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A DECISION METHOD FOR THE EXISTENTIAL THEOREMS OF NFZ

Urs OSWALD
(Ziirich)

§ 1. Introduction.

What is or what is not an existential sentence depends on the language used
for a theory. It is natural to formulate NFZ in the language L with the non-
logical signs € , A (empty set), =— (complement), U (union), { } (singleton
set). By the method developped in § 3 of this paper, it is decidable whether
any given existential sentence of L is a theorem of NFZ (THEOREM 3.7). The
method is based on the existence of a model M of NP2 with the particular pro-
perty of being embeddable in any model of NFZ. It 1s a direct consequence

of this property that an existential sentence of L is a theorem of NF2 iff it
holds in M. Our method actually decides whetner a given existential sentence
holds in M.

The method developped in § 3 is, however, utterly unusable in pratice. There-
fore in § 4, a second method is developped which is a decision method not by
itself, but in view of the results of § 3, and which can be readily applied
to a great many cases (THEOREM 4.12). For instance, let o be Jx Ty
x¢€¢x&y¢&y&x€y&y€x). Then o is a theorem of NyF (just let

x = USC(V) and y = {USC(V)}) but not of NFZ . Or consider the sentences
IxFy x#Fy & x={-{yv {x}}}) andAx3y (x = -y & x = {y U {x}}).

Our method shows that the first is a theorem of NE, while the second is not
(cf. § 5).
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§ 2. Some prerequisites.

If formulated in L, NF, can be given by the following five axioms
(Boffa[1]) : (A) Vz(zex—zey)»x=y. (A2) ¥x(x & A).

(A3) Vx(x€ -y x¢y). (M) Vx(xEyUz« XEyvXEz).

(A5) ¥x(x € {y} < x =y). We denote by N, the set of the nonnegative
integers. We shall construct a model M of NF with the universe |M| = .
For all a,b € Hﬂ), we define R(a,b) (1ntended to be el ) to hold iff elther
of the following conditions holds : (i) b is even and a is an exponent in
the binary representation of %— (ii) b is odd and a is no t an exponent
in the binary representation of 971 Then the following can be easily

proved (details are given in Oswald [31]) :

2.1, Lemma.

a) < BVO,R”> is a model of NFZ formulated in =, €.

b) < EVO,RJ> can be uniquely expanded to a model of NF2

c) Let M be the unique expansion described in (b). Then M can be isomorphi-
cally embedded in every model of NF2

We set M =< [M], GM, JAM, -M, lJM, M >, where eM is R, The following

lemma, a direct consequence of 2.1c, is the base for our decision method.

2.2, Lemma.
If o is an existential sentence of L, then ¢ is a theorem of NFZ iff it holds

in M.

2.3. Definition.

a) We set |a| = {b € |M|/b May.

b) We call an individual a of M f i n i te if |a| is finite, and
cofinite if |[M] \|a] is finite.

C)} We say that a and bare dis joint if |a|] and |b| are disjoint.

2.4. Lemma.
We let a and b be individuals of M.
a) a is finite or cofinite.

b) a €’ 4 iff a is cofinite iff a is odd.
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¢) If b is finite, and a €" b, then a < b.

d) If b is cofinite, and a e b does not hold, then a < b.

e) To every M C [M| such that M or |[M|\M is finite, there is exactly one
individual a such that |a| = M.

£) a< {a,

g) If a is finite, then My=1 4 a,

h) -Ma < {a} .

i) If a <b, then {at" < M.

j) If a and b are disjoint and finite, then a UMb =a o,

k) If a and b are disjoint finite nonempty individuals, then a < b iff
max |a] < max |b]|.

Proof.
(a) through (k) are immediate consequences of the definition of R and of
1.3. q.e.d.

Byan individual, we shall henceforth mean and individual of M.
We shall simply say that a formula is satisfiable if it is satis-
fiable in M.

We now let T be any first order theory. By dn we denote the formula
Ai<j<h x; # X; If p is any predicate sign of L(T), we denote by u(p) the
number of places of p.

2.5. Definition.
Let P be a finite set of predicate signs of L(T). We cally a basic
conjunction with respect to P if ¢ is a formula of the form S, &y,
where y is a conjunction satisfying the following conditions : (i) Each
factor (we call Vg s eees Uy the factors of by & e &g ) of yois
either pv, ... v Or =PV, +ee V for some predicate sign p € P and

e PV u(p) TP u(p) precicate sign p
variables Vi eens Vu(p) € {Xq 5 e0e, xn}, or x; = t(x1 e xn) for some
i <n and some term t containing exactly o n e function sign. (ii) For
every predicate sign p € P and any variables Vis sees Vu(p) € {x1 yeues Xk,

exactly one of pV{ <. V

1 (p) and—rpv] el V

(P is a factor of y.
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The following thecrem is easily hy well known methods of predicate logic
with identity,

2.6. Reduction theorem.

Let E_ be the set of the existential theorems of T containing no predicate
signspother than those of P, and let BP be the set of the existential theo-
rems of T whose matrix is a basic conjunction with respect to P, Then E
is decidable iff BP is decidable.

P

We denote by IN the set of the positive integers (remember that ]N0 is the
set of the nonnegative integers). We denote by F(IN) the family of the
finite subsets of IN. For all I,J € F(IN), we define I .4 J to hold iff
max((I\VJ) U {0}) < max((J\I) u {0}). By this definition, the following
is true :

2.7. Lenma.

a) 1«4 Jiff (IVDH LKL T\ D).

b) If I and J are disjoint and nonemnmpty, then I £ J iff max I < max J.
c) nd 1 ig a total ordering on F(IN).

We shall let all subscripts run through IN. We stick to the convention
that ~p(x1 xn) (or t(x1 xn)) means a formula (or a term) all of whose
free variables are among Xq s eney X oo For every n € INO, we denote by Nn

the set {i € IN/i < n}. Notice that NO is the empty set ¢.

§ 5. The decidability proof.
53.1. Definition.

Let f be a function with domain D and range R, where D C N, for some n & INO
and R € F(IN).

a) Wecallf admissible iff(i)CNi_]

b) Wecall f well arranged if fis admissible and satisfies

for every i € D.
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the following additional conditions : (i) For all i,j € D, if f(i) 4 £(3),
then 1 < j. (ii) For all i,j such that i < j and j € D, if k ¢ D for eve-
ry k such that i < k< j, then i € £(j).

The heart of the decidability proof of this paragraph is the fact that every
admissible function can be well arranged. In order to make this statement
precise, we set U =D U ( U f(l)), and for any permutation p of the ele-
ments of U and any M C U, we let P(M) = {p(m)/m € M}.

3.2, Lemma.

To every admissible function f there is a permutation p of the elements of

U such that the following is true : (i) P—1fp is well arranged. (ii) For all
1,j € D such that £(i) = £(j), 1 < j implies p(i) < p(j).

Proof.

We say that an admissible function f is k-arran ged if the follo-

wing three conditions hold : (i) k € D v {0}. (ii) £t Nk is well arranged.

(1ii) For every i € D N Nk and every j € D\ Nk . either £(i)4 £(j) or

£(1) = £(j). We now describe an algorithm by which, to any k-arranged func-

tlon f which is not well arranged, a permutation p is constructed such that
fp is (k+f-arranged for some £ > O, p preserving the order of any i,j € D

such that f(i) = £(j). Since every admissible function is O-arranged by defi-

nition, it can be well arranged by repeated use of this algorithm.

“ow let f be k-arranged but not well arranged. We first note that D\ N 790,
as otherwise f would be well arranged. Let m be the least i € D\ N such

that £(i) is minimal (with respect to4) in {£(3)/j € b\ N }, and let

= (I} YU £fm)\ Ne « Letmy <...< m, and n, <... < n be enumerations

of M and of (U\ Nk)\ M, respectively (notice that L > O). Let further
Py <. < Py be an enumeration of U, and Py < ... < p, one of U\ N .o We
let p be the permutation mapping p 3 tees Py O Dy, eee, Diy My, enny
Tp, M ceey D, in this order. Then, as can be easily proved, P fp is
(k+£)—arranged and for all i,j € D such that £(i) = f(3), if 1 < j, then

p(1) <p(j). q.e.d.
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We now define the term ty inductively for every J € F(IN), assuming

Uy, Uy, ... to be variables of L.

3.3. Definition.
(1) If J = ¢, then ty is Ao (31) If J = {j}, then ty is U . (i1i) J = {i,j},
where i < j, then ty is u, Y uj . (iv) If J has more than 2 elements and
. -1 . .

=max J, J =J\{j}, then t. is (t,-) Y u. .
J j g 1s (g57) Y,
By this definition, if J =¢, {5} , {5,2}, {3,5,1}, {2,4,3,1}, then we
obtain for tJ the terms A, Ug , Uy U lg, (u1 U uS) Uu
((U] U uz) v u3) U u

5 b
4 .

3.4, Lemma.

Let J and K be subsets of Nn , and let ap 5 eees ) be finite individuals.
a) tJ[a1 an] <(—tJ)[a1 ceeap . "

b) tJuK[a1 an] = tJ[a1 an] U tK[a1 ceo a1,

c) If J and K are disjoint, and ay, +.., a  are disjoint individuals, then

ty la; ... an]and ’cK[a1 an] are disjoint.
d) If a;, ..., a are disjoint, then tylay ...oa)l= EjeJ a .

e) If a;, -.., @ are disjoint nonempty individuals such that

a, < ... <an, then J £ K implies (-tJ) [a1 an] < tK[a] an].

Proof.
Since aj s e.., @) are finite, tJ [a1 an] is finite; hence (a) follows

from 2.4g. (b) and (c) are immediate consequences of the definition of tJ

and ty - (d) follows from 2.4j. In order to prove {(e), by 2.4b and 2.4g it

will suffice to prove that J < K implies tylag «ooa] <tela, ...oajl.

n

17 =+ 8y and distinguish between three cases :
I, and L. I.J=¢. t - A= 0. Since 4K, K # 4 , and since

ay, ..., & are nonempty, t

We omit the parameters a

K is nonempty, hence tK >0 = ty.
II. J # ¢ and J, K disjoint. By (c) just proved, ty and ty are disjoint.
As they are nonempty, ty <ty iff max [tJl < max [tK] by 2.4k. Let

j =max J and k = max K. Since a; < ... <ay by 2.4k, max |tJ| = max |a, |
and max |tK| = max |ak|. Hence t; < ty iff aj < ay (again by 2.4k) iff

j <k iff J4AK (by 2.7b). III. Now let J and K be arbitrary subsets of N,



29

such that J4 K. Then by 2.7a, (JVK)<(K\J), and therefore tivk < tK\J
since J\ K and K\ J are disjoint. By (a) and (b) of this lemma and by 2.4j,

t. =1t +t and t

J - "J\K T TJNK K= tagt tyg e Hence ty <t

K q.e.d.

<n "1

u; = {-tJ} for some J C Nn . We associate with ¢ a function f, defined on
asubsetoan,by:f(i)=Jif«piisul—{t}oru {t} f is not
defined if 0. is u; # A. Let f be admissible. Then we deflne an algorithm,

denoted by A, which produces a sequence A1 5 w00, A, denoted by A(yp), of

We let ¢ be A, ¢. where each v; is either u; # A, or u; = {ty} or

singletons satisfying ¢. The definition of A is by induction on n. If

n =1, we let a, = {AM}M (Notice that > is uy # A since f is admissible.)
Ifn>1, we take for a either {a _1}M or {tJ[ ap eeea g1 }M or

{-MtJ[ ap eeea g ]} , according as 2 is u, # A, u, = {tJ}, or u, = {-tJ}.
(Since f is ad.m1551b1e, if 95 is u, = {t } or u, = {—t }, then J C Nn-1 9

We let g(n) be the recursive functlon deflned on IN by g(h) =

gn) = 20 g(n-1) if n> 1.

3.5. Lemma.

Let f be admissible, and let Afp) = < Aps e, 3 >

a) max {ag, <o, a} < g(n).

b) Assume furthemore that £ is well arranged and satisfies the following
condition : For all i,k € D such that i < k < n and £(i} = f(k), ¢; and
91 are u; = {t } and uy {—tJ}, where J = £(i). Then a; < ... < a,

In both cases, the proof is by induction on n.

a)yn=1: a = {A}" = 2.20:2=g(1). n>1 :an={b}M for some b
such that b <1 + Ei<n a; - By induction hypothesis (and since g(n) is
increasing), b < 1+ (n-1)g(n-1). By 2.4i, a <2 . 2/ *(=Dgl-1) _
22 m=g(n=1)  n.gln-1)_ 2(n). n

b) n =1 : There is nothing to prove. n > 1 : By induction hypothesis,
a; <...< a,_q - We distinguish cases I and II, again subdividing II

into II1 and II2

. _ M
I. If ¢ Is u, # A, then a = {an_1} , and a _1<a, follows from 3.4e.

II. Let ‘0 be upy =it oru = {-ty} for some K C N II;. If ®0-1



30

is U # A, then n-1 € K since f is well arranged, Hence by 3.4d, 3.,4a,
9 3 < = _M
2.4h and 2.41, an_& Eje}g, aj t:J [a1 cee a4 1< (tJ [a1 an_1] <

oM
{ty [?il1 ceea (I3 < tMtylay .o a (117, and a _q <a, follows. HZ'. If
$oo1 1S u 4 = {ty)or u_q = {-ty} for some J N _,, then K< J would im-
ply n <n-1 since f is well arranged. If J = K, then by the second condition
imposed on f, -1 and $pareu o = {tK} and u = {-tK}. Hence a _; <a,

follows from 3.4a and 2.4i. q.e.d.

5.6. Theorem.

Let ¢ be Ai<n 5 each 05 being one of uj # A, u; = {tJ}, u; = {—tJ} for some
J C Nn. Let f be the function associated with ¢ as defined above. Then the
following are equivalent :

(1) ¢ 1is satisfiable by disjoint finite individuals.
(i1) ¢ is satisfiable by distinct singletons.

(iii) After suitably renumbering Uy vee s U, f is admissible
and for all i,k € D such that i <k <n and (1) = f(k),

‘N and ¢y are u, = {tJ} and Uy = {-tJ}, where J = f(i).

(1) = (iii) : Let CPPRRTI: be disjoint finite individuals satisfying ¢.
Then Ay, ..., @ are distinct since v requires them to be nonempty. We may »
assume a, ; e < a. Noujwsuppose j €J=1£(i). Then a; = {tJ [a, ...an] }
or a; = {- ty [a; ... an]} , hence by 3.4d, aj < zkeJ a =ty la; «..a ]
and by 3.4a and 2.4f, a; < a;. Hence j <1i. Assume further that i,j € D,
i<k<n, and £(1) = £(k) = J. If o; and ¢ were u; = {tJ} and U = {tJ},
or u; = {-tJ} and u = {-tJ}, then a; = ap would follow. If v and ¢y Were
u; = {-tJ} and u = {tJ}, then ay < a; would follow by 3.4a and 2.41, contra-
dicting the assumption that ay <...< a,. Hence 95 and ¢ are u, = {tJ} and
u; = {-tJ}. (1ii) = (ii) : In view of 3.2, we may assume f to be well arran-
ged. We let A(v) =< Apy ey Ay >. Then by the definition of A and by 3.5b,
Ay, +.., a are distinct singletons satisfying 9o (ii) = (i) : This is true
because any distinct singletons are disjoint finite nonempty individuals.

q.e.d.
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3.7. Theorem.
It is decidable, for any closed existential formula o of L, whether ¢ is a
theorem of NFZ.

In view of 2.2, we have to decide whether, given any open formula w(x],...,xn)
of L, Ixqy ... Ban is valid in M. Since t €ty is equivalent to

(- {t]}) Uty =-A in NFZ, we may assume that ¢ does not contain the sign €.
By the REDUCTION THEOREM 2.6, we may further assume that ¢ is a basic conjunc-
tion with respect to the empty set of predicate signs, i.e., of the form

5, &x, x being a conjunction of formulas of the form x; = t(xy, .., X)),

where t i1s a term containing exactly one function sign.

It is now convenient to view Xq, +.e, X, DOt a variables but as sets, i.e. we
shall henceforth "talk in Th(M)'" . %1&m=fﬂaﬂwlaup.u,%be

the '"bits" produced by x X i.e., the 2" sets Yy 0 e 0y where

s eees ,
each Y5 is X; Or -X.. Tﬁe sets u?, see, U are a partition of the universe,
and for every i <n, there is a I C Nm such that x; = tI(u] . un). Every
formula x; = Xj’ X; = A, X; = -xj, X; = xj v X, can be replaced by a conjunc-
tion of formulas U = A, Hence x; # X. can be replaced by a disjunction of
formulas # A. The formula X; = {xj} means that exactly one bit of X5
equals {x.} and the others are empty; so if x; = t Xy = {Xj} can be repla-
ced by a disjunction of formulas U = {xj} & AZEI\{k} u, = A, k ranging over
I. By a suitable choice of J, we have Xj =ty If we transform the result

of these replacements into disjunctive form, y becomes a disjunction of formu-
las each of which is a conjunction of formulas Uy #A, e = A s {tJ}.
(This transformation goes back to an idea of V. Ja. Kreinovié, cf. KREINOVIC/
OSWALD [ 2 1). We may suppose that vy is one of these conjunctions and that

for every k < m, at least one of e #A, Uy = A is a factor of ¢v. Our deci-

sion method stops here in each of the following cases :

I. if v is a propositional contradiction (i.e., for some k < m,

both Uy # A and U = A are factors);

II. if for some k < m and some J C Nm , both u = A and W = {tJ}
are factors.
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In both cases, there is no partition of the umiverse satisfying ¢. Other-
wise, by a suitable permutation of subscripts v becomes (Ai<r u #A) &
( Ar<i<m u; = A) & v, ¢ being a conjunction of formulas of the form u; = {tJ},
where i < rand J C Nm . Since uy , ..., u . are by themselves a partition of
the universe, we omit ‘Ar<i<m u; = A and in each factor u; = {tJ} of v, we

5 1 =
replace ty by tJ,, where J Nr N J. Thus ¢ becomes (r\rgr u; FA) &y, ¥
being a conjunction of formulas u; = {tJ}, where 1 < r and J € N.. Again,

our decision method stops here in each of the following cases :

III. if for some i < r and some J,K C N, such that J # K, both
u; = {tJ} and u; = {tK} are factors of y. (Notice that
J # K implies t; # te)s

IV. if for all i < r, y has a factor u; = {tJ}. (Notice that

the union of the ui's is infinite).

Otherwise for every i < r, y has at most one factor u; = {tJ}, and there is
at least one i < r such that y has no factor u; = {tJ}. let I ={1i¢€ Nr/w
has no factor u; = {tJ}}. In M, every finite partition of the universe has
exactly one cofinite part. If u; = {tJ}, then ug, being a singleton, is not
cofinite. Assume u; to be the cofinite part in the partition Ups eeey Upe
Hence i € I. Delete the factor uy #A, If Uy = {tJ} is any factor of ¥ such
g where J' = Nr\ J. If this is done for

every i € I, each resulting formula ¢, possibly after a change of subscripts,

that i € J, then replace ty by -t

satisfies the hypothesis of 3.6. Since 3.6iii states a decidable property
of v, the decision process is complete. q.e.d.

§ 4. A more usable decision method.

Henceforth we let w(x1, cee, xn) be a conjunction of some formulas wij , each
i i . € X. . ..
Vi being either x; X or X; ¢ X
4.1. Definition.
a) We say that wij and sz are s imilar and write wij ~ e if both
are atomic or both are negations.

b) We call y ordered if whenever y has factors % and wjk such that |
k <1i,j, then Vi wjk' ?



c) Wecally orderable if ¢ can be ordered by a permutation of
subscripts.

d) We say that " isa restriction ofyand that y is an
extension ofy if v is a conjunction all of whose factors
are factors of v.

e)Wecally n-complete if ¢ is of the form Ai V]

) i Jj=n fij v
f)Wecally complete if ¢ is n-complete for some n.

Let ¢ be n-complete. We denote by ¥ the matrix whose elements Eij are € or
¢ according as wij is x; € Xj or x; & Xj (i,j <n). We call a colum of

homogeneous if it consists solely of €'s or solely of ¢'s. We

say that columns jand k of ¥ are e qual if wij ~ wik for

all i < n. The following lemma states some immediate consequences of these
definitions.

+.2. Lemma.

a) y 1s ordered iff every restriction of y is ordered.

b) v is orderable iff every restriction of ¢ is orderable.

c) If y is complete and orderable, then ¥ has a homogeneous column.

If y is n-complete and M is a subset of Nn, we denote by Uy the formula
Ai,jEM wij . From 4.2 and the above definitions we conclude :

4.3. Lemma.

If y is n-complete, then the following are equivalent : (i) y is orderable.
(ii) For every M C Nn’ Uy is orderable. (iii) For every M C Nn’ iﬁ has a ho-
mogeneous column.

4,4, Definition.

a) We call {a1, cee, an} quasi-transitive if for every
i<n, either [a;] C {aj, ..., a } or la;| > M|\ faj, «ov, a .

b) We call y regular if ¢ is complete and orderable and no two
colums are equal.

Now we suppose that y is n-complete. We let v be Uy for M = Nn- We

1
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further let I(y) = {i < n/win is x5 € xn} and I'(y) = {i < n/win is X5 ¢ xn}.
We finally let

S5 ap,eenna ) = (be [M/MEY la; «cca b1},
It is clear from this definition that S(;aq,...,a ;) # ¢ implies that y~
is satisfied by Ay eees @ 1.
4.5. Lemma.
Let , be ordered and n-complete, and let Ay, ey B g be individuals satis-
fying ¥~. Then the following hold :
a) S(w;a1, cee, an—l) is infinite,
b) Let furthermore ¢ be regular and {a1,...,an_1} be quasi-transitive, and

let a, be the least element of S(¢;31"“’an-1)' Then a, is distinct

-1 » and either |a [ = {a;/i € I(¥)} or
|ani = M\ {ai/i € I'(y)}; and {ag, ..., an} is quasi-transitive.

from ay, ++ey @

Proof.
We omit the parameters of S, I and I'. From the definition of S, it is
clear that b € S holds iff the following three conditions are satisfied :

. .. . M . .
(1) M E wnn[IJ]. (ii) For every i <n, a; € b iff by s x; € x)

(1ii) For every j <mn, b € a. iff Vs is X, € X o Condition (ii) is equi-
valent to (ii') : {aj/i € I} C [b| ¢ {M]\ {a;/1 € I'}. As y is ordered, if
j <n, then wnj ~ Y.

JJ
j<n, b EM a. iff aj is cofinite. Now (a) holds since (i) and (ii') are

Hence (iii) is equivalent to (iii') : For every

satisfied by an infinite number of individuals b and (iii') excludes only a
finite number of them. Next we prove (b), assuming that wnn is xn>¢ X, (the
proof 1s quite analogous if Yon is X, € xn). We let c be the individual

determined by |c| = {a;/i € I} (cf. 2.4e). By the definition of €
the least b satisfying (i) and (ii'). Assume j <n. If aj is cofinite,

, Cis

then a; # c since c is finite. If ay is finite, then y.. is X4 ¢ X., hence
¥nj is X, ¢ Xg - Since y is regular by hypothesis, columns j and n are not
equal. So there is some i < n such that wij and i, are not similar. Hence

M

for this i, exactly one of a, € aj and a; e ¢ holds; so aj # c. Therefore,

c is distinct from ag, .o Moreover, since {ag, «ouy an_]} is quasi-

}

ey @ L.
> “n-1

transitive, either |ai| C{ay, -, @ _q} OT ]ai] o> M N {a], cees g




for every i < n. It follows that c M a; iff a; is cofinite. Hence c satis-

fies also (iii'), so c = a. Finally, from the definition of c and the hypo-
thesis that {a1, ceny an_]} is quasi-transitive, it immediately follows that
fag, .., a) is quasi-transitive. q.e.d.

Let ¢ be ordered and n-complete. We define an algorithm, denoted by B, which
a denoted by B(y), such that ¢ is satisfied

by Aps eeey A - The definition is by induction on n. If n = O (meaning

b

produces a sequence a;, ...

that ¢ is the empty conjunction), then we let B(y) be the empty sequence.
Ifn>0and B(y ) =< ap, weey A4 >, we let a, be the least element of
S(w;a1,...,an_1)\ {al, ceey an_1} (this set being nonempty by 4.5a). We then
set B(¥) = <ay, ..., a, >

+.6. Lemma.
let < apyeee,dy > = B(y).

a) @y, wee, a, are distinct.
5) M E vlay ... a l.
<) If v is regular, then {aq, ..., an} is quasi-transitive.

’roof.

In view of 4.5, the proof by induction on n is immediate. q.e.d.

4.7. Theorem.

The following are equivalent :
(i) v is orderable.
(1i) ¢ is satisfiable.

(iii) y is satisfiable by a sequence of n distinct individuals.

Clearly, we may assume ¢ to be complete. By 4.6a, (i) implies (iii),

Trivially, (iii) implies (ii). In order to show that (ii) implies (i), we
let Aps eee, Ay be any individuals satisfying ¥. We assume ay < ... S a.
Then by 2.4c and 2.4d, ¢ is ordered. q.e.d.
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Example.

let y be x, 3 x; & x, & X, & x; € X, & x, € Xy Then, as remarked in the
introduction, NZF |'3X1'3X2 y since for Xq = USC(V) and X, = {usc(vyy, v

is satisfied, and since the existence of USC(V) is provable in NZF.

However, 3x 3x2 ¥ 1s not a theorem of NFZ. To see this, we notice that y

is
¢e)
€ ¢

By 4.3, ¥ is not orderable since ¥ has no homogeneous column; so by 4.7, ¥ is
not satisfiable in M. By 2.2, 3x;3x, ¥ is not a theorem of NF,.
4.8. Definition.

Let ¥ be n-complete, and let x(x1 xn) be a conjunction of formulas of the
form x; = t(x1 e xn), each term t containing exactly one of the function
signs A, - , VU {1}, Wesay that y is compatible with x if
the following four conditions helds : (1) If for some j <n, xj =Ais a
factor of x, then for every i <n, wij is X ¢ Xj' (ii) If for some j,k <n,
X = mx is a factor of X, then for every i <n, wi. and wik are not similar.
(iii) If for some j, k, £ <n, Xj =X U Xp is a factor of x, then for every
i<n, wij is X5 € Xj iff Vi is X5 € X or Vip is X5 € X, (iv) If for some
j,k <n, xj = {xk} is a factor of x, then j # k and for every i <n

y.. is x. € x. iff i = k.
1] 1 J

4.9. Lemma.

a) If y & x is satisfied by a sequence of distinct individuals Agy eeey A,
then y is compatible with .

b) Let y be n-complete and compatible with x. Let {a1, evey ald be a quasi-
transitive set of individuals such that y is satisfied by Aps weey Ap-
Then x is satisfied by ay, -+v, @

n°
Proof.

a) is an immediate consequence of the axioms AZ through A5.

b) Clearly we may assume y to be either one of X = A, Xy =Xy, Xy S {x,},

Xy =x; Y Xj (i, j <n). We only prove the last case, which is the most
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interesting one. We let M = {1,i,j} , P = {1,i} , and Q = {i,j}. First,
we show that

m w]1 is x & X, iff wii and wjj are x; & X, and Xj ¢ Xj’
respectively.

For assume that ¥4 is x4 3 X; and, e.g., iy is X; € X; (whence i # 1).

Since ¥ is compatible with x, y,. and wi] are x, ¢ X; and X5 € X1s respecti-

1i

vely. Hence by 4.2c, wP is not orderable. In view of 4,3, this implies

that ¥ is not orderable. But since v is, by hypothesis, satisfiable, it is

€
orderable by 4.7. Or assume w]], mii, wj. to be xy € x, X5 & X, X, E x.,
respectively (whence i1 # 1, j # 1). Then compatibility rules out that w]i
c .

and w]j are x, & Xy and Xy & Xj' Assume Uy to be Xy € x;. Then it follows
. c 2 . c R

that wi1 is x; € x (orderability of wP), wij is x; Xj (compatibility),

. Lo . . c . .

i# j (since wii is x; & xi), wjl is xj X (orderability of wM), wji 1s

Xj € X, (compatibility). But now, we again have a contradiction since wQ,

and hence ¥, is not orderable. Now we have to prove that for every individual

a’

(2) a EM a, holds iff af least one of a GM a., a GM a. holds.
1 1 J

Compatibility implies that (2) holds for every a € {ag, ..., a t. It remains
to prove (2) for a ¢ {a], cee, an}. If a is finite, then by (1) and 2.4b,
a; and a; are both finite. Since {ay, ..., a} is quasi-transitive, Ia]l,
[aii,|aj are all subsets of {ag, o, ats hence (2) holds also for

a¢ {ag, <oy aph. If a is cofinite, then by (1) and 2.4b, one of a; and aj,
say a, is cofinite. Quasi-transitivity implies that !a1[,

;ail O M\ {ag,... »a}. Hence (2) holds since for every a ¢ {a],...,an},
aeh a and a €M a;. q.e.d.

4.10. Definition.
We call {ay, ..., al extensional if for all i,j <n such

that i # j, there is some k<n such that exactle one ofakgM ay and a M aj

k
holds.

4.11. Lemma.

For every individual a, {b € |M|/b < a} is extensional.
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Proof .

We let b, = {b € [M|/b < a} and assume b;, b, to be distinct members of M,.
We d15t1ngu1sh between two cases and use 2.4c and 2.4d.

L. Let, e.g., b, be finite and b, be cofinite. If b, <b,, then not b, My
but b, € b,. If b, <b,, then b, € b, but not b, €' b .

I71. If b and b are both finite or both cofinite, let ¢ be any individual
such that e.g., C M by but not ¢ M b Then ¢ < b if b, is finite, and

1
c < b if b is cofinite, hence c € b%'ln any case. q.e.d.

'])

O gy,

where h'(n) = (n+1)(n+2) and where g is the recursive function defined in § 3.
In view of the REDUCTION THEOREM 2.6 and since any basic conjunction with
respect to {€} is of the form y & x & & , the following theorem again implies

that the set of the existential theorems of NFZ is decidable.

We let h be the recursive function defined by h(n) = 2

4.2. Theorem.
The existential sentence Eﬂx] .o 3X (w & x&s ) 15 a theorem of NF iff
there 15 a number m < h(n) and a regular extension ¢ (x e XHQ of ¢ such

that w is compatible with x.

Proof.
We denote 3xy ...gxn(\p & X & 6n) by o.

1. Let w+ be any regular extension of y which is m-complete and compatible
with x. We let B(¥') =<a,, ..., a >. By 4.6, aj, ..., a_are distinct
and satisfy w+, and {31, ceey am} is quasi-transitive. By 4.9b, Ags ceey A

also satisfy x. Hence ¥ & x & & is satisfied by agy eey A Thus o holds

in M; so NF, F o by 2.2.

2. Conservely, suppose that o is a theorem of NFzg We first prove the exis-
tence of 4" without paying attention to the upper bound for m, Since NF, Fo,
ME o by 2.2. Let Ag, eees B be any individuals satisfying ¢ & x & L

We let

@D T = max {a] » oeees apl
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and we let an+1 s oeees @y be an enumeration of {a € |[M|/a < 1} \ {a1,...,an}.
Letm =1 + 1, and let y (x; ... xm) be the uniquely determined extension of y
which is satisfied by ay, ..., a . Since {a;,...,a} : {be [H|/b<al,

the set {a], ceey am} is extensional by 4,11. Hence y 1is regular. Since
X410 s X, do not occur in x, x is also satisfied by Aps eees Bp
By 4.9a, y 1is compatible with .

We finally show that in (1), one may assume that

(2) r<h(n) - 1.

To see this, we inspect the proof of THEOREM 3.7 and apply 3.5a. In the
proof of 3.7, each factor x; € xj or x; ¢ x. of y is replaced by

[—{xi}) ] xj =-A and (—{xi}) V] Xj # - A, respectively., The result is then
transformed into a disjunction of formulas of the form

(3) Ix g e XK E S,

where yx' is a formula of the same type as x but may contain any of the varia-
bles Xps wees X Since ¢ & x & 8, is satisfiable, at least one the for-
mulas (3) is satisfiable; conversely, whenever aps wee, Ay satisfy x' & (Sk
in this particular formula, then Aps eres Ay satisfy ¢ & x & 8, In the
transformation process, we have to introduce new variables Xop 0 oees X
for {x1} » =+-» {x}, and new variables Xpnaq » cees Xz for -{x]}, cees -{xn}.
We may have to add Xzn41 = A and Xzne2 = “Xgpeq * Whenever wij is x5 ¢ x.,
i v xj (which stands for (-{xi}) v Xj)‘
Hence we may assume that in (3), k < n? + 30+ 2= (n+1) (n*+2). Now let

X" &S

some conjunction ¢ of the form Ai<p 95 where p = 2K and each v, is either

we need an additional variable for x
K in (3) be satisfiable. Then the proof of 3.7 shows that there is

u #Aoruw =A, oruy = {t]} for some J C N , satisfiable by a partition
of the universe. Conversely, from every partition satisfying this particu-
lar ¢, a sequence Aps eees A satisfying x' & 8y can be recovered. By 3.5a,
there is a partition b1, ..., b_satisfying ¢ such that each finite part
does not exceed g(p). Let b], vee, bq be the finite nonempty parts (whence
q<p), and let b +1 be the unique cofinite part. From 3.5a, we can actual-
ly conclude that bi < g(q) for every i < q. From 2.4g and 2,4j, we conclude
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that bq+1 =1+
Ay, weey Ay is the solution of x' & Sk recovered from b1, vy bp . Thus
if v & & Sy is satisfiable at all, it is satisfiable by individuals not
exceeding 1 + q.g(q). Now (2) follows from k < (n+1)(n+2), p = Zk, q<p,

r<1+q.g(q) and from the fact that g(i) > 2 for every i € N. gq.e.d.

Ei<q bi and that aj <1+ 21@1 bi for all j < k, where

§ 5. Some examples.

In this section, we omit the reference to M in the function signs and use

the common notation V for - A.

1) The sentence 3x1 3)(20(1 # Xy & xq = {-{xz U{x1}}}) is a theorem of NE,.

In order to see this, we first notice that Xy = {-{x, U {xq31} is equivalent
in NFZ to 3x33 x43x53X6(x3 = {x1} & Xy = Xy U Xg & Xg = {x4} & Xg = “Xg
& Xy = {x6}). We shall look for a 6-complete regular y which is (an exten-
sion of the empty conjunction and) compatible with Xz = {xq} & Xy = Xy U Xg
& Xg = {xg} & x¢ = =X & xy = {x6}. Disregarding the factor X, = Xy U Xq,
we see that any 6-complete ¢ is compatible with the four remaining factors

iff vy is of the following form (the elements marked by dots are arbitrary)

¢ .€.¢ €
¢.¢.¢ €
v = ¢ .¢.¢ €
¢.¢.€ ¢
¢F.¢.¢ €
€ .¢& .¢ €

The orderability conditions are ag < aqs ay < az, ay < ag, a, < ag (by 2.4c
and 2.4d). They reduce to a < ag < ay < as and a, < as. We try our luck
by arranging the variables Xys s Xg in the order Xgs Xgs Xgs X{5 X5y Xz o

Then ¥ becomes




4

Xy X X Xp X, Xg
| € ¢ ¢ ¢
xg ¢ € ¢ ¢
Xg ¢ € € ¢
X ¢ € ¢ €
X, ¢ € ¢ &
Xg ¢ € ¢

After this permutation, ¥ has become ordered. (Every column is homogeneous
down from the diagonal). We try to complete y in a way that it remains orde-
red and becomes compatible with Xy =X, v Xz- Since up to now y has no homo-
geneous column, we try by taking € for the column of Xy Then compatibility
with x; = X, U xs requires us to take € for the column of Xy with the excep-
tion of Eﬁz . Since the colum of x, consists solely of €'s, we have to take
& for Y17 to make y regular. Then by 4.12, we see that the given sentence is
a theorem of NF,. If we want to find individuals satisfying the matrix of
the given sentence, we apply the algorithm B to y. B produces in turn :

a, =V, ag = {agd = {V3, ag = —{a4} =-{V}, a; = {a6} = {-{V}}, a, = -{a1}=
-H{-{V}}}, ag = {a;} = {{-{V}}}. Now if the matrix of the given existential
sentence is denoted by ¢, we have M F w[a1a2] and NF2 F xi= {-{V}} &

x2 = -{{-{V}}} - ¢. Note that since every individual of M corresponds to a
term of L, the algorithm B can be applied to produce terms which in NF2
provably satisfy the given basic conjunction.

2) If y is X € Xy & Xy & Xz & X, € X4 & X3 & Xy & Xz & Xy, and x is

X, = X, U xg, then 'Elx1 3)(2 3X3(¢' & x & 87) is a theorem of NF,. It is
easy to see that there is only one 3-complete extension of ¢ which is ordera-
ble and compatible with x; for this y,

<=l

n
M MM
M M Mm
M AR
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Then columns of 1 and 2 are equal, so ¢ is not regular. If we introduce

a new variable Xy s then by arranging the variables in the order Xy,

Xz, X1, X, We get a regular extension which is compatible with y :

X, XX, X,
3 1¢ € &€ ¢
x; | ¢ & ¢ ¢
x| ¢ ¢ € €
x| ¢ ¢ € €

Hence by 4.12, 3x; Ix, dx;(¢ & x & §5) is a theorem of NF,. Applying the
algorithm B, we obtain a, = A, az = {34} = {A} a; = —{as} = -{{A}},
a, = -{33,84} = -{{A} ,A}.

3)3)(1 BXZ(X1 ==X, & Xy = {xz U {xl}}) is not a theorem of NF,. To see
this, we first denote the matrix of the given sentence by x. Then yx is
equivalent in NFZ to 3x33x4x‘, X! biing Xy i X, & Xz = {X1}— & Xy =_x2 v Xs
& Xy = {x4}. Compatibility requires ¥1q and Y44 to be ¢ and U and Yy to

be €. Thus for M = {1,4}, is not orderable.

Y
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