A DECISION METHOD FOR THE EXISTENTIAL THEOREMS OF ${\rm NF}_2$

Urs OSWALD (Zürich)

§ 1. Introduction.

What is or what is not an existential sentence depends on the language used for a theory. It is natural to formulate NF₂ in the language L with the nonlogical signs \in , Λ (empty set), - (complement), \cup (union), { } (singleton set). By the method developped in § 3 of this paper, it is decidable whether any given existential sentence of L is a theorem of NF₂ (THEOREM 3.7). The method is based on the existence of a model M of NF₂ with the particular property of being embeddable in any model of NF₂. It is a direct consequence of this property that an existential sentence of L is a theorem of NF₂ iff it holds in M. Our method actually decides whether a given existential sentence holds in M.

The method developped in § 3 is, however, utterly unusable in pratice. Therefore in § 4, a second method is developped which is a decision method not by itself, but in view of the results of § 3, and which can be readily applied to a great many cases (THEOREM 4.12). For instance, let σ be $\exists x \exists y$ $(x \notin x \& y \notin y \& x \in y \& y \in x)$. Then σ is a theorem of N_2F (just let x = USC(V) and $y = {USC(V)}$ but not of NF_2 . Or consider the sentences $\exists x \exists y (x \neq y \& x = \{-\{y \cup \{x\}\}\})$ and $\exists x \exists y (x = -y \& x = \{y \cup \{x\}\})$. Our method shows that the first is a theorem of NF_2 while the second is not (cf. § 5).

§ 2. Some prerequisites.

If formulated in L, NF₂ can be given by the following five axioms (Boffa [1]) : (A1) $\forall z(z \in x \leftrightarrow z \in y) \rightarrow x = y$. (A2) $\forall x(x \notin \Lambda)$. (A3) $\forall x(x \in -y \leftrightarrow x \notin y)$. (A4) $\forall x(x \in y \cup z \leftrightarrow x \in y \lor x \in z)$. (A5) $\forall x(x \in \{y\} \leftrightarrow x = y)$. We denote by \mathbb{N}_0 the set of the nonnegative integers. We shall construct a model *M* of NF₂ with the universe $|M| = \mathbb{N}_0$. For all $a, b \in \mathbb{N}_0$, we define R(a,b) (intended to be \in^M) to hold iff either of the following conditions holds : (i) b is even and a is an exponent in the binary representation of $\frac{b}{2}$. (ii) b is odd and a is not an exponent in the binary representation of $\frac{b-1}{2}$. Then the following can be easily proved (details are given in Oswald [3]) :

2.1. Lemma. a) < \mathbb{N}_0 , R> is a model of NF₂ formulated in =, \in . b) < \mathbb{N}_0 , R> can be uniquely expanded to a model of NF₂. c) Let M be the unique expansion described in (b). Then M can be isomorphically embedded in every model of NF₂.

We set $M = \langle |M|, \in^{M}, \Lambda^{M}, -^{M}, \cup^{M}, \{\}^{M} \rangle$, where \in^{M} is R. The following lemma, a direct consequence of 2.1c, is the base for our decision method.

2.2. Lemma.

If σ is an existential sentence of L, then σ is a theorem of NF_2 iff it holds in M.

2.3. <u>Definition</u>.
a) We set |a| = {b ∈ |M|/b ∈^M a}.
b) We call an individual a of M f i n i t e if |a| is finite, and c o f i n i t e if |M| \ |a| is finite.

c) We say that a and b are disjoint if |a| and |b| are disjoint.

2.4. Lemma.

We let a and b be individuals of M.

a) a is finite or cofinite.

b) $a \in M$ a iff a is cofinite iff a is odd.

- c) If b is finite, and $a \in M^{M}$ b, then a < b.
- d) If b is cofinite, and $a \in {}^{M} b$ does not hold, then a < b.
- e) To every M ⊂ |M| such that M or |M|\M is finite, there is exactly one individual a such that |a| = M.
- f) $a < \{a\}^{M}$.
- g) If a is finite, then $-^{M}a = 1 + a$.
- h) $-^{M}a < \{a\}$.
- i) If a < b, then $\{a\}^M < \{b\}^M$.
- j) If a and b are disjoint and finite, then $a \cup^{M} b = a + b$.
- k) If a and b are disjoint finite nonempty individuals, then a < b iff max |a| < max |b|.</p>

Proof.

(a) through (k) are immediate consequences of the definition of R and of1.3. q.e.d.

By an individual, we shall henceforth mean and individual of M. We shall simply say that a formula is satisfiable if it is satisfiable in M.

We now let T be any first order theory. By δ_n we denote the formula $\Lambda_{i \leq j \leq n} \quad x_i \neq x_j$. If p is any predicate sign of L(T), we denote by $\mu(p)$ the number of places of p.

2.5. Definition.

Let P be a finite set of predicate signs of L(T). We call φ a b as i c c o n j u n c t i o n with respect to P if φ is a formula of the form $\delta_n \& \psi$, where ψ is a conjunction satisfying the following conditions : (i) Each factor (we call ψ_1 , ..., ψ_n the f a c t o r s of $\psi_1 \& \dots \& \psi_n$) of ψ is either $pv_1 \dots v_{\mu(p)}$ or $\neg pv_1 \dots v_{\mu(p)}$ for some predicate sign $p \in P$ and variables v_1 , ..., $v_{\mu(p)} \in \{x_1, \dots, x_n\}$, or $x_i = t(x_1 \dots x_n)$ for some $i \leq n$ and some term t containing exactly o n e function sign. (ii) For every predicate sign $p \in P$ and any variables $v_1, \dots, v_{\mu(p)} \in \{x_1, \dots, x_n\}$, exactly one of $pv_1 \dots v_{\mu(p)}$ and $\neg pv_1 \dots v_{\mu(p)}$ is a factor of ψ . The following theorem is easily by well known methods of predicate logic with identity.

2.6. Reduction theorem.

Let E be the set of the existential theorems of T containing no predicate signs other than those of P, and let B_p be the set of the existential theorems of T whose matrix is a basic conjunction with respect to P. Then E_p is decidable iff B_p is decidable.

We denote by \mathbb{N} the set of the positive integers (remember that \mathbb{N}_0 is the set of the nonnegative integers). We denote by $F(\mathbb{N})$ the family of the finite subsets of \mathbb{N} . For all $I, J \in F(\mathbb{N})$, we define $I \prec J$ to hold iff $\max((I \setminus J) \cup \{0\}) < \max((J \setminus I) \cup \{0\})$. By this definition, the following is true :

2.7. Lenma.
a) I ≺ J iff (I \ J) ≺ (J \ I).
b) If I and J are disjoint and nonenmpty, then I ≺ J iff max I < max J.
c) "≺" is a total ordering on F(N).

We shall let all subscripts run through \mathbb{N} . We stick to the convention that $\varphi(x_1 \dots x_n)$ (or $t(x_1 \dots x_n)$) means a formula (or a term) all of whose free variables are among x_1 , ..., x_n . For every $n \in \mathbb{N}_o$, we denote by \mathbb{N}_n the set $\{i \in \mathbb{N}/i \leq n\}$. Notice that \mathbb{N}_o is the empty set ϕ .

§ 3. The decidability proof.
3.1. Definition.
Let f be a function with domain D and range R, where D ⊂ N_n for some n ∈ N₀
and R ⊂ F(N).
a) We call f a d m is s i b l e if f(i) ⊂ N_{i-1} for every i ∈ D.
b) We call f well arranged if f is admissible and satisfies

the following additional conditions : (i) For all $i, j \in D$, if $f(i) \not \prec f(j)$, then i < j. (ii) For all i, j such that i < j and $j \in D$, if $k \notin D$ for every k such that $i \leq k < j$, then $i \in f(j)$.

The heart of the decidability proof of this paragraph is the fact that every admissible function can be well arranged. In order to make this statement precise, we set $U = D \cup (\bigcup_{i \in D} f(i))$, and for any permutation p of the elements of U and any $M \subset U$, we let $P(M) = \{p(m)/m \in M\}$.

3.2. Lemma.

To every admissible function f there is a permutation p of the elements of U such that the following is true : (i) $P^{-1}fp$ is well arranged. (ii) For all $i,j \in D$ such that f(i) = f(j), i < j implies p(i) < p(j).

Proof.

We say that an admissible function f is k-arranged if the following three conditions hold: (i) $k \in D \cup \{0\}$. (ii) $f \upharpoonright N_k$ is well arranged. (iii) For every $i \in D \cap N_k$ and every $j \in D \setminus N_k$, either $f(i) \blacktriangleleft f(j)$ or f(i) = f(j). We now describe an algorithm by which, to any k-arranged function f which is not well arranged, a permutation p is constructed such that P^{-1} fp is $(k+\ell)$ -arranged for some $\ell > 0$, p preserving the order of any $i, j \in D$ such that f(i) = f(j). Since every admissible function is 0-arranged by definition, it can be well arranged by repeated use of this algorithm.

Now let f be k-arranged but not well arranged. We first note that $D \setminus N_k \neq \phi$, as otherwise f would be well arranged. Let m be the least $i \in D \setminus N_k$ such that f(i) is minimal (with respect to \checkmark) in $\{f(j)/j \in D \setminus N_k\}$, and let $M = (\{m\} \cup f(m)) \setminus N_k$. Let $m_1 < \ldots < m_\ell$ and $n_1 < \ldots < n_r$ be enumerations of M and of $(U \setminus N_k) \setminus M$, respectively (notice that $\ell > 0$). Let further $p_1 < \ldots < p_s$ be an enumeration of U, and $p_1 < \ldots < p_t$ one of $U \setminus N_k$. We let p be the permutation mapping p_1, \ldots, p_s on $p_1, \ldots, p_t, m_1, \ldots, m_\ell, n_1, \ldots, n_r$, in this order. Then, as can be easily proved, P^{-1} fp is $(k+\ell)$ -arranged and for all $i, j \in D$ such that f(i) = f(j), if i < j, then p(i) < p(j). q.e.d.

We now define the term t_J inductively for every $J \in F(\mathbb{N})$, assuming u_1 , u_2 , ... to be variables of L.

3.3. Definition. (i) If $J = \phi$, then t_J is A. (ii) If $J = \{j\}$, then t_J is u_i . (iii) $J = \{i, j\}$, where i < j, then t_J is $u_i \cup u_j$. (iv) If J has more than 2 elements and $j = \max J, J^{-1} = J \setminus \{j\}, \text{ then } t_J \text{ is } (t_J^{-}) \cup u_j$. By this definition, if $J = \phi$, {5}, {5,2}, {3,5,1}, {2,4,3,1}, then we obtain for t_1 the terms A, u_5 , $u_2 \cup u_5$, $(u_1 \cup u_3) \cup u_5$, $((\mathbf{u}_1 \cup \mathbf{u}_2) \cup \mathbf{u}_3) \cup \mathbf{u}_4$. 3.4. Lemma. Let J and K be subsets of N_n , and let a_1 , ..., a_n be finite individuals. a) $t_J [a_1 \cdots a_n] < (-t_J) [a_1 \cdots a_n]$. b) $t_{J\cup K}$ $[a_1 \dots a_n] = t_J [a_1 \dots a_n] \cup^M t_K [a_1 \dots a_n]$. c) If J and K are disjoint, and a_1, \ldots, a_n are disjoint individuals, then $t_J[a_1 \dots a_n]$ and $t_K[a_1 \dots a_n]$ are disjoint. d) If a_1, \ldots, a_n are disjoint, then $t_J [a_1 \cdots a_n] = \sum_{j \in J} a_j$. e) If a₁, ..., a_n are disjoint nonempty individuals such that $a_1 < \ldots < a_n$, then J **4** K implies $(-t_J) [a_1 \cdots a_n] < t_K [a_1 \cdots a_n]$.

Proof.

Since a_1 , ..., a_n are finite, $t_J [a_1 \hdots a_n]$ is finite; hence (a) follows from 2.4g. (b) and (c) are immediate consequences of the definition of t_J and t_K . (d) follows from 2.4j. In order to prove (e), by 2.4b and 2.4g it will suffice to prove that $J \blacktriangleleft K$ implies $t_J [a_1 \hdots a_n] < t_K [a_1 \hdots a_n]$. We omit the parameters a_1 , ..., a_n and distinguish between three cases : I, II and III. I. $J = \phi$. $t_J = \Lambda^M = 0$. Since $\phi \triangleleft K$, $K \neq \phi$, and since a_1 , ..., a_n are nonempty, t_K is nonempty, hence $t_K > 0 = t_J$. II. $J \neq \phi$ and J, K disjoint. By (c) just proved, t_J and t_K are disjoint. As they are nonempty, $t_J < t_K$ iff max $|t_J| < \max |t_K|$ by 2.4k. Let $j = \max J$ and $k = \max K$. Since $a_1 < \ldots < a_n$ by 2.4k, max $|t_J| = \max |a_j|$ and max $|t_K| = \max |a_k|$. Hence $t_J < t_K$ iff $a_j < a_k$ (again by 2.4k) iff j < k iff $J \blacktriangleleft K$ (by 2.7b). III. Now let J and K be arbitrary subsets of N_n

such that J K. Then by 2.7a, $(J \setminus K) \prec (K \setminus J)$, and therefore $t_{J \setminus K} < t_{K \setminus J}$ since J \ K and K \ J are disjoint. By (a) and (b) of this lemma and by 2.4j, $t_J = t_{J \setminus K} + t_{J \cap K}$ and $t_K = t_{K \setminus J} + t_{J \cap K}$. Hence $t_J < t_K$. q.e.d.

We let φ be $\Lambda_{i \leq n} \varphi_i$ where each φ_i is either $u_i \neq \Lambda$, or $u_i = \{t_J\}$ or $u_i = \{-t_J\}$ for some $J \subseteq N_n$. We associate with φ a function f, defined on a subset of N_n , by : f(i) = J if φ_i is $u_i = \{t_J\}$ or $u_i = \{-t_J\}$. f is not defined if φ_i is $u_i \neq \Lambda$. Let f be admissible. Then we define an algorithm, denoted by A, which produces a sequence a_1, \ldots, a_n , denoted by $A(\varphi)$, of singletons satisfying φ . The definition of A is by induction on n. If n = 1, we let $a_1 = \{\Lambda^M\}^M$. (Notice that φ_1 is $u_1 \neq \Lambda$ since f is admissible.) If n > 1, we take for a_n either $\{a_{n-1}\}^M$ or $\{t_J \mid a_1 \cdots a_{n-1}\}^M$ or $\{-Mt_J \mid a_1 \cdots a_{n-1}\}^M$, according as φ_n is $u_n \neq \Lambda$, $u_n = \{t_J\}$, or $u_n = \{-t_J\}$. (Since f is admissible, if φ_n is $u_n = \{t_J\}$ or $u_n = \{-t_J\}$, then $J \subseteq N_{n-1}$.) We let g(n) be the recursive function defined on N by : g(1) = 2, $g(n) = 2^{n \cdot g(n-1)}$ if n > 1.

3.5. Lemma.

Let f be admissible, and let $A(\varphi) = \langle a_1, \dots, a_n \rangle$.

a) max $\{a_1, ..., a_n\} \le g(n)$.

b) Assume furthermore that f is well arranged and satisfies the following condition: For all i,k ∈ D such that i < k ≤ n and f(i) = f(k), φ_i and φ_k are u_i = {t_J} and u_i = {-t_J}, where J = f(i). Then a₁ < ... < a_n.

Proof.

In both cases, the proof is by induction on n.

- a) $n = 1 : a_1 = \{\Lambda^{M}\}^{M} = 2 \cdot 2^{O} = 2 = g(1)$. $n > 1 : a_n = \{b\}^{M}$ for some b such that $b \le 1 + \sum_{i \le n} a_i$. By induction hypothesis (and since g(n) is increasing), $b \le 1 + (n-1)g(n-1)$. By 2.4i, $a_n \le 2 \cdot 2^{1+(n-1)g(n-1)} = 2^{2+(n-1)g(n-1)} \le 2^{n \cdot g(n-1)} = g(n)$.
- b) n = 1 : There is nothing to prove. n > 1 : By induction hypothesis, a₁ < ... < a_{n-1}. We distinguish cases I and II, again subdividing II into II₁ and II₂.
 I. If φ_n is u_n ≠ Λ, then a_n = {a_{n-1}}^M, and a_{n-1} < a_n follows from 3.4e. II. Let φ_n be u_n = {t_K} or u_n = {-t_K} for some K ⊂ N_{n-1}. II₁. If φ_{n-1}

is $u_{n-1} \neq \Lambda$, then $n-1 \in K$ since f is well arranged. Hence by 3.4d, 3.4a, 2.4h and 2.4i, $a_{n-1} \leq \sum_{j \in J} a_j = t_J [a_1 \cdots a_{n-1}] < {}^M t_J [a_1 \cdots a_{n-1}] < {}^{t_J} [a_1 \cdots a_{n-1}] \}^M < ({}^{-M} t_J [a_1 \cdots a_{n-1}] \}^M$, and $a_{n-1} < a_n$ follows. II₂. If φ_{n-1} is $u_{n-1} = {}^{t_J}$ or $u_{n-1} = {}^{-t_J}$ for some $J \subset N_{n-1}$, then $K \prec J$ would imply n < n-1 since f is well arranged. If J = K, then by the second condition imposed on f, φ_{n-1} and φ_n are $u_{n-1} = {}^{t_K}$ and $u_n = {}^{-t_K}$. Hence $a_{n-1} < a_n$ follows from 3.4a and 2.4i. q.e.d.

5.6. Theorem.

Let φ be $\Lambda_{i \leq n} \varphi_i$, each φ_i being one of $u_i \neq \Lambda$, $u_i = \{t_J\}$, $u_i = \{-t_J\}$ for some $J \subset N_n$. Let f be the function associated with φ as defined above. Then the following are equivalent :

- (i) φ is satisfiable by disjoint finite individuals.
- (ii) φ is satisfiable by distinct singletons.
- (iii) After suitably renumbering u_1 , ..., u_n , f is admissible and for all $i, k \in D$ such that $i < k \le n$ and f(i) = f(k), φ_i and φ_k are $u_i = \{t_J\}$ and $u_k = \{-t_J\}$, where J = f(i).

Proof.

(i) \Rightarrow (iii) : Let a_1, \ldots, a_n be disjoint finite individuals satisfying φ . Then a_1, \ldots, a_n are distinct since φ requires them to be nonempty. We may assume $a_1 < \ldots < a_n$. Now suppose $j \in J = f(i)$. Then $a_i = \{t_J \mid a_1 \ldots a_n\}^M$ or $a_i = \{-^M t_J \mid a_1 \ldots a_n\}^M$, hence by 3.4d, $a_j \leq \Sigma_{k \in J} a_k = t_J \mid a_1 \ldots a_n\}$ and by 3.4a and 2.4f, $a_j < a_i$. Hence j < i. Assume further that $i, j \in D$, $i < k \leq n$, and f(i) = f(k) = J. If φ_i and φ_k were $u_i = \{t_J\}$ and $u_k = \{t_J\}$, or $u_i = \{-t_J\}$ and $u_k = \{-t_J\}$, then $a_i = a_k$ would follow. If φ_i and φ_k were $u_i = \{-t_J\}$ and $u_k = \{t_J\}$, then $a_i < a_i$. Hence φ_i and φ_k are $u_i = \{t_J\}$ and $u_i = \{-t_J\}$. (iii) \Rightarrow (ii) : In view of 3.2, we may assume f to be well arranged. We let $A(\varphi) = \langle a_1, \ldots, a_n \rangle$. Then by the definition of A and by 3.5b, a_1, \ldots, a_n are distinct singletons are disjoint finite nonempty individuals. q.e.d. 3.7. Theorem.

It is decidable, for any closed existential formula σ of L, whether σ is a theorem of NF₂.

Proof.

In view of 2.2, we have to decide whether, given any open formula $\varphi(x_1, \ldots, x_n)$ of L, $\exists x_1 \ldots \exists x_n \varphi$ is valid in M. Since $t_1 \in t_2$ is equivalent to $(-\{t_1\}) \cup t_2 = -\Lambda$ in NF₂, we may assume that φ does not contain the sign \in . By the REDUCTION THEOREM 2.6, we may further assume that φ is a basic conjunction with respect to the empty set of predicate signs, i.e., of the form $\delta_n & \chi$, χ being a conjunction of formulas of the form $x_i = t(x_1, \ldots, x_n)$, where t is a term containing exactly one function sign.

It is now convenient to view x_1, \ldots, x_n not a variables but as sets, i.e. we shall henceforth "talk in Th(M)". We let $m = 2^n$, and we let u_1, \ldots, u_m be the "bits" produced by x_1, \ldots, x_n , i.e., the 2ⁿ sets $y_1 \cap \ldots \cap y_n$ where each y_i is x_i or $-x_i$. The sets u_1^{-1} , ..., u_m^{-1} are a partition of the universe, and for every $i \le n$, there is a $I \subseteq N_m$ such that $x_i = t_I(u_1 \dots u_n)$. Every formula $x_i = x_j$, $x_i = \Lambda$, $x_i = -x_j$, $x_i = x_j \cup x_k$ can be replaced by a conjunction of formulas $u_k = \Lambda$. Hence $x_i \neq x_j$ can be replaced by a disjunction of formulas $u_k \neq \Lambda$. The formula $x_i = \{x_j\}$ means that exactly one bit of x_i equals $\{x_i\}$ and the others are empty; so if $x_i = t_1$, $x_i = \{x_i\}$ can be replaced by a disjunction of formulas $u_k = \{x_j\} \& \overline{\Lambda}_{\ell \in I \setminus \{k\}} \quad u_{\ell} = \Lambda'$, k ranging over I. By a suitable choice of J, we have $x_i = t_j$. If we transform the result of these replacements into disjunctive form, φ becomes a disjunction of formulas each of which is a conjunction of formulas $u_k \neq \Lambda$, $u_k = \Lambda$, $u_k = \{t_j\}$. (This transformation goes back to an idea of V. Ja. Kreinovič, cf. KREINOVIC/ OSWALD [2]). We may suppose that φ is one of these conjunctions and that for every k \leq m, at least one of $u_k \neq \Lambda$, $u_k = \Lambda$ is a factor of φ . Our decision method stops here in each of the following cases :

- I. if φ is a propositional contradiction (i.e., for some $k \le m$, both $u_k \ne \Lambda$ and $u_k = \Lambda$ are factors);
- II. if for some $k \leq m$ and some $J \subseteq N_m$, both $u_k = \Lambda$ and $u_k = \{t_j\}$ are factors.

In both cases, there is no partition of the universe satisfying φ . Otherwise, by a suitable permutation of subscripts φ becomes $(\bigwedge_{i \leq r} u_i \neq \Lambda) \& (\bigwedge_{r \leq i \leq m} u_i = \Lambda) \& \psi, \psi$ being a conjunction of formulas of the form $u_i = \{t_J\}$, where $i \leq r$ and $J \subseteq N_m$. Since u_1 , ..., u_r are by themselves a partition of the universe, we omit $\bigwedge_{r \leq i \leq m} u_i = \Lambda$ and in each factor $u_i = \{t_J\}$ of ψ , we replace t_J by t_J , where $J' = N_r \cap J$. Thus φ becomes $(\bigwedge_{i \leq r} u_i \neq \Lambda) \& \psi, \psi$ being a conjunction of formulas $u_i = \{t_J\}$, where $i \leq r$ and $J \subseteq N_r$. Again, our decision method stops here in each of the following cases :

- III. if for some $i \leq r$ and some $J, K \subset N_r$ such that $J \neq K$, both $u_i = \{t_J\}$ and $u_i = \{t_K\}$ are factors of ψ . (Notice that $J \neq K$ implies $t_J \neq t_K$);
- IV. if for all $i \le r$, ψ has a factor $u_i = \{t_J\}$. (Notice that the union of the u_i 's is infinite).

Otherwise for every $i \leq r$, ψ has at most one factor $u_i = \{t_J\}$, and there is at least one $i \leq r$ such that ψ has no factor $u_i = \{t_J\}$. Let $I = \{i \in N_r/\psi$ has no factor $u_i = \{t_J\}\}$. In *M*, every finite partition of the universe has exactly one cofinite part. If $u_i = \{t_J\}$, then u_i , being a singleton, is not cofinite. Assume u_i to be the cofinite part in the partition u_1, \ldots, u_r . Hence $i \in I$. Delete the factor $u_i \neq \Lambda$. If $u_k = \{t_J\}$ is any factor of ψ such that $i \in J$, then replace t_J by $-t_{J'}$, where $J' = N_r \setminus J$. If this is done for every $i \in I$, each resulting formula φ , possibly after a change of subscripts, satisfies the hypothesis of 3.6. Since 3.6iii states a decidable property of φ , the decision process is complete. q.e.d.

§ 4. A more usable decision method.

Henceforth we let $\psi(x_1, \ldots, x_n)$ be a conjunction of some formulas ψ_{ij} , each ψ_{ij} being either $x_i \in x_j$ or $x_i \notin x_j$.

4.1. Definition.

- a) We say that ψ_{ij} and $\psi_{k\ell}$ are similar and write $\psi_{ij} \sim \psi_{k\ell}$ if both are atomic or both are negations.
- b) We call ψ ordered if whenever ψ has factors ψ_{ik} and ψ_{jk} such that $k \le i, j$, then $\psi_{ik} \sim \psi_{jk}$.

- c) We call ψ orderable if ψ can be ordered by a permutation of subscripts.
- d) We say that ψ is a restriction of ψ and that ψ is an extension of ψ if ψ is a conjunction all of whose factors are factors of ψ .
- e) We call ψ n complete if ψ is of the form $\bigwedge_{i,j \leq n} \psi_{ij}$. f) We call ψ complete if ψ is n-complete for some n.

Let ψ be n-complete. We denote by $\overline{\psi}$ the matrix whose elements $\overline{\psi}_{i\,j}$ are \in or \notin according as ψ_{ij} is $x_i \in x_j$ or $x_i \notin x_j$ (i, $j \le n$). We call a column of $\overline{\psi}$ homogeneous if it consists solely of ∈'s or solely of ∉'s. We say that columns jandk of $\overline{\psi}$ are equal if $\psi_{ij} \sim \psi_{ik}$ for all i \leq n. The following lemma states some immediate consequences of these definitions.

4.2. Lemma. a) ψ is ordered iff every restriction of ψ is ordered.

- b) ψ is orderable iff every restriction of ψ is orderable.
- c) If ψ is complete and orderable, then $\overline{\psi}$ has a homogeneous column.

If ψ is n-complete and M is a subset of N_n , we denote by ψ_M the formula $\Lambda_{i,j\in M} \psi_{ij}$. From 4.2 and the above definitions we conclude :

4.3. Lemma.

If ψ is n-complete, then the following are equivalent : (i) ψ is orderable. (ii) For every $M \subseteq N_n$, ψ_M is orderable. (iii) For every $M \subseteq N_n$, $\overline{\psi_M}$ has a homogeneous column.

4.4. Definition.

- a) We call {a₁, ..., a_n} quasi-transitive if for every $i \leq n$, either $|a_i| \subset \{a_1, \dots, a_n\}$ or $|a_i| \supset |M| \setminus \{a_1, \dots, a_n\}$.
- b) We call ψ regular if ψ is complete and orderable and no two columns are equal.

Now we suppose that ψ is n-complete. We let ψ be ψ_M for $M = N_{n-1}$. We further let $I(\psi) = \{i < n/\psi_{in} \text{ is } x_i \in x_n\}$ and $I'(\psi) = \{i < n/\psi_{in} \text{ is } x_i \notin x_n\}$. We finally let

$$S(\psi; a_1, \dots, a_{n-1}) = \{b \in |M| / M \models \psi [a_1 \dots a_{n-1} b] \}.$$

It is clear from this definition that $S(\psi;a_1,\ldots,a_{n-1}) \neq \phi$ implies that ψ^{-1} is satisfied by a_1, \ldots, a_{n-1} .

4.5. Lemma.

Let , be ordered and n-complete, and let $a_1,\ \ldots,\ a_{n-1}$ be individuals satisfying $\psi^-.$ Then the following hold :

- a) $S(\psi;a_1, \ldots, a_{n-1})$ is infinite.
- b) Let furthermore ψ be regular and $\{a_1, \ldots, a_{n-1}\}$ be quasi-transitive, and let a_n be the least element of $S(\psi; a_1, \ldots, a_{n-1})$. Then a_n is distinct from a_1, \ldots, a_{n-1} , and either $|a_n| = \{a_i/i \in I(\psi)\}$ or $|a_n| = |M| \setminus \{a_i/i \in I'(\psi)\}$; and $\{a_1, \ldots, a_n\}$ is quasi-transitive.

Proof.

We omit the parameters of S, I and I'. From the definition of S, it is clear that $b \in S$ holds iff the following three conditions are satisfied : (i) $M \models \psi_{nn}[b]$. (ii) For every i < n, $a_i \in {}^M b$ iff ψ_{in} is $x_i \in x_n$. (iii) For every $j < n, b \in ^{M} a_{j}$ iff ψ_{nj} is $x_{n} \in x_{j}$. Condition (ii) is equivalent to (ii') : $\{a_i/i \in I\} \subset |b| \subset |M| \setminus \{a_i/i \in I'\}$. As ψ is ordered, if j < n, then $\psi_{nj} \sim \psi_{jj}$. Hence (iii) is equivalent to (iii') : For every $j < n, b \in {}^{M} a_{j}$ iff a_{j} is cofinite. Now (a) holds since (i) and (ii') are satisfied by an infinite number of individuals b and (iii') excludes only a finite number of them. Next we prove (b), assuming that ψ_{nn} is $x_n \notin x_n$ (the proof is quite analogous if ψ_{nn} is $x_n \in x_n$). We let c be the individual determined by $|c| = \{a_i / i \in I\}$ (cf. 2.4e). By the definition of \in^M , c is the least b satisfying (i) and (ii'). Assume j < n. If a_j is cofinite, then $a_j \neq c$ since c is finite. If a_j is finite, then ψ_{jj} is $x_j \notin x_j$, hence ψ_{nj} is $x_n \notin x_j$. Since ψ is regular by hypothesis, columns j and n are not equal. So there is some i < n such that ψ_{ij} and ψ_{in} are not similar. Hence for this i, exactly one of $a_i \in M^{M} a_j$ and $a_i \in M^{M} c$ holds; so $a_j \neq c$. Therefore, c is distinct from a_1, \ldots, a_{n-1} . Moreover, since $\{a_1, \ldots, a_{n-1}\}$ is quasitransitive, either $|a_i| \subset \{a_1, \dots, a_{n-1}\}$ or $|a_i| \supset |M| \setminus \{a_1, \dots, a_{n-1}\}$

for every i < n. It follows that $c \in^{M} a_{1}$ iff a_{1} is cofinite. Hence c satisfies also (iii'), so $c = a_{n}$. Finally, from the definition of c and the hypothesis that $\{a_{1}, \ldots, a_{n-1}\}$ is quasi-transitive, it immediately follows that $\{a_{1}, \ldots, a_{n}\}$ is quasi-transitive. q.e.d.

Let ψ be ordered and n-complete. We define an algorithm, denoted by B, which produces a sequence a_1, \ldots, a_n , denoted by $B(\psi)$, such that ψ is satisfied by a_1, \ldots, a_n . The definition is by induction on n. If n = 0 (meaning that ψ is the empty conjunction), then we let $B(\psi)$ be the empty sequence. If n > 0 and $B(\overline{\psi}) = \langle a_1, \ldots, a_{n-1} \rangle$, we let a_n be the least element of $S(\psi; a_1, \ldots, a_{n-1}) \setminus \{a_1, \ldots, a_{n-1}\}$ (this set being nonempty by 4.5a). We then set $B(\psi) = \langle a_1, \ldots, a_n \rangle$.

4.6. Lemma. Let $\langle a_1, \dots, a_n \rangle = B(\psi)$. a) a_1, \dots, a_n are distinct. b) $M \models \psi[a_1 \dots a_n]$. c) If ψ is regular, then $\{a_1, \dots, a_n\}$ is quasi-transitive.

Proof.

In view of 4.5, the proof by induction on n is immediate. q.e.d.

4.7. <u>Theorem</u>.
The following are equivalent :
(i) ψ is orderable.

(ii) ψ is satisfiable.

(iii) ψ is satisfiable by a sequence of n distinct individuals.

Proof.

Clearly, we may assume ψ to be complete. By 4.6a, (i) implies (iii). Trivially, (iii) implies (ii). In order to show that (ii) implies (i), we let a_1, \ldots, a_n be any individuals satisfying ψ . We assume $a_1 \leq \ldots \leq a_n$. Then by 2.4c and 2.4d, ψ is ordered. q.e.d. Example.

Let ψ be $x_1 \notin x_1 \& x_2 \notin x_2 \& x_1 \in x_2 \& x_2 \in x_1$. Then, as remarked in the introduction, $N_2F \models \exists x_1 \exists x_2 \psi$ since for $x_1 = USC(V)$ and $x_2 = \{USC(V)\}, \psi$ is satisfied, and since the existence of USC(V) is provable in N_2F . However, $\exists x_1 \exists x_2 \psi$ is not a theorem of NF_2 . To see this, we notice that $\overline{\psi}$ is

 $\left(\begin{array}{cc} \notin & \in \\ \in & \notin \end{array}\right)$

By 4.3, ψ is not orderable since $\overline{\psi}$ has no homogeneous column; so by 4.7, ψ is not satisfiable in M. By 2.2, $\exists x_1 \exists x_2 \psi$ is not a theorem of NF₂.

4.8. Definition.

Let ψ be n-complete, and let $\chi(x_1 \ \dots \ x_n)$ be a conjunction of formulas of the form $x_i = t(x_1 \ \dots \ x_n)$, each term t containing exactly one of the function signs Λ , -, \cup , {}. We say that ψ is c ompatible with χ if the following four conditions holds: (i) If for some $j \le n, x_j = \Lambda$ is a factor of χ , then for every $i \le n, \psi_{ij}$ is $x_i \notin x_j$. (ii) If for some $j, k \le n, x_j = -x_k$ is a factor of χ , then for every $i \le n, x_j = x_k \cup x_j$ and ψ_{ik} are not similar. (iii) If for some $j, k, \ell \le n, x_j = x_k \cup x_\ell$ is a factor of χ , then for every $i \le n, \psi_{ij}$ is a factor of χ , then for every $i \le n, \psi_{ij}$ is a factor of χ , then for every $i \le n, \psi_{ij}$ is a factor of χ , then for every $i \le n, \psi_{ij}$ is a factor of χ , then for every $i \le n, \psi_{ij}$ is a factor of χ , then for every $i \le n, \psi_{ij}$ is a factor of χ , then for every $i \le n, \psi_{ij}$ is a factor of χ , then for every $i \le n, \psi_{ij}$ is a factor of χ , then $j \ne k$ and for every $i \le n, \psi_{ij}$ is $x_i \in x_j$ iff i = k.

4.9. Lemma.

- a) If ψ & $_{\chi}$ is satisfied by a sequence of distinct individuals $a_1,$..., $a_n,$ then ψ is compatible with $_{\chi}.$
- b) Let ψ be n-complete and compatible with χ . Let $\{a_1, \ldots, a_n\}$ be a quasitransitive set of individuals such that ψ is satisfied by a_1, \ldots, a_n . Then χ is satisfied by a_1, \ldots, a_n .

Proof.

- a) is an immediate consequence of the axioms A2 through A5.
- b) Clearly we may assume χ to be either one of $x_1 = \Lambda$, $x_1 = -x_2$, $x_1 = \{x_2\}$, $x_1 = x_1 \cup x_1$ (i, $j \le n$). We only prove the last case, which is the most

interesting one. We let M = {1,i,j} , P = {1,i} , and Q = {i,j}. First, we show that

(1) $\psi_{11} \text{ is } x_1 \notin x_1 \text{ iff } \psi_{11} \text{ and } \psi_{jj} \text{ are } x_i \notin x_i \text{ and } x_j \notin x_j,$ respectively.

For assume that ψ_{11} is $x_1 \notin x_1$ and, e.g., ψ_{11} is $x_i \in x_i$ (whence $i \neq 1$). Since ψ is compatible with x, ψ_{1i} and ψ_{11} are $x_1 \notin x_i$ and $x_i \in x_1$, respectively. Hence by 4.2c, ψ_p is not orderable. In view of 4.3, this implies that ψ is not orderable. But since ψ is, by hypothesis, satisfiable, it is orderable by 4.7. Or assume ψ_{11} , ψ_{1i} , ψ_{jj} to be $x_1 \in x_1$, $x_i \notin x_i$, $x_j \notin x_j$, respectively (whence $i \neq 1, j \neq 1$). Then compatibility rules out that ψ_{1i} and ψ_{1j} are $x_1 \notin x_i$ and $x_1 \notin x_j$. Assume ψ_{1i} to be $x_1 \in x_i$ (compatibility), $i \neq j$ (since ψ_{1i} is $x_i \notin x_i$), ψ_{j1} is $x_j \in x_1$ (orderability of ψ_p), ψ_{1j} is $x_i \in x_j$ (compatibility), $i \neq j$ (since ψ_{1i} is $x_i \notin x_i$), ψ_{j1} is $x_j \in x_1$ (orderability). But now, we again have a contradiction since ψ_Q , and hence ψ , is not orderable. Now we have to prove that for every individual a,

(2) $a \in {}^{M} a_{1}$ holds iff at least one of $a \in {}^{M} a_{i}$, $a \in {}^{M} a_{j}$ holds. Compatibility implies that (2) holds for every $a \in \{a_{1}, \ldots, a_{n}\}$. It remains to prove (2) for $a \notin \{a_{1}, \ldots, a_{n}\}$. If a_{1} is finite, then by (1) and 2.4b, a_{i} and a_{j} are both finite. Since $\{a_{1}, \ldots, a_{n}\}$ is quasi-transitive, $|a_{1}|$, $|a_{i}|, |a_{j}|$ are all subsets of $\{a_{1}, \ldots, a_{n}\}$; hence (2) holds also for $a \notin \{a_{1}, \ldots, a_{n}\}$. If a_{1} is cofinite, then by (1) and 2.4b, one of a_{i} and a_{j} , say a_{i} , is cofinite. Quasi-transitivity implies that $|a_{1}|$, $|a_{i}| \supset |M| \setminus \{a_{1}, \ldots, a_{n}\}$. Hence (2) holds since for every $a \notin \{a_{1}, \ldots, a_{n}\}$, $a \in {}^{M} a_{1}$ and $a \in {}^{M} a_{i}$. q.e.d.

4.10. Definition.

We call $\{a_1, \ldots, a_n\}$ extensional if for all $i, j \le n$ such that $i \ne j$, there is some $k \le n$ such that exactle one of $a_k \in \overset{M}{\underset{i}{}} a_i$ and $a_k \in \overset{M}{\underset{j}{}} a_j$ holds.

4.11. Lemma. For every individual a, $\{b \in |M| / b \le a\}$ is extensional.

Proof.

We let $M_a = \{b \in |M|/b \le a\}$ and assume b_1 , b_2 to be distinct members of M_a . We distinguish between two cases and use 2.4c and 2.4d. I. Let, e.g., b_1 be finite and b_2 be cofinite. If $b_1 < b_2$, then not $b_2 \in^M b_1$, but $b_2 \in^M b_2$. If $b_2 < b_1$, then $b_1 \in^M b_2$ but not $b_1 \in^M b_1$. II. If b_1 and b_2 are both finite or both cofinite, let c be any individual such that, e.g., $c \in^M b_1$ but not $c \in^M b_2$. Then $c < b_1$ if b_1 is finite, and $c < b_2$ if b_2 is cofinite, hence $c \in M_a$ in any case. q.e.d.

We let h be the recursive function defined by $h(n) = 2^{h'(n)} \cdot g(2^{h'(n)})$, where h'(n) = (n+1)(n+2) and where g is the recursive function defined in § 3. In view of the REDUCTION THEOREM 2.6 and since any basic conjunction with respect to $\{\in\}$ is of the form $\psi \&_{\chi} \& \delta_n$, the following theorem again implies that the set of the existential theorems of NF₂ is decidable.

4.2. Theorem.

The existential sentence $\exists x_1 \dots \exists x_n (\psi \& \chi \& \delta_n)$ is a theorem of NF₂ iff there is a number $m \leq h(n)$ and a regular extension $\psi^+(x_1 \dots x_m)$ of ψ such that ψ^+ is compatible with χ .

Proof.

We denote $\exists x_1 \cdots \exists x_n (\psi \& \chi \& \delta_n)$ by σ .

1. Let ψ^+ be any regular extension of ψ which is m-complete and compatible with χ . We let $B(\psi^+) = \langle a_1, \ldots, a_m \rangle$. By 4.6, a_1, \ldots, a_m are distinct and satisfy ψ^+ , and $\{a_1, \ldots, a_m\}$ is quasi-transitive. By 4.9b, a_1, \ldots, a_m also satisfy χ . Hence $\psi \& \chi \& \delta_n$ is satisfied by a_1, \ldots, a_n . Thus σ holds in M; so NF₂ $\models \sigma$ by 2.2.

2. Conservely, suppose that σ is a theorem of NF₂. We first prove the existence of ψ^+ without paying attention to the upper bound for m. Since NF₂ $\models \sigma$, $M \models \sigma$ by 2.2. Let a_1, \ldots, a_n be any individuals satisfying $\psi \& \chi \& \delta_n$. We let

(1) $r = \max \{a_1, \ldots, a_n\},$

and we let a_{n+1} , ..., a_{r+1} be an enumeration of $\{a \in |M|/a \leq r\} \setminus \{a_1, \ldots, a_n\}$. Let m = r + 1, and let $\psi^+(x_1 \ldots x_m)$ be the uniquely determined extension of ψ which is satisfied by a_1, \ldots, a_m . Since $\{a_1, \ldots, a_m\} = \{b \in |M|/b \leq a_m\}$, the set $\{a_1, \ldots, a_m\}$ is extensional by 4.11. Hence ψ^+ is regular. Since x_{n+1}, \ldots, x_m do not occur in χ , χ is also satisfied by a_1, \ldots, a_m . By 4.9a, ψ^+ is compatible with χ .

We finally show that in (1), one may assume that

(2)
$$r \le h(n) - 1$$
,

To see this, we inspect the proof of THEOREM 3.7 and apply 3.5a. In the proof of 3.7, each factor $x_i \in x_j$ or $x_i \notin x_j$ of ψ is replaced by $(-\{x_i\}) \cup x_j = -\Lambda$ and $(-\{x_i\}) \cup x_j \neq -\Lambda$, respectively. The result is then transformed into a disjunction of formulas of the form

(3)
$$\exists x_{n+1} \cdots \exists x_k (\chi' \& \delta_k),$$

where χ' is a formula of the same type as χ but may contain any of the variables x_1, \ldots, x_k . Since ψ & χ & δ_n is satisfiable, at least one the formulas (3) is satisfiable; conversely, whenever a_1, \ldots, a_k satisfy $\chi' \& \delta_k$ in this particular formula, then a_1, \ldots, a_n satisfy $\psi \ \& \ \chi \ \& \ \delta_n$. In the transformation process, we have to introduce new variables x_{n+1} , ..., x_{2n} for $\{x_1\}$, ..., $\{x_n\}$, and new variables x_{2n+1} , ..., x_{3n} for $\{x_1\}$, ..., $\{x_n\}$. We may have to add $x_{3n+1} = \Lambda$ and $x_{3n+2} = -x_{3n+1}$. Whenever ψ_{ij} is $x_i \notin x_j$, we need an additional variable for $x_{2n+i} \cup x_j$ (which stands for $(-\{x_i\}) \cup x_j$). Hence we may assume that in (3), $k \le n^2 + 3n + 2 = (n+1)(n+2)$. Now let χ' & δ_k in (3) be satisfiable. Then the proof of 3.7 shows that there is some conjunction φ of the form $\Lambda_{i \le p} \varphi_i$, where $p = 2^k$ and each φ_i is either $u_i \neq \Lambda$ or $u_i = \Lambda$, or $u_i = \{t_J\}$ for some $J \subseteq N_p$, satisfiable by a partition of the universe. Conversely, from every partition satisfying this particular φ , a sequence a_1, \ldots, a_k satisfying $\chi' \& \delta_k$ can be recovered. By 3.5a, there is a partition b_1, \ldots, b_p satisfying φ such that each finite part does not exceed g(p). Let b_1 , \ldots , b_q be the finite nonempty parts (whence q < p), and let b_{q+1} be the unique cofinite part. From 3.5a, we can actually conclude that $b_i \leq g(q)$ for every $i \leq q$. From 2.4g and 2.4j, we conclude

that $b_{q+1} = 1 + \Sigma_{i \leq q} b_i$ and that $a_j \leq 1 + \Sigma_{i \leq q} b_i$ for all $j \leq k$, where a_1, \ldots, a_k is the solution of $\chi' \& \delta_k$ recovered from b_1, \ldots, b_p . Thus if $\psi \& \chi \& \delta_n$ is satisfiable at all, it is satisfiable by individuals not exceeding 1 + q.g(q). Now (2) follows from $k \leq (n+1)(n+2)$, $p = 2^k$, q < p, $r \leq 1 + q.g(q)$ and from the fact that $g(i) \geq 2$ for every $i \in \mathbb{N}$. q.e.d.

§ 5. Some examples.

In this section, we omit the reference to M in the function signs and use the common notation V for - A.

1) The sentence $\exists x_1 \exists x_2(x_1 \neq x_2 \& x_1 = \{-\{x_2 \cup \{x_1\}\}\})$ is a theorem of NF₂. In order to see this, we first notice that $x_1 = \{-\{x_2 \cup \{x_1\}\}\}$ is equivalent in NF₂ to $\exists x_3 \exists x_4 \exists x_5 \exists x_6(x_3 = \{x_1\} \& x_4 = x_2 \cup x_3 \& x_5 = \{x_4\} \& x_6 = -x_5 \& x_1 = \{x_6\})$. We shall look for a 6-complete regular ψ which is (an extension of the empty conjunction and) compatible with $x_3 = \{x_1\} \& x_4 = x_2 \cup x_3$ $\& x_5 = \{x_4\} \& x_6 = -x_5 \& x_5 = \{x_4\} \& x_6 = -x_5 \& x_1 = \{x_6\}$. Disregarding the factor $x_4 = x_2 \cup x_3$, we see that any 6-complete ψ is compatible with the four remaining factors iff $\overline{\psi}$ is of the following form (the elements marked by dots are arbitrary) :

$$\overline{\psi} = \begin{pmatrix} \not \in \cdot \in \cdot \notin \cdot \in \\ \not \in \cdot \notin \cdot \notin \cdot \in \\ \not \in \cdot \notin \cdot \notin \cdot \in \\ \not \in \cdot \notin \cdot \notin \cdot \in \\ \not \in \cdot \notin \cdot \notin \cdot \in \\ \not \in \cdot \notin \cdot \notin \cdot \in \\ \not \in \cdot \notin \cdot \notin \cdot \in \\ \not \in \cdot \notin \cdot \notin \cdot \in \\ \end{pmatrix}$$

The orderability conditions are $a_6 < a_1$, $a_1 < a_3$, $a_4 < a_5$, $a_4 < a_6$ (by 2.4c and 2.4d). They reduce to $a_4 < a_6 < a_1 < a_3$ and $a_4 < a_5$. We try our luck by arranging the variables x_1 , ..., x_6 in the order x_4 , x_5 , x_6 , x_1 , x_2 , x_3 . Then $\overline{\psi}$ becomes

	×4	^x 5	^х 6	^x 1	^x 2	x ₃
x ₄	•	€	¢	¢	•	¢
x ₅		¢	e	∉	•	¢
^x 6		∉	E	€	•	¢
^x 1	•	¢	€	∉	•	∈
x ₂	•	∉	€	∉	•	∉
x ₃	•	∉	E	¢	•	∉

After this permutation, ψ has become ordered. (Every column is homogeneous down from the diagonal). We try to complete ψ in a way that it remains ordered and becomes compatible with $x_4 = x_2 \cup x_3$. Since up to now $\overline{\psi}$ has no homogeneous column, we try by taking \in for the column of x_4 . Then compatibility with $x_4 = x_2 \cup x_3$ requires us to take \in for the column of x_2 with the exception of $\overline{\psi}_{12}$. Since the column of x_4 consists solely of \in 's, we have to take \notin for $\overline{\psi}_{12}$ to make ψ regular. Then by 4.12, we see that the given sentence is a theorem of NF₂. If we want to find individuals satisfying the matrix of the given sentence, we apply the algorithm B to ψ . B produces in turn : $a_4 = V$, $a_5 = \{a_4\} = \{V\}$, $a_6 = -\{a_4\} = -\{V\}$, $a_1 = \{a_6\} = \{-\{V\}\}$, $a_2 = -\{a_1\} = -\{\{-\{V\}\}\}\}$, $a_3 = \{a_1\} = \{\{-\{V\}\}\}\}$. Now if the matrix of the given existential sentence is denoted by φ , we have $M \models \varphi[a_1a_2]$ and NF₂ $\models x_1 = \{-\{V\}\}\} \ll x_2 = -\{\{-\{V\}\}\} \rightarrow \varphi$. Note that since every individual of M corresponds to a term of L, the algorithm B can be applied to produce terms which in NF₂ provably satisfy the given basic conjunction.

2) If ψ is $x_1 \in x_1 \& x_1 \notin x_3 \& x_2 \in x_1 \& x_3 \notin x_1 \& x_3 \notin x_2$, and χ is $x_1 = x_2 \cup x_3$, then $\exists x_1 \exists x_2 \exists x_3(\psi \& \chi \& \delta_3)$ is a theorem of NF₂. It is easy to see that there is only one 3-complete extension of ψ which is orderable and compatible with χ ; for this ψ ,

$$\overline{\psi} = \begin{pmatrix} \in & \in & \not \in \\ \in & \in & \not \in \\ \not \in & \not \in & \not \in \\ \not \notin & \not \in & \not \in \end{pmatrix}$$

Then columns of 1 and 2 are equal, so ψ is not regular. If we introduce a new variable x_4 , then by arranging the variables in the order x_4 , x_3 , x_1 , x_2 we get a regular extension which is compatible with χ :

	x ₄	x ₃	^x 1	^x 2
x ₄	¢	€	E	¢
x ₃	∉	¢	¢	¢
x ₁	∉	∉	€	€
x ₂	∉	∉	∈	∈

Hence by 4.12, $\exists x_1 \exists x_2 \exists x_3 (\psi \& \chi \& \delta_3)$ is a theorem of NF₂. Applying the algorithm B, we obtain $a_4 = \Lambda$, $a_3 = \{a_4\} = \{\Lambda\}$, $a_1 = -\{a_3\} = -\{\{\Lambda\}\}$, $a_2 = -\{a_3, a_4\} = -\{\{\Lambda\}, \Lambda\}$.

3) $\exists x_1 \exists x_2(x_1 = -x_2 \& x_1 = \{x_2 \cup \{x_1\}\})$ is not a theorem of NF₂. To see this, we first denote the matrix of the given sentence by χ . Then χ is equivalent in NF₂ to $\exists x_3 \exists x_4 \chi', \chi'$ being $x_1 = -x_2 \& x_3 = \{x_1\} \& x_4 = x_2 \cup x_3 \& x_1 = \{x_4\}$. Compatibility requires $\overline{\psi}_{11}$ and $\overline{\psi}_{44}$ to be \notin and $\overline{\psi}_{14}$ and $\overline{\psi}_{41}$ to be \in . Thus for M = {1,4}, ψ_M is not orderable.

References

- Boffa M., Crabbé M., Les théorèmes 3-stratifiés de NF₃, Comptes Rendus de l'Académie des Sciences de Paris 280 (1975), p. 1657-1658.
- 2. Kreinovic V.J., Oswald U., A decision method for the universal theorems of Quine's New Foundations, to be published.
- Oswald U., Fragmente von "New Foundations" und Typentheorie, mimeographed, Swiss Federal Institute of Technology, Zürich 1976.

292, Nordstrasse, 8037 Zürich (Suisse).