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A DECISION ME]}CII] FOR THE EXISTENTIAL THEOREMS OF NF^
L

Urs OSiIAID

(Zûrich)

S 1. Introduction.

hhat is or wirat is not an existentlal sentence depends on the language used
+rnr c rhannr I t  iS natUfal 16 fnmrrlrfa NiF in the langUage L With the nOn-L V  ! V r l r r u r 4 L L  r r r  
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logical signs € , Â (empty set),  (complenrent), u (union), { }  (singleton

set). By the nethod developped in S 5 of this paper, it is decidable whether

any given existential sentence of L is a theorem of NF, (TTIEORA,I 3.7), The

ntethod is baseri on the existence of a model i\'l of lrtr-, wlth the particular pro-

perty of being embeddable i-n any model of NFr. It is a direct consequence

of this property that an existenti-a1 sentence of L is a theorem of NF, iff it

itol<is i-n r\'1. Our nethod actually ciecides whetirer a given existenti-al sentence

holcis i-n M.

The nethod developped in S 3 is, however, utterly unusable in pratice. There-

fore in S 4, a second method is developped which is a decision nrethod not by

itself, but in view of the results of $ 3, and \^frich can be readily applied

to a great nany cases (TIIEOREN{ 4.12). For instance, 1et o be 3x3V

( x É  x  &  y É  y  & x e  y  &  y e x ) .  T h e n  o  i s  a  t h e o r e m o f N r F  ( j g s t  1 e t

x = USC(V) ard y = {USC(V)} ) but not of NF, . 0r consider the sentences

- l xJy  6  f  y  &  x  =  { - { y  u  { x } } } )  and  1x1y  ( x  =  - y  &  x  =  { y  u  { x } } ) .

Our meithod shows that the first is a theorem of NF, while the second is not

( c f . S  s ) .
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$ 2. Some prerequisites.

If formulated in L, NFZ can be given by the following five axloms

( B o f f a  t  1  l )  :  ( A 1 )  V z ( t  € ; ç  < - +  z e y )  - +  x  =  I .  ( A Z )  V x ( x  ç  N .
( A 3 )  V x ( x €  - y < - - + x ç y ) .  ( A 4 )  Y x ( x € y u  z + x € y  v x €  z ) .

(A5) V x(x e {y} * x = y) . We denote by No the set of the nonnegative

integers. We shall construct a rnodel M of NF, with the wriverse lMl = No.

For al l  a,b € INo, we define R(a,b) ( intended to be eM) to hold i f f  ei ther

of the following conditions holds : (1) b is even and a is an exponent in

the binary representation of i 
., 

liil b is odd and a is n o t an exponent

in the binary representation of +. 
Then the following can be easily

proved (details are given i-n Oswald t 3 I ) :

2 .1 .  Lenuna .

a) ( IN',R) is a nrodel of NF, formulated in =, €.

b) < No,R) can be tmiquely expanded to a model of NFr.

c) Let M be the rnique expansion described i,n (b) . Then Â,f can be isomorphi-

ca1ly ernbedded in every model of NF, .

we set  M = (  lMl ,  .M,  ÂM, - ' ,  ,M,  {  }M >,  where eM is  R.  The fo l lowing

lenrna, a direct consequence oL 2.1c, is the base for our decision npthod.

2.2. Lenrna.

If o is arr existential sentence of L, then o is a theorem of NF2 iff it holds

in  M .

2.3 .  Def in i t ion.

a)  we  se t  l u l  =  {b  €  lu l r c  eM a} .
b) We call an indivi,dual a of M f i

c o f  i n i t e  i f  l M l  t l " l

c) We say that a and b are d i s j

2. 4. lenrna.

We let a and b be individuals of ll.

a) a is f ini te or cofinite.
Â l

b) a €" '  a i f f  a is cofinite i f f  a is odd.

t  e  i f  la l  i -s  f in i te ,  and

fi-nite.

n  t  i f  l a l  ana  lU l  a re  d i s j o i n t .

n 1

o i
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c)  I f  b  is  f in i te ,  i ld  u . [ {  b ,  then a {  b .

d) If b is cofinite, ild a eM b does not ho1d, then a ( b.

e) To every M c l^41 such that lvl or lrtlltU is finite, there is exacrly one

individual a such that l"l = Irl.

t )  a  <  { a } M .

g) I f  a is f ini te, then -M" = I + a.

h)  -Ma < {a}

i )  I f  a  (  b ,  t h e n  { a } M .  t u l M .

j) If a and b are disjoint and finite, then a r/'{ b = a + b.

k) If a and b are disjoint finite noneinpty indi-viduals, then a < b iff

mæ( la l  <  max  lb l .

Proof.

(a) tirrough (k) are innediate consequences of the definition of R and of
l i n a Àr . J .  v . v . u .

By an i- n d i  v i  d u a 1, we sha11 henceforth mean and individual ofM.

l l e  s h a 1 1  s i m p l y s a y t h a t a  f o r m u l a  i s  s  a  t  i s  f i a b  1  e  i f i t  i s  s a t i s -

f i-able in M.

trle now 1et T be any first order theory. BI ôn we denote the fonnula

'\r-.-^ x. I  xr.  I f  p is any predicate sign of L(T), we denote b) '  u(p) thelaJ\n 1 )
nr-mber of places of p.

2 .5 .  De f i n i t i on .

Le t  Pbe  a f i n i t e  se t  o fp red i ca te  s i gns  o fL (T ) .  we  ca r r ç  a  b  a  s  i  c

c o n j  u n c  t  i o n  w i t h r e s p e c t t o P i f ç  i s  a f o r m u l a o f t h e  f o n n ô r r & û ,

where rp is a conjunction satisfying the following conditions : (i) Each

factor  (we ca l l  rp . ,  ,  . . . r  ûr ,  the f  a  c  t  o  r  s  o f  rp . ,  & . . .  & Urr )  o f  rp  is

e i ther  pv. ,  . . .  ru(p)  or  -pv1 . . .  ru(p)  for  some pred icate  s ign p e  p  and

v a r i a b l e s  v 1  ,  . . . ,  r u ( p )  €  { * j  ,  . . ,  * . } ,  o r  x i  -  t ( x 1  . . .  * n )  f o r  s o m e
i < n and some terrn t containing exactly o n e function sign. (ii) For

eve ry  p red i ca te  s i gn  p  €  P  and  any  va r i ab les  v . ,  ,  , . . ,  vu (p )  €  { x j  , . . . ,  \ } ,
exact ly  one of  pv1 . . .  vu(p)  and-pv. ,  . . .  ru(p)  is  a  fac tôr  o f  ,p .
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The following theorem is easily by well known nethods of predicate logic

with identity.

2.6. Reduction theorem.

Let E be the set of the existential theorems of T containing no predicate
t)

signs- other than those of P, and 1et Bn be the set of the existential theo-

rems of T whose matrix is a basic conjunctj.on with respect to P, Then Ëo

is <iecidable iff Bo it decidable.

We denote by IN the set of the positive integers (remenber that INo is the

set of the norrnegative integers). We denote by F(IN) the fanLily of the

finite subsets of IN. For al l  I ,J e F(N), we define I l ,  J to hold i . f f

max( [ I  \J )  u  {O})  <  nax((J \  I )  u  {0} ) .  By th is  def in i t ion,  the fo l lowing

is true :

2.7 . Lenvna.

a )  I . ( J  j - f f  ( i \ J ) . {  ( J \ I ) .

b) Ii I and J are disjoint and nonenrnpty, then I4,-l lff rnax I ( max J.

c)  r r {  r r  i ,  a  to ta l  order ing on F(Dj ) ,

h'e sha1l 1et all subscripts run through iN. iVe stick to the convention

that r(x.,  . . .  *rr) (or t(x.,  . . .  *rr)) nreans a fornula (or a terrn) al l  of whose

f ree var iab les are among x1 ,  . . . ,  Xn.  For  every  ta  No,  we denote by N '

the set t i  € ni/ i  (  n].  Notice that N^ is the ernpty set @.

$ 5. The decidabi l i ty proof.

5 .1 ,  De f i n i t i on .

Let f be a function with dornaj-n D and rarge R, where D c Nn for sonp t . No

and  R  c  F ( IN ) .

a )  l l ê c a l l  f  a d m i  s  s  i b  1 e  i f  f ( i )  c N . _ j  f o r e v e r y i € D .

b )  h e c a l l  f  w e  1  1  a r  r a n g e  C  i f f i s  a d n i s s i b l e  a n d s a t i s f i e s
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tire following additional conditions : (i) For all

then i  < j .  ( i . i )  For al l  i , j  such t lut i  < j  and

ry  k  such that  i  <  k  <  j ,  then i  €  fU) .

r r J  -

. i € n
J  

- '

D ,  i f  f ( i )  , (  f u ) ,

i f k É D f o r e v e -

The heart of the decldability proof of this paragraph is the fact that every
adnissible function can be well arranged. In order to make this statenent
precise, we set U = D, ( rr.O f( i)) ,  md for any permutation p of the e1e-
ûtents of U and any Ivl c U, we 1et P(lvl) = {p(m)/rn e M}.

3.2. Letrna.

To every admissible furction f there is a permutation p of the elements of
u such that the following is true : (i) p-'fp is well arranged. (ii) For all
i , j  €  D  such  t ha t  f ( i )  =  fU ) ,  i  <  j  imp l i es  p ( i )  <  pU) .

Proof.

I t 'e  say that  an admiss ib le  funct ion f  is  k -a  r  ï  ang e d  i f  the fo l1o-
t i i n g t h r e e c o n d i t i o n s h o l d :  ( i )  k e D u i O ] .  ( i i )  f t  N k  i s w e l l a r r a n g e d .

t i i i )  F o r  e v e r y  i  €  D n N O  a n d e v e r y  j  e  n t N k ,  e i t h e r  f ( i ) . t f f i )  o r
f(i) = fU). We now describe an algorithn by uhich, to any k-arranged func-
tion f which is not well arranged, a permutation p is constructed such that
i ' - l fp i ,  (k*4-arranged for some L) o, p preserving the order of any i , j  e D
such that f(i) = fU). Since every adnissi-ble function is O-arranged by defi-
nrtion, it can be well arranged by repeated use of this algorithm.

)iow let f be k-arranged but not well arranged. l!'e first note that D \ Nk / d,
as otherwise f would be well arranged. Let n be the least i € D \ Nk such
that  f ( i )  is  rn in ina l  (w i th  respect  ro4)  in  { f ( j ) / j  e  D\Nk} ,  and 1et
. '1 = ({ in} u f(m)) \  Nt Let r l  (  . . .  a mZ and n.,
cf xl and of (u\ Nk) \ NI, respectively (notice that L > o). Let further

l r j  (  . .  a  p ,  be an ent rnerat ion o f  U,  and p1 < . . .  <  p t  one of  U\Nk.  We
1e t  p  be  t he  pe rmu ta t i on  rapp ing  p . ,  ,  . . . ,  ps  on  p1  ,  . . . ,  p t ,  m l  

1 . . . ,
t tz ,  n l  ,  . . . ,  r r ,  in  th is  order .  Then,  as can be eas i ly  proved,  p- l fp  is
(k+t)-arranged and for al l  i , j  e D such that f( i)  = fU), i f  i  < j ,  then
p ( i )  <  p U ) .  q . e . d .
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We

,1

now define the tern t, i-nductively for every J € F(IN), assurning

,  uZ,  to  be var iab les o f  L .

3.3.  Def in i t ion.

( i )  I f J = ô ,  t h e n t r i s À .  ( i i )  I f J = { j i ,  t h e n t r i s u r .  ( i i i )  J =  { i , j } ,
where i- < j, then t, is ,i , ,i . (iv) If J has more than 2 elements and
j  = max J,  J-1 = J\" i j ) ,  ihen t ,  i ,  ( t . l - )  ,  r i  .

B y  t h i s  d e f i n i t i o n ,  t f  J  =  ô ,  i 5 ]  ,  { 5 , 2 } ,  { 3 , S , 1 } ,  { 2 , 4 , 3 , 1 } ,  t h e n

obtain for t, the terms Â, u5 , u2 U ,S , (ul r uj) u uS ,
( (u t  u  12)  ,  uS)  u  u4 .

d)

3. 4. Lenrna.

Let J and Kbe subsets of  Nrr ,  md 1et a. ,  ,  . . . ,  ân be f in i te indiv iduals.
a )  a J I 1 1  . . .  a n J  < ( - r r ) t a - ,  . . . u . , ]  

, ,
b )  a J r t t l u j  

" r ,  
l  =  t r l a . ,  . . .  a n l  u ' u '  t x l u l  . . .  u r r l .

c) If J and K are disjoint, and a1, ..., ân are disjoint individuals, then
aJ  I  u1  . . .  an  ]  and  tK  I  a1  . . .  an  ]  a re  d i s j o i n t .

I f  a.,  ,  an are disjoint,  then t,  [a.,  . . .  .r ,  ]  = t  
j . ,  uj  .

If a., , an are disjoint nonempty individuals such that

u l  (  . . .  <  a n ,  t h e n  J  {  K  i m p l i e s  ( - t r )  t a . ,  . . .  a n l  <  t K  t a l  . . .  
" . ,  

1

Proof.

S ince a. ,  ,  . . . ,  an are f in i te ,  aJ  I11 . . .  an ]  is  f in i te ;  hence (a)  fo l lows

f'rom 2.4g. (b) and (c) are inrnediate consequences of the definition of t,

and t * .  (d)  fo l lows f rom 2.4 j .  In  order  to  prove (e) ,  by  2 .4b and 2.4g i t

w i l l  s u f f i c e  t o  p r o v e  t h a t  J {  K  i m p l i e s  t ,  [ a . ,  . . .  â r r ]  <  t K l a j  . . .  
" . r 1 .

we onit the parameters a., , . .., 
fi, 

*d distinguish between three cases :

I ,  I I  a n d  I I I .  I .  J  =  d .  t J  =  Â ' "  -  0 .  S i n c e  O { K ,  K  I  O ,  a n d  s i n c e

à1 , ... , 
"r, 

are nonempty, tO is nonempty, hence af t 0 = tJ .

I I .  J I  Q and J, K disjoint.  By (c) just proved, tJ and ta are disjoint.

As they are nonempty, aJ a aK i f f  nax la. l l  a nnx l tXl by 2.4k, Let

j  = m a x J a n d k = n n x K .  S i n c e  u 1  4 . . . ( " r , b y 2 . 4 k , n a x  l t . l l  
= f l l a x  

l u : l
ana nax l tal = max lukl.  Hence tJ < tK i f f  a, < aO (agairr by Z.4k) i f f  

-

j  < k i f f  J,( f  1Uy 2.7b). I I I .  Now let J and K be arbitrary subsets of N-
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such  t ha t  J , tK .  Then  by  2 .7a ,  ( J \  K )< (K \  J ) ,  and  t he re fo re  t ; t f  ( . f  
t . l

s ince J\ K and K\ J are di-sjoint.  By (a) and (b) of this lenrna and by 2,4j,

tJ = tJ\K * tJ. 'K and t* = tK\J * tJnK '  Hence tJ ( t t<. q.e.d.

We let ç be ^i<r, ç i 
where each p. is either ui f A,, or u, = {tr} or

ut = {-tr} for some J . Nr, . we associate with ,p a fr-rrction f, defined on
a s u b s e t o f  N r r , b y :  f ( i )  = J i f  ç .  i s r i =  { t r }  o r  u r =  { - t r } ,  f  i s n o t
defined if v, is u, I Â. Let f be admissible. Then we define an algorithm,
deno tedbyA ,  wh i ch  p roduces  a  sequence  ̂1 ,  . . o r  â r r ,  deno tedbyA(e ) ,  o f
singletons satisfying r. The definition of A is by induction on n. If
n = 1, we let a1 = inMlM. (Notice t lat,p.,  is u.,  I  n since f i ,s adrni-ssib1e.)
I fun )  1 ,  we take for^ fn  e i ther  {ar r_ . , } [ {  or  { tJ  I  a l  . . .  ân_1 J  ]^ {  o ,

{ - " tJ  I  a1 
" r r_ j  

] ] ' " ' ,  accord ing as r '  i s  u .  I  Â,  ,h  =  i t r ] ,  or  , . , .  =  { -a l i .
[Since f is aùnissible, i f  r '  i t  ,r .  = {tr} oï un = {-tr},  then J c Nn_l .)
l!'e let g(n) _be the recursive function defined on IN by : g(1) = Z,
g ( n )  = 2 n ' g ( n - 1 )  i f  n ) 1 .

3 .5 .  LenT na.

Let f  be admissible, and 1et A(e) = ( uj ,  r ,  ) .

a )  m a x  { a 1 ,  . . . ,  r r }  <  g ( n ) .

b) Assurne furthermore that f is well arranged and satisfies the following
condit ion : For al l  i ,k € D such that i  < k < n and f( i)  = f(k)r e'  and
pk are r i  =  { t r }  and u,  =  { - t r } ,  where J  = f ( i ) .  Then u1 (  . . .  (  ur ,  .

Proof.

In both cases, the proof is b,y induction on n.

a ) n = . 1  :  u 1 = 1 n M 1 M =  2 . 2 O = 2 = g ( 1 ) .  n ) l : a r r = { b } M  f o r s o m e b
such that b < 1 * xi<r, ui By induction hypotJresis (and since g(n) is
i n c r e a s i n g ) , . b <  1 .  ( " - 1 ) e ( n - 1 ) .  B y 2 . 4 i ,  a r , ( 2  .  z 1 * ( n - 1 ) g ( n - l )  =

, 2 + ( n - 1 ) g ( n - 1 )  ç  r n . g ( n - l )  =  g [ n J .

b )  n =  1  :  T h e r e i s n o t h i n g t o p r o v e .  n ) 1  :  B y i n d u c t i o n h y p o t h e s i s ,

u1 '  . . .  '  u.r-1 .  we dist inguish cases I and Ir,  again subdividing II
i n t o  I I 1  a rd  I IZ .

I.  I f  pn is u'  I  Â, then ar, -  {an_.,}M, and an_i ( a" fol lows fron 3.4e.
I I .  Let  v '  be un = { t * }  or  un = { - t * }  for  sone K.  Nrr_ l  I I t  l fqn_ l
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it rr,_.,  I  ^, then n-l  € K since f is well  arranged. Flence by 3.4d, 3,4a,

2 . 4 h  a n d  2 . 4 i ,  r n _ J .  t j . r l  ^ j  =  t ,  I a . ,  . . . ^ , " n _ 1  ]  <  - I t ,  t a . ,  . . .  a n _ . ,  I  (

{ t ,  I a . ,  . . .  a n _ 1 ] ] "  <  i - ' ' ' t r I a . ,  . . .  u r r _ ] l ] ' " ' ,  a n d  a n _ l  (  a '  f o l l o w s .  I I Z ,  i f

pn_1 is urr_l = itr) or urr_, = {-tr} for sone J. Nrr_j , then K < J would im-

ply n ( n-l since f is well arranged. If J = K, then by the second condition

i:r,posed on f, rrr_., and r' u." rr,_1 = it*) and ur, = {-t*}. Hence â.r_l ( an

fo l l ows  f r om 3 .4a  and  2 .4 i .  q .e .d .

5 .6 . ïreorem.

Iæt ç b" ni*r,  11 each r, being one of ui I  n, u, = {tr}r ui = {-tr} for some

J c Nn. Let f be the function associated with p as defined above. Then the

following are equivalent :

( i)  e is satisf iable by disjoint f ini te individuals.

( i i1 ç is satisf iable by dist inct si_ngletons.

(iii) After sui-tab1y renrmbering ,1 , . .. , un , f is admissible

and for al l  i ,k € D such that i  < k < n and f( i)  = f(k),

r ,  and pk are u ,  =  { t r }  and uU = { - tJ } ,  where J  = f ( i ) .

Proof.

( i )  *  ( i i i )  :  Let  a1r  . . . ,  ân be d i "s jo in t  f in i te  ind iv idua ls  sat is fy ing r .
Then a1 , . . ., an are distinct since v requires them to be nonempty. We nny

a s s u m e  
" 1  , , (  

. . . ' <  a n .  N o w , , s u p p o s e  j  €  i  =  f ( i ) .  T h e n  r i  =  { t ,  I a . ,  . . . " r r ] ] M

o r  a .  =  1 - ' " ' t ,  I a1  . . .  u . r ]  i ' u ' ,  hence  by  3 .4d ,  a .  (  t k " l  aO  =  t ,  I a1  . . .  u . ,  ]

and by 3.4a and 2.4f ,  r j  a ui.  Hence j  < i .  Assurre further that i , j  € D,

i < k < n ,  a n d f ( i . )  =  f ( k )  - J .  I f  v r a n d r t r w e r e u i  =  { t r }  a r r d u U =  { t r } ,

or u. = {-tr} and un = {-tr} , then ai = uk would follow. If v i 
and .lO were

u. = {-tr} and un = i tr},  then uk ( ui would fol low by 3.4a and 2,4i,  contra-

dicting the assumption that 
"1 

( ... a 
"rr. 

Hence r, and pk are u. = {tr} and

,i  = {-a. l} .  ( i i i )  * ( i i )  :  In view of 3.2, we nay assune f to be well  arran-

ged.  We 1et  A(v)  -a  a1 ,  . . . ,  ur  ) .  Then by the def in i t ion o f  A and by 3 .5b,

u1,  . . . ,  ân are d is t inc t  s ing le tons sat is fy ing v"  ( i i )  +  ( i )  :  Th is  is  t rue

because any distinct singletons are disjoint finite nonempty individuals.

q . e .  d .
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3.7.  Thêorem.

It is decidable, for any closed existential formula o of L, r,ihether o i-s a

theorem of NFr.

Proof.

In view of 2.2, we have to decide whether, given ary open formula v(x1,.. .r*r)

of L, f x1 =xrr is valid in r['{. Since t1 . tZ is equivalent to

(- {tri) u tz = -n in NF' we nay assume that p does not contain the sign e.

By the REDUCTiON TIIEOREM 2.6, we nay further assume that p is a basic conjunc-

t ionwith respect to the empty set of predicate signs, i .€.,  of the form

ô., & x, x being a conjunction of fornnrlas of the form x. - t(xj , xrr),

irhere t is a term containi-ng exactly one function sign.

I t  is  now convenient  to  v iewxl ,  . . . ,  xn not  a  var iab les but  as sets ,  i .e .  we

shall  henceforth "ta1k in Th(M)" i{e let m = 2î, and we 1et u.,  ,  . . . ,  u* be

the  "b i t s "  p roduced  by  x . ,  ,  . . . ,  Xn ,  i . e . ,  t he  2n  se t s  y l  n  . . .  n  y '  whe re

each  y ,  i s  x ,  o r  - x . .  The  se t s  u l ,  . . . ,  umare  a  pa r t i t i on  oF  t he  un i ve rse ,

and for every i  (  n, there is a I  c N,n sl:ch that x. = tr(u1 ., .  rrr).  Every

fornrula * i  = * j ,  * i  = Â, xi  = -* j ,  * i  = * j  ,  *k can be replaced by a conjunc-

tion of formulâs uk = A. Hence i, I *, .ân be replaced by a disjunction of

formulas uO I A. The formula x, = {*j} npans that exactly one bit of x.

equals {x.} and the others are empty; so i f  * i  = t I ,  x, = {x.} can be repla-

ced by a disjunction of formulas uO = {xr} & ^Zen{t} ,Z = A, k ranging over

I. By a suitable choice of J, rve have x. = tJ. If we transform the result

of these replacements into disjunctive form, p becomes a disjr,rrction of formu-

1as each of which is a conjunction of formulas uk I Â, uk = Â, uk = {tr}.

(This transformation goes back to an idea of V. Ja. Kreïnovië, cf. IG.EINOVIC/

OShIALD tZ l). h'e may suppose that p is one of these conjunctions and that

for every O ç mr at least one of utr I Â, ,k = A is a factor of p. ûur deci-

sion method stops here in each of the following cases :

I .  i f  ç is a proposit ional contradict ion ( i .e.,  for some k ( m,

both uO I À and ,k = A are factors);

I I .  i f  for some k ( m and some J c N*, both uO = A and uU = {tr}

are factors.
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In both cases, there is no partition of the miverse satisfying r . Other-

wise, by a suitable pernutation of subscripts p becomes ( nia, u. I Â) &

(A<i<n ,i = A) & {, ,1, being a conju'rction of fonrmlas of the form u, = {tr},

tvhere i  (  r  and Ja Nr. Since u1 , . . . ,  uï are by themselves a part i t ion of

the universe, we omit Ar<i<n ri = A and jn each factor ui = {tr} of rp, we

replace tl by tr,, uÈtere J' = N, f-l J. Thus ç becomes ( ni=, u, I ^) & (r, U

b e i n g a  c o n j u - r c t i o n o f  f o r r n u l a s r i  =  { t r } , l v h e r e  i ( r a n d J c N r .  A g a i n ,

our decision nethod stops here in each of the following cases :

for some i ( r and some JrK c N, such that J I K, both

= {t } and u, = {tK} are factors of rp. (Notice that

K implies tJ I  tK);

for all 
' 

ç rr rp has a factor u, = {t3}. (Notice that

union of the ur 's is inf ini te).

Otherwise for every 
' 

ç rr rp has at most one factor ui- = {tJ}, and there is

a t  l e a s t  o n e  i ( r s u c h  t h a t  r p h a s  n o  f a c t o r u i  =  { t r } .  L e t  I  =  { i € N r / U

has no factor u, = {tg}i. In M, every finite partition of the rrriverse has

exactly one cofinite part. If u, = {tr}, then u' being a singleton, is not

cofinite. Assume u. to be the cofinite part in the part i t ion u., ,  ur.

Hence i € I. Delete the factor u, I À, If uU = {tri is any factor of rp such

that i € J, then replace tl by -t.1r r where J' = Nr\ J" If this is done for

every i  € I ,  each result ing formular, possibly after a change of subscripts,

satisf ies the hypothesis of 3.6. Since 3.6i i i  states a deci-dable property

of  s ,  the dec is ion process is  complete .  q .e .d .

S 4. A npre usable decision nethod.

Henceforth we 1et {,(x1, . . . ,  \)  be a conjr l lct ion of some formulas ûi i  ,  each

û1,  be ing e i ther  * i  .  * j  or  x i  #  ^ j .

4 .1 .  De f i n i t i on .

a ) W e s a y t h a t U r j u r  t * a r e  s i m i 1 a r  a n d w r i t e U i j  r l t r 2 i f  b o t h

are atomic or both are negations.

b )  We  ca l l  p  o  rde  re  d  i f  whene ' ' , e r rphas  f ac to r s  ù i t r andû . , 0  such  t ha t

k  <  i ,  j ,  t hen  û i t  -  ù i t .

i f

u -
t

r r

i f

the

I I i

IV.
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c )  We  ca l l  r l  o  r  de  r  ah  l  e  i f  i 1  canbe  o rde redbyape r rnu ta t i ono f

subscripts.

d) hre say that û is a r e s t r

e x t e n s i o n  o f  U  i f  r l r

are factors of rl.r.

e ) W e c a 1 l  r l  n - c o n p l e t e

f ) W e c a 1 1  r l . r  c o n p l e t e  i f

i c t i o n of r, and that rp is an

is a conjunction all of whose factors

if rf is of the forrn Â. . _ rJr . .

û is n-comptete for sdY".t '

Let rl.' be n-complete. we denote by I the natrix whose elenents [. . are € or
É accorditrn as ûi j  is x, € x. or * i  # * j  ( i , j  < n). we cal l  a càitrnm or ,p
h  o  m o  g  e  n e  o  u  s  i f  i t  c o n s i s t s  i o 1 e 1 y  o f  € ' s  o r  s o l e l y o f  f ' s .  l v e
s a y t h a t  c o l u m n s  j a n d k o f f i a r e  e q u a l  

' f  
, r i j - û 1 t r f o r

all i ( n. The following lenrna states sore inunediate consequenôes of these
definit ions.

1.2 . Lenrna.

a) p is ordered i f f  every restr ict ion of p is ordered"
b) rp is orderable iff every restriction of g is orderable.
c) If rp is complete and orderable, then I has a honogeneous colurn.

If rp is n-complete and lvl is a subset of Nrr, we denote b), {,M the formula
'\i,;.iul Uij From 4,2 atfi the above definitions we conclude :

4 .3 .  Lenrna.

If rp is n-conplete, then the following are equivalent : (i) ,t, is orderable.
( i i )  For every M c Nn, ûlt  i t  orderable. ( i i i )  For every M c Nn, 

Ç 
has a ho-

mogeneous column.

4.4 .  Def in i - t ion.

a)  We ca l l  {a . t ,  . . . ,  an}  q  u  a  s  i  -  t  r  a  n  s  i  t  i  v  e  i f  for  every
i  (  n ,  e l t h e r  l a l l  .  { a l  ,  . . . ,  u ^ }  o r  l u i l  )  l M l  \  { a r ,  , . . ,  

" r } .b )  W e  c a l l  r f  r e g u l  a r  i f  r f  i s  c o m p l e t e  a n d o r d e r a b l e a n d n o  t w o
coluns are eqt_ra1.

Now we suppose that rp is n-complete. We 1et ù be û11 for l"l = Nn_, , We
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is

further let I(rp) = { i  < r/Vi '  is x, e xrr} and I ' (rp) = { i_ < ,/ t in is x, É *rr}.
l{e finally 1et

s ( û i  a t , . . . , â n _ l )  =  { b e  l M l / M  F U t " . ,  . o o

is c lear f ron th is def in i t ion that  S(û;at , . . . rarr_1)
sa t is f ied  by  a1 ,  . . . ,  ân- l

4.5.  Lerura.

l ,et ;  be ordered and n-complete, and 1et ar, . . . ,  an_l be individuals satis-

fying U-. Then the followirrg hold :

a)  S(U;a l  ,  ân_.1)  is  in f in i te .

b) I€t furthermore ù be regular and {a., , . . . ,ân_1} be quasi-transit ive, and

le t  a '  be the least  e lement  o f  S( r ! ;a1, . . . ,ur r_ l ) .  Then a '  is  d is t inc t

f rom a. , ,  . . . ,  ân_1 ,  md e i ther  lar r l  =  {ar / r  e  I ( { , ) }  or

l a , r i  =  lM i  \  { a r l i  e  I ' (U ) } ;  and  {a . ,  ,  . . . ,  
" r }  

i s  q t ras i - t r ans i t i ve .

Proof.

h'e onLit the parameters of s, I and I'. From the definition of s, it is

clear that b € S holds iff the following three conditions are satisfied :

( i )  M  F , t , , u r t U l  .  ( i i )  F o r . e v e r y  i  ( n ,  u r . t  b  i f f  û i '  i ,  
" i .  

* r , ,

(iii) ror every j ( n, O .t aj 
' 
t1 ùnj is xr, . *j ôàïaltiân tiil is equi-

va len t  t o  ( i i ' )  :  { a r / t  €  I }  e  l b l  .  JM I  \  { a r l i - e  I ' } .  As  rp  i s  o rde red ,  i f

j  < n, *" i l  U., j  -  Uj j .  Hence ( i i i )  is equivalent to ( i i i ' )  :  For every

j  <  n ,  b  €" 'a .  i f f  a . ,  is  cof in i te .  Now (a)  ho lds s ince [ i )  ar rd  ( i i ' )  a re

satisfied by an infinite m.rnber of individuals b and (iij-') excludes only a

finite nunber of them. Next we prove (b) , assuning that rf,u, is x' F xr, (the

proof is quite analogous 
' 
1 ùnn i.s xr, . *rr) . We 1et c be the indivi-dual

determined by lc l  =  {ar / r  e  t t "  (c f .  i .+"1.  By the def in i t ion o f  e l l ,  c  is

the least b satisfying ( i)  and ( i i ' ) .  Assunp j  < n. I f  a. i-s cofinite,

then a, I  c since c is f ini te. I f  a, is f ini te, th"r Vj j  is x- é*j ,  hence

ûnj is xn É *j. Since p is regular by h1'pothesis, colilnns j and n are not

equa1. So there is some i < n such that ûi j , ,*d.J, in are not similar. Hence

for this i ,  exactly one of a. . '  ^ j  and a.ËM c ftoiâs; so a, y'  c. Therefore,

c  is  d is t inc t  f rom a. ,  ,  . . . ,  ân_1.  lv loreover ,  s ince {a1,  , . , ,  ân_ l }  is  quas i -

t r a n s i t i v e ,  e i t h e r  l a r l  c  { a 1  ,  . . . ,  â n _ j 1  o r  l a l l  r  l M l  \  { a r ,  . . , ,  a r r _ . , }

r . ,_ t  b  l  ] .

I O inrplies that rp-
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for every i ( n. It follows that ..À{ ui i-ff a, is cofinj-te. Hence c satis-

f ies also ( i i i ' ) ,  so c = an. Fina11y, from the definit ion of c and the hypo-

thesis that {a.,  ,  . . . ,  an_l} is quasi-transit ive, i t  i rnediately fol lows that

{ a 1 ,  . . . ,  u r }  i s  q u a s i - t r a n s i t i v e .  q , e . d .

Let rJ., be ordered and n-complete. lVe define an algorithrn, denoted by B, which

produces a sequenc" 
".1 

,  . . . ,  an , denoted by B(U), such that {. '  is satisf ied

b y a 1 ,  . . . ,  â n .  T h e  d e f i n i t i o n  i s  b y j a d u c t i o n o n n .  I f n = 0  ( m e a n i n g

that rl is the erpty conju:rction), then we let B(rp) be the empty sequence.

If  n ) o and B(û-) - a al ,  . . . ,  ân-.1 ) ,  we 1et a'  be the least element of

S (ù ;a1  , . . . , ân_1 )  \  { a - ,  ,  ân_ j }  ( t h i s  se t  be ing  nonen rp t y  by  4 .5a ) .  We  then

s e t  B ( r f )  -  a  a l  ,  . . . ,  u ,  ) .

-1 .6 .  Ler rna.

- e t  a  u 1 r . . .  r u ,  t

a l  & 1 ,  . . . ,  a n  a r e
'  r t  L I
f , l  / u  F  v t a l

; )  I f  i l  is  regular ,

= B( ,1 , ) .

d ist inct .

a 1 .n
then {a1, . . . , ur} is quasi-trans j-t ive.

i ' IOOf .

In view of 4.5, the proof by induction on n is irmediate. q.e.d.

1 .7 .  Theo rem.

The following are equivalent :

is orderable.

is  sat is f iab le .

rp is satisfiable by a sequence of n distinct individuals,

Proof.

C1ear1y, we may assune p to be complete. By 4.6a, ( i)  inrpl ies ( i i i ) .

Trivial ly, ( i i i )  i rnpl ies ( i i ) .  In order to show that ( i i )  inrpl ies ( i) ,  we

let a.t  ,  . . . ,  ar, be any individuals satisfying r! .  We assume 
"j  

(  . . .  < an

Then  by  2 .4c  and  2 .4d ,  ù  i s  o rde red .  q .e .d .

( i )

( i i )

r i  i  . i r
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Example.

[,et ,, be x., É x., A x, É x, & x., . t2 & tZ. *1. Then, as renarked in the

introdrct ion, NrF f-g*t Z*ZV since for x.,  = USC(V) and x, = {USC(V)}, qr

is satisfied, and since the existence of USC(V) is provable in NrF.

However, 3x1 3x.t is not a theoren of NFr. To see this, we notice that

is

By 4.3, rl is not orderable silce û has no homogeneous columr; so by 4.7, ,lt ts

not satisf iable in M. By 2.2, 3x-, 3 x, rf  is not a theorem of NFr.

4 .8 .  Def in i t ion.

Let û be n-complete, and 1et x(x., ... *rr) be a conjunction of formulas of the

form x. - t(x1 .. . *rr), each term t containing exactly one of the ftnction

s i - g n s Â ,  - ,  u , {  } ,  W e  s a y t h a t  r . l  i s  c o m p a  t  i b  1 e  w i t h x  i f

the following four conditi-ons holds : (i) If for sonre j ( n, xi = Â is a

factor of x, then for every i  < n, r l '  is x, ç xj ,  ( i i )  I f  foi  some j,k ( D,

*j = -*k is a factor of x, then for every i ( n, û,-j ut rlrU are not similar.

( i i i )  I f  for some j,  k, L < n, xj  = *k, x, is a faêtor of X, then for every

i  (  n ,  ûr ,  is  x .  €  x-  i f f  { , ik  is  x -  €  xk  or  û ; -z  i t  * i .  *2 .  ( iv )  I f  for  some

j,k < t, lj = {xOi i3 a factor of 1, then j I k and for every i ( n,

ù . .  i s  x .  €  x .  i f f  i  =  k .' u  1  l

4 .9 .  Lenrna.

a) If rl & 1 is satisfied by a sequence of distinct individuals a, , .. r, ân,

then rp is compatible with x.

rp

( :  
; )

b) Let U be n-complete and cornpatible with x. Let {a1, . . . ,  ur}

transitive set of individuals such that il is satisfied by a., ,
Then 1 is sati-sf ied by a1 , .  .  . ,  ân.

be a quasi-

. .  , I  â r r .

Proof.

a) is an inrnediate consequence of the axioms AZ through 45.

b) Clearly hre rnay assurÊ 1 to be either one of x., = A, Xj = -*2, *l = {xr} ,

*.1 = *i , *j (i, j < n). We only prove the last case, which is the most
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i n t e r e s t i n g  o n e .  W e  1 e t  I " {  =  { 1 r i , j } ,  P  =  { l , i i ,  i l d  Q  =  { i , j } ,  F i r s t ,

we show that

(1) 
ÏLll.i+"i;l' 

irr Ûii and ''j- are *i É "i and x Ê'i'

For assune that rf  is x, f  x.,  and, ê.g., ûi i  i r  * i  .  * i  (whence i  I  1).
S ince û is  compat ib le  wi th  x ,  V1 i  and ûr ,  are  x l  F  x .  and" i . *1 ,  respect i -
ve1y. Hence by 4.2c, ûn is not orderable. In view of 4,3, this implies
that û is not orderab-le. But since rl is, by hypothesis, satisfiable, it is
o rde rab le  by  4 .7 .  O r  assu rne  * r r : - û i i ,  û j .  t o  be  * l  .  

" l  ,  r iÊ  * i ,  * j  f  * j ,
respectively (whence i  I  1, j  I  l ) .  Then compatibi l i ty rules out thât uri
and û1j are *l F *i and x, F xt. Assune rl;' to be x., . *i. Then it follows
that ûrt is x. € x, (orderabit i ty of ûn) ,  û;- i  is x. € x- (compatibi l i ty),

i  I  i  (since {,r,  is x, F xr) ,  r  j r  is x. .  x1- (orderabit i ty of û1u), t j ,  t t
*j 

.t. 
*i (compatibility). But nôw, we âgain have a contradiction sinËJ *0,

and hence Ù, is not orderable. Now we have to prove that for every individual
A

( 2 )  ae f  a ,  ho lds  i f f  a t  l eas t  one  o f  
" .M  

a i ,  ae f  a ,  ho1ds ,

compatibi l i ty inpl ies thar (2) holds for every a € {a1, . . . ,  an}. I t  remains
to  prove (2)  for  a  ê  {a l  ,  u . , } .  I f  a ,  is  f in i te ,  then by (1)  and 2.4b,
a ,  and  a .  a re  bo th  f i n i t e .  s i nce  {a1 ,  . . . ,  un }  i s  q ,as i - t r ans i t i ve ,  l u l l ,
1" r i , la i l  a re  a l l  subsets  og {a1 ,  an} ;  hânce (2)  ho lds a lso for
a #  t a l

say ai,  is cofinite. Quasi-transit ivi ty implies that la1 l ,

" t l  l M l  \  t ^ J , , . . .  , . r ] .  H e n c e  ( 2 )  h o l d s  s i n c e  f o r  e v e r y  a ç  { u 1 , . . . , â n } ,
a  e M  a 1  a n d  a  . t  a i .  q . e . d .

1 .10.  Def in i t ion.

lVe  ca l l  { a . .  n  }' * l '  r " t  e J f r

that i  I  j ,  there is some

holds.

e  x  t  e  n  s  i  o  n  a  1  i f  f o r  a l l  i , j  ( n  such
k(n such that exactle one ofaUeM a. and aO eM a.

4.11. .  Lerrna.

For every individual a, {b e lul/u < al is extensional.
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Proof.

We let ir t  = {t  e lMl/b < a} and assume b1, b, to be dist inct

We distinguish betr^/een two cases and use 2,4c and 2.4d.

I .  * a ,  
; . g . ,  

b1  be  f i n i t e  andb ,  be^ , co f i n i t e .  i f  b1  
^ f  

O ,

bu t  b ,  € " '  bZ .  I f  bZ  a  b t ,  t hen  b1  . ' " ' b ,  bu t  no t  b ,  € ' " '  b1

II" I f  b1 and b, are both f ini te or both cofinite, let c be

such that, e.g., .  .M b., but not c .M bZ, Then c ( b.,  i f  b j
c  1bz i f  bz  is  cof in i te ,  hence .  .  NL in  any case"  q .e .d .

mernbers of l'{u.

then not  bz eM b1,

any indi-vidual

is finite, and

we let h be the recursive function defined by h(n) = 2h'(n; .  g7h'(n)),

where h'(n) = (n+1)(n+2) and where g is the recursive ftmction defined in S 3.

In view of the REDUCTION THEOREIvI 2.6 and since any basic conjunction with

respect to ie] is of the forrn ù & x & ôrr, the following theoren agai.n implies

that the set of the existential theorerns of NF, is decidable.

4 .2 .  Theoren.

The existential sentence 3 x., 3 xrr({, & x & ôrr) is a theorern of NF2 iff

there is  a  n t r :nber  m<h[n)  and a regular  extens ion, r ' (x l  . . .  * * )  o f  rp  such

that ip+ is compatible with x.

Proof.

l {e  c ienote 3x. ,  . . .3xr r ( ! ,

1 . Let ,i,* be any regular

wi th  x .  We le t  B( rp" )

and sat is  fy  V* ,  and {a- , ,

also satisfy x. Hence r l

i n  M ;  so  NF ,  I  o  by  2 .2 .

b y  o .

of r! which is m-coinplete and compatible

u ,  ) .  By  4 .6 ,  a1 ,  o . . ,  am a re  d i s t i nc t

s  quas i - t r ans j . t i ve .  By  1 .9b ,  a1 ,  . . i ,  am

s  sa t i s f i ed  by  a1 ,  . . . ,  ân .  Thus  o  ho lds

& x & ô r r )

extension

u j ,  . .  '  t

. . . ,  
" r n ]

& x & ô r ,

2. Conservely, suppose that o is a theorem of NFr"

tence of ,r+ without paying attention to the upper

M F  o  by  2 .2 .  Le t  a1 ,  . . . ,  a ' be  any  i nd i v i dua l s

We 1et

We fj-rst prove the exis-

bournd for m, Since NF, l- o,

s a t i s f y i n g r 1 i & x & ô n .

t 1 ) r  = I tEIx {a. ,  ,  . ,  . ,  arr}  ,
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and we l " t  ur r * l  ,  ^ r *1  be an enumerat ion o f  {a  e  lU l t^  (  r i  \  {a . ,  , . , . ,ar r } .

Let m = r * 1, and 1et {,'(xj ... 
"^) 

be the uniquely determined extension of rll

wh i ch  i s  sa t i s f i ed  by  a1  ,  . . . ,  am,  S ince  {a1  , . . . , a * }  =  {b  e  l l d l r c  
"  Ç ,

the set  {a1r  . . . ,  
" r }  

is  ex tens ional  by  4 ,11 .  Hence r l '  i s  regu lar .  S ince

xn+l  ,  . . . i  *n ,  do not  occur  in  x ,  x  is  a lso sat is f ied by a1,  . . . ,  âm .

By 4.9u,  U '  is  compat ib le  wi th  x .

It:e finally show that in (1), one may assure that

( 2 )  r < h ( n )  - ' 1 .

To see this, we inspect the proof of TllEOREIvl 3.7 and apply 3.5a. In the

proof of 3.7, each factor * i  .  * j  or x. É x, of rp is replaced by

(-{xi}) ,  * j  =-Â and (-{xr}) u * j  I  -  L, respectively, The result is then

transformed into a disjunction of formulas of the form

( 3 1  3 * . r * l  . : .  3 x u ( x '  &  ô 1 ) ,

rnhere x' is a formula of the same tlpe as 1 but may contain any of the varia-

b les x . , ,  . . . ,  xk .  S ince û & x  & ôr ,  is  sat is f iab le ,  a t  least  one the for -

mulas (3)  is  sat is f iab le ;  converse ly ,  whenever  a l ,  . . . ,  ak  sat is fy  x '  & uk

in this part icular formula, then a1, . , .r  âr, satisfy r l ,  & x & ôn. In the

transformation process, hre have to introduce new variables xrr+l , ..., x.n

f o r  { x 1 }  ,  { \ } ,  a n d n e w v a r i a b l e s  x 2 n * j  ,  . . . ,  X 3 n  f o r  - { x r } ,  r . r ,  - { ç .

Il'e may have to udd *Srr*j = A and x3n*Z = -x'n*1 . Whenever,l,ij is x, Ç tj,

tr'e need an additional variable for x2n1i u x; (which stands for (-{xr}) u xj).

Hence we nay assume that j-n (3), k ( n'  + 3n + Z = (n+1)(n+2). Now let

X' & ôU in (3) be satisfiable. Then the proof of 3.-7 shows that there is

some conjunction ç of the form Âr*o 9rr where p = 2^ and each r, is either

u, I  Â or ui = Â, or u, = {tr} for sone J c ND, satisf iable by a part i- t ion

of the universe. Conversely, from every partition satisfying this particu-

ra r ç ,  a  sequence  a l ,  . . . ,  ak  sa t i s f y i ng  x '  &  ôo  canbe  recove red .  By  3 .5a ,

there is a part i t ion bl,  . . . ,  bo satisfying v such that each f ini te part

does not exceed g(p) . Let b., , 
'..., 

bo be the fiaite nonempty parts (whence

q < p), md let bo+, be the t-rnique cofinite part.  From 3.5a, we cal actual-

ly conclude that ut < s(l)  for every i  < q. From 2.4g and 2,4j,  we conclude
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t h a t  b  - - 1q + l
à 1 '  . . . '  a U  i s

i . f r l & v & 0 n
exceeding 1 +

r ( 1 + q . g ( q )

* tr*q b, and that a, < 1 * tr=O b. for all j ( k, where

the solution of x' & ôU recovered fron b., , bp . Thus

is satisf iable at al l ,  i t  is satisf iable by individuals not

q.g(q) .  Now (2)  fo l lows f rom k (  (n+1)(n+2) ,  p  =  2^ ,  9  (  p ,

and fron the fact that g(i)  > 2 for every i  e lN. q.e.d.

$ 5. Some examples.

In tiris section, we omit the reference to I,{ in the fi.rnction signs and use

the conrnon notation V for - A.

1 )  The  sen tence  3x . ,  3x r ( x1  I  x ,  &  x - ,  =  { - i x ,  u { x r } } } )  i s  a  t heo rem o f  NFr .

In order to see t ir is, l ' le f i rst notice that x.,  = {-{x, U {xt}} i  is equivalent

i n  N F ,  t o  3 * S l * 4 3 x r 3 * 6 ( * 3  =  { * 1 }  &  x O  =  * Z u  x ,  &  x ,  =  { x O }  &  x U  =  - x U

& *.1 = 1xU)). lVe shal1 look for a 6-cornplete regular rp which is (an exten-

sion of the empty conjurnction and) compatible with x, = {x.ti & x4 = x2 u xs

& *S = ixO)  & xU = -x ,  & x . ,  =  {x6} .  D isregard ing the facto t  *4  = *Zu 
"3 ,

we see that any 6-complete rp is compatible with the four remaini-ng factors

iff ,jr is of the following form (the elements marked by dots are arbitrary) :

. r (

.1 .+
F . E F C

d d d F
Y - . Y - . ) -

'1 .1 /+

t l 4

F  F . C  F

/+ .1 .1
F . F F C

4 4
. r . r

The orderabi l i ty

and 2.4d) .  They

by arranging the

Then I becomes

condit ions are u6 a u1, u1 a

r e d u c e t o a 4 ( a U < \ 1 u 3

variablcs x.,  ,  . .  .  ,  x6 in the

us,  u4  a  uS,  u4  I  u6  (by  2 .4c

and aO a 
"5. 

We try our luck

order  *4 ,  *5 ,  X6,  *1 ,  *2 ,  *s
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X,4
a

x r ç

ç

ç

F

ç

ç

ç

F

F

r

r

t-

r

F

XÂ

*1

*z

X-

--\fter this permutation, rf has become ordered. (Every cohlmr is homogeneous

down from the diagonal). We try to complete rp in a way that it remains orde-

red and becomes cornpatible with *4 = *2, *j. Since up to now rp has no homo-

geneous cohunn, we try by taking € for the colunrr of xO. Then conpatibility

iiith x4 = *Z u x, requires us to take € for the cohunn of x, wj-th the excep-

t ion of ï ,r .  Since the column of xO consists so1ely of e's, we have to take

Ç for V,, to nake rp regular. Then by 4.12, we see that the given sentence is

a theorem of NFr. If we want to find individuals satisfying the matrix of

the given sentence, we apply the algorithm B to rl.r. B produces in turn :

u 4 = V ,  a ,  =  { a O }  =  { V i ,  à 6 =  - { a O }  =  -  { V } ,  a . ,  =  { a U }  =  { - { V } } ,  a Z  =  - { a . , } =

- { { - {V } } } ,  a ,  =  {a j i  =  { { - iV } } } .  Now i f  t he  ma t r i x  o f  t he  g i ven  ex i s ten t i a l

sentence is  denotedby v ,  we have M F et  a ,ar )  and NF,  F *1= { - {V}}  &

-\2 = -{{-{V}}} - p. Note that since every individual of M corresponds to a

term of L, the algorithm B can be applied to produce teûns which in NF,

provably satisfy the given basic conjtrnction.

f ) I f i l i s * 1  . * 1  & x . ' # x r & x r € x . ,  & x r F
. 1  =  * Z u  x '  t h e n  3 x . ,  1 * r  J x r ( û  &  x  &  ô 3 )
easy to see that there is only one S-complete
b1e and conpatible with 1; for this ip,

x 1 & * " É x ' a n d 1 i s
I  J  L '

is a theorem of NFr. I t  is

extension of rl., ùrich is ordera-

/ \
l t  

e  ç  \
l e  €  s  I
t t t
\ l

\ ç  ç  ç  I
\ /
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* L

Then coluns of 1 arfi 2 are equal, so û is not regular. If we introduce

a new variable xo , then by arranging the variables in the order x4 r
*3 , xl , xZ we get a regular extension vsilich is conpatible with x :

XA
a

J

x 1
I

x .
L

H e n c e  b y  4 . 1 2 ,  J * t  3 x ,  l x r ( r l ,  &

algorithm B, we obtain aO = h, a3

â ,  =  -  { a - , a n }  =  - {  { ^ J  , A l  .

+

d

*z

r

Y Y

J I

r

F

F

=
& ôS) is a theoren of NFr. Applying the

{ a O }  =  { Â  } ,  a 1  =  - { a r }  =  - { { Â } } ,

- r )  3x- ,  3  xr (x ,  =  -x ,  & x . ,  =  {^Z u {x , } } )  is  not  a  theorem of  NFr .  To see

this, we f irst cienote the matrix of the given sentence by x. Then 1is
ec lu iva lent  in  NF,  to  3xr3x4x ' ,  x r  be ing x . ,  =  - *Z & x ,  =  {x . , }  & *4  = *2  u  * j

& *.1 = {x4}. Compatibi l i ty requires [, . ,  r la,1,44 to be # and i l t , t  und û+t to

be €. Tht.rs for ]vl  = {1,. i} ,  ,1, is not orderable.
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