of flowcharts

in the older days, which were ment to clarify the program structure. But where

flowcharts in most cases were written after the prograln was finished, to provide

for some documentation, this language may be used

c to produce a well-structured program,

o to prove the progra.m correct,

. :Ë a proper base for a well-founded program in most available pro-
gramming languages.

2.2, Some specifications of Griest language

2.2.L. A guarded command is an expression of the form

B-S ,

38

where the nguard B is a generalized boolean expression (using CAND and
COR) and ,S some instmction to be ocecuted if .B is true. They can be combined
to form :

2.2.2. An alternative co"?rrnend, which in its geueral form looks like

i f B r * S r
U B z - S z
u
U B , . - S o
û

where if and û mark beginning and end of the co-mand resp. and ! separates
the component guarded instmctions. On execution the expressiom 8j are
evaluated, but without any mles on the order of evaluation;

o if a .Bi is found to be undefined, abortion occurs,
o if no ̂ Bi is tme theu execution aborts,

e if a 8i is found to be true the corresponding ,sd is executed.
2.2-8. The iterative commnnd which has the general form

. d o B r - S r
U B z - S z
u
U B o - S o

od

Beginning and end are marked do and od resp. and I is used as separator of
the componeuts. On execution, a search is started for tme guards .B; and the
corresponding ̂9i are executed. Upon termination all the guards are false.

2.3. Example

A simple example may illustrate the use of the latter. Consider the prob-
lem of finding the position i of an element s in an array ô[0..2 - l] if r belongs
to the array else if r doesn't beloug to ô[0..n - l] put i z: n. The following
statement does the job :

39

do (i < n CAND NoT(r : ô [i])) +

B

2.4. Proving programs correct

Gries discusses the problem of proving correctness of ioop execution. He

introduces 3 predicats :

o the precondition Q, which must be tme when execution starts;

o the invariant P, which must be true before, during and after execution

of the loop;

r the result assertion 8, which must be true after execution of the loop.

It follows that

B B n P a f t ,

. r r

where BB: U
"r.d=1

For the considered example we have :

r = : d + 1 o d

s

40

A z Ç b [O . . n - r]
n r = ô [i]) v (r : n ^ r É ô [o . . n - t l) .

3. Recursive procedures and undefinedness

3.1. Introduction

Consider the definition

subp(i, j) r- t r t i : j then 0 elee subp(i+ l , j) + I l

which is a recursive procedure that can be deû.ned in PASCAL or ALGOL
We get

subp(i , i) : i - i i f j > I

but szbp(i,i) is not deûned if j < f, since in this case the procedure does not
halt. Ia order to prove that for all integers ,rl, j

i < i ==+ subp (i , j) : i - i , (P)
one nees a three'valued logic.

Barringer, Cheng and Jones in [l] propose to use the following truth-tables
for tbe connectiv€s -r n and V.

Note that those table correspond to tables we got iu l.
where I :: ? aud 0 :: ^t'. Moreover McCarty [8] observes that one get the
tables for Â and v from the tables of. CAND and COR if one introduces the

axiom : (i f ,ô t then ,at e lee ,ar) : ,o , .

Besides they consider partially defrned terms and use the following deûnitions
for equality

e : : 0 (z
P : - 0 (d (n
R : - (0 S r < z

4 l

where r and y stand for two different terms and I denotes an undefined term.

The formalization of those connectives and the quantors V and f leads
to a proof theory which euables Barringer et al. to prove some procedures,
involving partial defrnedness, to be correct.

3.2. Example

As an illustration we copy the proof which shows that the property (P)
follows from classical properties of the integers, the following rules of the the-
o r y :

V-introduction:

(V-D

v-elirninarion:

(v-E)

=-substitution 8t = 52rP
(:-subs)

p (sz ls t)

and the properties for subp which follow from the definition :

ù :

d 2 :

subp(n,u) :0

fzr-rftz, subp(n1* l, n2) - 7ù3

subp(n1,nz)* za: I

Note that the proof is based on natural deduction.

42

F Vi, i . i - i 2 O ===1 subp(i, i) : i - i .
1 . FV l t . f r >0 asu$p (i - k , i) : k .

F s a b p (j - 0 , i) : 0
k) 0, subp(j - k,i)

t . z .L & > 0
r . 2 . 2 k + 1 > 0
t .2 .3 i -&+L)+ i
r.2.4 subp(j - k, j) - k
1 .2 .5 i - k - j - (, t + r) + r
t.2.6 subp(j - (e + 1) + 1, i) : k
t.2.7 subp(j - (fr + 1), i) : ,t + I

2. t s i -1>0+subp(j -U- i) , i) : i - i
3. l- i - L) 0 =+ subp(i, i) : i - i
4 . F V i , j . i - i>0+subp(i , j) : i - i

d1
: k F subp (j - (k+1) , i) : , t +1

1 . 1
L.2

1 .3

prem 1.2
integers
integers
prem 1.2
integers
:-subs -L;2

d2 -lr-4

induct 1.1, 1.2

V.E -1

integers -1

V-I twice -1

In [5] we show that natural deduction implies that selfdenial - and selfas-
sertion - rules cannot hold in the proof theory.

(SeDe)
L, A t- -'l

(SeAs)
L , - A F A

L F - A ' L F A

It follows that easy classical proofs are much harder to obtain. Eowever if
we introduce the symbol A as in PPC [a], we still have interesting rules such

L r z F - A

which may simplify at least some of those proofs.

to [6] .

L T , A F B
L2 F AA

Ln, -B F -'1{

For further details we refer

L t r A F - A

L2 f- aâ and

43

4. References

[1] BARRINGER H., CHENG J.H., JONES C.8.,
A logtc Covenng Undefrnedness in Progrzn: Proofs,
Acta informatica 2L (1984), pP. 251-269.

[2] BOOTH T.,
Digital nefworks and Computer Systerls,
John \ililey, New York, 1971.

[3] GRIES D.,
?àe scien ce of programming,
Springer Verlag, New York' 1983.

[4] HOOGEWIJS 4.,
On a formalization of t.be Noa-defnedness Notion,
Zeitschr. f. math. Logik 25 (1979), PP. 2L3-22L.

[5] EOOGE]VIJS 4.,
The Partial Predicate Calculus PPC and Undefnedness in Computer

science,
Logic Colloquium Mauchester, 1984.

[6] HOOGEWIJS 4.,
Cut-ruJe in a logic for Program Proofs,
Draft, Geut, 1984.

[7] LE\ryrN D.,
Logical design of Switching Circuits,
Nelson, London, 1968.

I8l McCARTHY J.,
â basis for a Mathematical theory of Computation,
in Computer Programming and Forrnal Systems, (ed. P. Braffort and
D. Eirschberg), North-Holland, 1967.

tel RESCEER N.,
Many-ualued Logic,
McGraw Hill, New York, 1969.

44

llol woLF R.,
A Suwey of Maay-ualued Logic (1966-1974),
in Modera Uses of Multiple-valued Logic, (ed. J.M. Dunn and G. Ep-
stein), Reidel, 1977, pp. 167-323.

Rijksuniversiteit Gent
Galglaan 2

8-9000 Gent

45

