A DECISION METHOD FOR THE EXISTENTIAL THEOREMS OF NF_{2}

Urs OSWALD
(Zürich)
§ 1. Introduction.
What is or what is not an existential sentence depends on the language used for a theory. It is natural to formulate NF_{2} in the language L with the nonlogical signs \in, Λ (empty set), - (complement), \cup (union), \{ \} (singleton set). By the method developped in § 3 of this paper, it is decidable whether any given existential sentence of L is a theorem of NF_{2} (THEOREM 3.7). The method is based on the existence of a model M of NF_{2} with the particular property of being embeddable in any model of NF_{2}. It is a direct consequence of this property that an existential sentence of L is a theorem of NF_{2} iff it nolds in M. Our method actually decides whetiner a given existential sentence holds in M.

The method developped in $\S 3$ is, however, utterly unusable in pratice. Therefore in §4, a second method is developped which is a decision method not by itself, but in view of the results of § 3, and which can be readily applied to a great many cases (THEOREM 4.12). For instance, let σ be $\exists x \exists y$ $(x \notin x \& y \notin y \& x \in y \& y \in x)$. Then σ is a theorem of $N_{2} F$ (just let $x=\operatorname{USC}(V)$ and $y=\{U S C(V)\})$ but not of NF_{2}. Or consider the sentences $\exists x \exists y(x \neq y \& x=\{-\{y \cup\{x\}\}\})$ and $\exists x \exists y(x=-y \& x=\{y \cup\{x\}\})$. Our method shows that the first is a theorem of NF_{2} while the second is not (cf. §5).

§ 2. Some prerequisites.

If formulated in $\mathrm{L}, \mathrm{NF}_{2}$ can be given by the following five axioms (Boffa [1]) : (A1) $\forall z(z \in x \leftrightarrow z \in y) \rightarrow x=y$. (A2) $\forall x(x \notin \Lambda)$. (A3) $\forall x(x \in-y \leftrightarrow x \notin y)$. (A4) $\forall x(x \in y \cup z \leftrightarrow x \in y v x \in z)$. (A5) $\forall x(x \in\{y\} \leftrightarrow x=y)$. We denote by \mathbb{N}_{0} the set of the nonnegative integers. We shall construct a model M of N_{2} with the universe $|M|=\mathbb{N}_{\mathrm{O}}$. For all $a, b \in \mathbb{N}_{0}$, we define $R(a, b)$ (intended to be ϵ^{M}) to hold iff either of the following conditions holds : (i) b is even and a is an exponent in the binary representation of $\frac{b}{2}$. (ii) b is odd and a is $n o t$ an exponent in the binary representation of $\frac{b-1}{2}$. Then the following can be easily proved (details are given in Oswald [3]) :
2.1. Lemma.
a) $\left\langle\mathbb{N}_{\mathrm{o}}, \mathrm{R}\right\rangle$ is a model of NF_{2} formulated in $=, \in$.
b) $\left\langle\mathbb{N}_{\mathrm{o}}, \mathrm{R}\right\rangle$ can be uniquely expanded to a model of NF_{2}.
c) Let M be the unique expansion described in (b). Then M can be isomorphically embedded in every model of NF_{2}.

We set $M=<|M|, \epsilon^{M}, \Lambda^{M},-^{M}, U^{M},\{ \}^{M}>$, where ϵ^{M} is R. The following lemma, a direct consequence of 2.1 c , is the base for our decision method.
2.2. Lemma.

If σ is an existential sentence of L, then σ is a theorem of NF_{2} iff it holds in M.
2.3. Definition.
a) We set $|a|=\left\{b \in|M| / b \in^{M} a\right\}$.
b) We call an individual a of $M f i n i t e$ if $|a|$ is finite, and cofinite if $|M| \backslash|a|$ is finite.
c) We say that a and b are d is join t if $|a|$ and $|b|$ are disjoint.
2.4. Lemma.

We let a and b be individuals of M.
a) a is finite or cofinite.
b) a ϵ^{M} a iff a is cofinite iff a is odd.
c) If b is finite, and $a \in^{M} b$, then $a<b$.
d) If b is cofinite, and $a \epsilon^{M} b$ does not hold, then $a<b$.
e) To every $M \subset|M|$ such that M or $|M| \backslash M$ is finite, there is exactly one individual a such that $|\mathrm{a}|=\mathrm{M}$.
f) $a<\{a\}^{M}$.
g) If a is finite, then $-M_{a}=1+a$,
h) $-{ }^{M} a<\{a\}$.
i) If $a<b$, then $\{a\}^{M}<\{b\}^{M}$.
j) If a and b are disjoint and finite, then $\mathrm{a} U^{M} \mathrm{~b}=\mathrm{a}+\mathrm{b}$.
k) If a and b are disjoint finite nonempty individuals, then $a<b$ iff $\max |a|<\max |b|$.

Proof.
(a) through (k) are immediate consequences of the definition of R and of 1.3. q.e.d.

By an individual, we shall henceforth mean and individual of M. We shall simply say that a formula is satisfiable if it is satisfiable in M.

We now let T be any first order theory. By δ_{n} we denote the formula $A_{i<j \leqslant n} x_{i} \neq x_{j}$. If p is any predicate sign of $L(T)$, we denote by $\mu(p)$ the number of places of p.

2.5. Definition.

Let P be a finite set of predicate signs of $L(T)$. We call φ a bas ic con junction with respect to P if φ is a formula of the form $\delta_{\mathrm{n}} \& \psi$, where ψ is a conjunction satisfying the following conditions : (i) Each factor (we call $\psi_{1}, \ldots, \psi_{n}$ the factors of $\psi_{1} \& \ldots \& \psi_{n}$) of ψ is either $p v_{1} \ldots v_{\mu(p)}$ or $-p v_{1} \ldots v_{\mu(p)}$ for some predicate sign $p \in P$ and variables $v_{1}, \ldots, v_{\mu(p)} \in\left\{x_{1}, \ldots, x_{n}\right\}$, or $x_{i}=t\left(x_{1} \ldots x_{n}\right)$ for some $\mathrm{i} \leqslant \mathrm{n}$ and some term t containing exactly one function sign. (ii) For every predicate sign $p \in P$ and any variables $v_{1}, \ldots, v_{\mu(p)} \in\left\{x_{1}, \ldots, x_{n}\right\}$, exactly one of $p v_{1} \cdots v_{\mu(p)}$ and $\rightarrow p v_{1} \cdots v_{\mu(p)}$ is a factor of $\psi \cdot$

The following theorem is easily by well known methods of predicate logic with identity.

2.6. Reduction theorem.

Let E_{p} be the set of the existential theorems of T containing no predicate signs other than those of P , and let B_{p} be the set of the existential theorems of T whose matrix is a basic conjunction with respect to P. Then E_{P} is decidable iff B_{P} is decidable.

We denote by \mathbb{N} the set of the positive integers (remember that \mathbb{N}_{0} is the set of the nonnegative integers). We denote by $F(\mathbb{N})$ the family of the finite subsets of \mathbb{N}. For all $I, J \in F(\mathbb{N})$, we define $I \prec J$ to hold iff $\max ((I \backslash J) \cup\{0\})<\max ((J \backslash I) \cup\{0\})$. By this definition, the following is true :
2.7. Lenma.
a) $I \prec J$ iff $(I \backslash J) \prec(J \backslash I)$.
b) If I and J are disjoint and nonenmpty, then $I \prec J$ iff $\max I<\max J$.
c) "ん" is a total ordering on $F(\mathbb{N})$.

We sinall let all subscripts rum through \mathbb{N}. We stick to the convention that $\varphi\left(x_{1} \ldots x_{n}\right)$ (or $t\left(x_{1} \ldots x_{n}\right)$) means a formula (or a term) all of whose free variables are among x_{1}, \ldots, x_{n}. For every $n \in \mathbb{N}_{\mathrm{o}}$, we denote by N_{n} the set $\{i \in \mathbb{N} / i \leqslant n\}$. Notice that N_{0} is the empty set ϕ.
§ 3. The decidability proof. 3.1. Definition.

Let f be a function with domain D and range R, where $D \subset N_{n}$ for some $n \in \mathbb{N}_{o}$ and $R \subset F(\mathbb{N})$.
a) We callfadmissible if $f(i) \subset N_{i-1}$ for every $i \in D$.
b) We call f wellar a l a g e d if f is admissible and satisfies
the following additional conditions : (i) For all i, $j \in D$, if $f(i) \prec f(j)$, then $i<j$. (ii) For all i, j such that $i<j$ and $j \in D$, if $k \notin D$ for every k such that $i \leqslant k<j$, then $i \in f(j)$.

The heart of the decidability proof of this paragraph is the fact that every admissible function can be well arranged. In order to make this statement precise, we set $U=D \cup\left(U_{i \in D} f(i)\right)$, and for any permutation p of the elements of U and any $M \subset U$, we let $P(M)=\{p(m) / m \in M\}$.

3.2. Lemma.

To every admissible function f there is a permutation p of the elements of U such that the following is true : (i) P^{-1} fp is well arranged. (ii) For all $i, j \in D$ such that $f(i)=f(j), i<j$ implies $p(i)<p(j)$.

Proof.

We say that an admissible function f is $k-a r r a n g e d$ if the following three conditions hold : (i) $k \in D \cup\{0\}$. (ii) $f \uparrow N_{k}$ is well arranged. (iii) For every $i \in D \cap N_{k}$ and every $j \in D \backslash N_{k}$, either $f(i)\langle f(j)$ or $f(i)=f(j)$. We now describe an algorithm by which, to any k-arranged function f which is not well arranged, a permutation p is constructed such that $P^{-1} \mathrm{fp}$ is $(k+\ell)$-arranged for some $\ell>0$, p preserving the order of any $i, j \in D$ such that $f(i)=f(j)$. Since every admissible function is 0 -arranged by definition, it can be well arranged by repeated use of this algorithm.

Now let f be k -arranged but not well arranged. We first note that $\mathrm{D} \backslash \mathrm{N}_{\mathrm{k}} \neq \phi$, as otherwise f would be well arranged. Let m be the least $i \in D \backslash N_{k}$ such that $f(i)$ is minimal (with respect to \prec) in $\left\{f(j) / j \in D \backslash N_{k}\right\}$, and let $\because=\{\{m\} \cup f(m)\} \backslash N_{k}$. Let $m_{1}<\ldots<m_{\ell}$ and $n_{1}<\ldots<n_{r}$ be enumerations of M and of $\left(U \backslash N_{k}\right) \backslash M$, respectively (notice that $\ell>0$). Let further $p_{1}<\ldots<p_{S}$ be an enumeration of U, and $p_{1}<\ldots<p_{t}$ one of $U \backslash N_{k}$. We let p be the permutation mapping $\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{s}}$ on $\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{t}}, \mathrm{m}_{1}, \ldots$, $n_{\ell}, n_{1}, \ldots, n_{r}$, in this order. Then, as can be easily proved, $p^{-1} f p$ is $(k+\ell)$-arranged and for all $i, j \in D$ such that $f(i)=f(j)$, if $i<j$, then $p(i)<p(j) . ~ q . e . d$.

We now define the term t_{J} inductively for every $J \in F(\mathbb{N})$, assuming u_{1}, u_{2}, \ldots to be variables of L.

3.3. Definition.

(i) If $J=\phi$, then t_{J} is Λ. (ii) If $J=\{j\}$, then t_{J} is u_{j}. (iii) $J=\{i, j\}$, where $i<j$, then t_{J} is $u_{i} \cup u_{j}$. (iv) If J has more than 2 elements and $j=\max J, J^{-1}=J \backslash\{j\}$, then t_{J} is $\left(t_{J^{-}}\right) \cup u_{j}$.

By this definition, if $J=\phi,\{5\},\{5,2\},\{3,5,1\},\{2,4,3,1\}$, then we obtain for t_{J} the terms $\Lambda, u_{5}, u_{2} \cup u_{5},\left(u_{1} \cup u_{3}\right) \cup u_{5}$, $\left(\left(u_{1} \cup u_{2}\right) \cup u_{3}\right) \cup u_{4}$.

3.4. Lemma.

Let J and K be subsets of N_{n}, and let a_{1}, \ldots, a_{n} be finite individuals.
a) $t_{J}\left[a_{1} \ldots a_{n}\right]<\left(-t_{J}\right)\left[a_{1} \ldots a_{n}\right]$.
b) $t_{J \cup K}\left[a_{1} \ldots a_{n}\right]=t_{J}\left[a_{1} \ldots a_{n}\right] u^{M} t_{K}\left[a_{1} \ldots a_{n}\right]$.
c) If J and K are disjoint, and a_{1}, \ldots, a_{n} are disjoint individuals, then $t_{J}\left[a_{1} \ldots a_{n}\right]$ and $t_{K}\left[a_{1} \ldots a_{n}\right]$ are disjoint.
d) If a_{1}, \ldots, a_{n} are disjoint, then $t_{J}\left[a_{1} \ldots a_{n}\right]=\Sigma_{j \in J} a_{j}$.
e) If a_{1}, \ldots, a_{n} are disjoint nonempty individuals such that $a_{1}<\ldots<a_{n}$, then $J<K$ implies $\left(-t_{J}\right)\left[a_{1} \ldots a_{n}\right]<t_{K}\left[a_{1} \ldots a_{n}\right]$.

Proof.

Since a_{1}, \ldots, a_{n} are finite, $t_{J}\left[a_{1} \ldots a_{n}\right]$ is finite; hence (a) follows from 2.4 g . (b) and (c) are immediate consequences of the definition of t_{J} and t_{K}. (d) follows from 2.4 j . In order to prove (e), by 2.4 b and 2.4 g it will suffice to prove that $J<K$ implies $t_{J}\left[a_{1} \ldots a_{n}\right]<t_{K}\left[a_{1} \ldots a_{n}\right]$. We omit the parameters a_{1}, \ldots, a_{n} and distinguish between three cases : I, II and III. I. J $=\phi . \mathrm{t}_{\mathrm{J}}=\Lambda^{M^{M}}=0$. Since $\phi\langle K, K \neq \phi$, and since a_{1}, \ldots, a_{n} are nonempty, t_{K} is nonempty, hence $t_{K}>0=t_{J}$. II. $J \neq \phi$ and J, K disjoint. By (c) just proved, t_{J} and t_{K} are disjoint. As they are nonempty, $\mathrm{t}_{\mathrm{J}}<\mathrm{t}_{\mathrm{K}}$ iff $\max \left|\mathrm{t}_{\mathrm{J}}\right|<\max \left|\mathrm{t}_{\mathrm{K}}\right|$ by 2.4 k . Let $j=\max J$ and $k=\max K$. Since $a_{1}<\ldots<a_{n}$ by $2.4 k$, max $\left|t_{J}\right|=\max \left|a_{j}\right|$ and $\max \left|\mathrm{t}_{\mathrm{K}}\right|=\max \left|\mathrm{a}_{\mathrm{k}}\right|$. Hence $\mathrm{t}_{\mathrm{J}}<\mathrm{t}_{\mathrm{K}}$ iff $\mathrm{a}_{\mathrm{j}}<\mathrm{a}_{\mathrm{k}}$ (again by 2.4k) iff $j<k$ iff $\mathrm{J} \prec K$ (by 2.7b). III. Now let J and K be arbitrary subsets of N_{n}
such that $J<K$. Then by 2.7a, $(J \backslash K)<(K \backslash J)$, and therefore $t_{J \backslash K}<t_{K \backslash J}$ since $J \backslash K$ and $K \backslash J$ are disjoint. By (a) and (b) of this lemma and by $2.4 j$, $t_{J}=t_{J \backslash K}+t_{J \cap K}$ and $t_{K}=t_{K \backslash J}+t_{J \cap K}$. Hence $t_{J}<t_{K}$. q.e.d.

We let φ be $\Lambda_{i \leqslant n} \varphi_{i}$ where each φ_{i} is either $u_{i} \neq \Lambda$, or $u_{i}=\left\{t_{J}\right\}$ or $u_{i}=\left\{-t_{J}\right\}$ for some $J \subset N_{n}$. We associate with φ a function f, defined on a subset of N_{n}, by : $f(i)=J$ if φ_{i} is $u_{i}=\left\{t_{J}\right\}$ or $u_{i}=\left\{-t_{J}\right\}$, f is not defined if φ_{i} is $u_{i} \neq \Lambda$. Let f be admissible. Then we define an algorithm, denoted by A, which produces a sequence a_{1}, \ldots, a_{n}, denoted by $A(\varphi)$, of singletons satisfying φ. The definition of A is by induction on n. If $n=1$, we let $a_{1}=\left\{\Lambda^{M}\right\}^{M}$. (Notice that φ_{1} is $u_{1} \neq \Lambda$ since f is admissible.) If $n>1$, we take for a_{n} either $\left\{a_{n-1}\right\}^{M}$ or $\left\{t_{J}\left[a_{1} \ldots a_{n-1}\right]\right\}^{M}$ or $\left\{-{ }^{M_{t}}{ }_{J}\left[a_{1} \ldots a_{n-1}\right]\right\}^{M}$, according as φ_{n} is $u_{n} \neq \Lambda$, $u_{n}=\left\{t_{J}\right\}$, or $u_{n}=\left\{-t_{J}\right\}$. (Since f is admissible, if φ_{n} is $u_{n}=\left\{t_{J}\right\}$ or $u_{n}=\left\{-t_{J}\right\}$, then $J \subset N_{n-1}$.) We let $g(n)$ be the recursive function defined on \mathbb{N} by $: g(1)=2$, $g(n)=2^{n \cdot g(n-1)}$ if $n>1$.

3.5. Lenma.

Let f be admissible, and let $A(\varphi)=\left\langle a_{1}, \ldots, a_{n}\right\rangle$.
a) $\max \left\{a_{1}, \ldots, a_{n}\right\} \leqslant g(n)$.
b) Assume furthermore that f is well arranged and satisfies the following condition : For all $i, k \in D$ such that $i<k \leqslant n$ and $f(i)=f(k), \varphi_{i}$ and ${ }^{\varphi} k$ are $u_{i}=\left\{t_{J}\right\}$ and $u_{i}=\left\{-t_{J}\right\}$, where $J=f(i)$. Then $a_{1}<\ldots<a_{n}$.

Proof.

In both cases, the proof is by induction on n.
a) $n=1: a_{1}=\left\{\Lambda^{M}\right\}^{M}=2 \cdot 2^{0}=2=g(1) . \quad n>1: a_{n}=\{b\}^{M}$ for some b such that $b \leqslant 1+\Sigma_{i<n} a_{i}$. By induction hypothesis (and since $g(n)$ is increasing),$b \leqslant 1+(n-1) g(n-1)$. By 2.4i, $a_{n} \leqslant 2.2^{1+(n-1) g(n-1)}=$ $2^{2+(n-1) g(n-1)} \leqslant 2^{n \cdot g(n-1)}=g(n)$.
b) $\mathrm{n}=1$: There is nothing to prove. $\mathrm{n}>1$: By induction hypothesis, $a_{1}<\ldots<a_{n-1}$. We distinguish cases I and II, again subdividing II into II_{1} and II_{2}.
I. If φ_{n} is $u_{n} \neq \Lambda$, then $a_{n}=\left\{a_{n-1}\right\}^{M}$, and $a_{n-1}<a_{n}$ follows from 3.4e. II. Let φ_{n} be $u_{n}=\left\{t_{K}\right\}$ or $u_{n}=\left\{-t_{K}\right\}$ for some $K \subset N_{n-1}$. II . If φ_{n-1}
is $u_{n-1} \neq \Lambda$, then $n-1 \in K$ since f is well arranged, Hence by $3.4 d, 3.4 a$, 2.4h and 2.4i, $a_{n-1} \leqslant \Sigma_{j \in J} a_{j}=t_{J}\left[a_{1} \ldots a_{n-1}\right]<-M_{J}\left[a_{1} \ldots a_{n-1}\right]<$ $\left.\left\{t_{J}\left[a_{1} \ldots a_{n-1}\right]\right\}^{M}<{ }_{i-M}^{M_{J}}\left[a_{1} \ldots a_{n-1}\right]\right\}^{M}$, and $a_{n-1}<a_{n}$ follows. II ${ }_{2}$. If ${ }_{n-1}$ is $u_{n-1}=\left\{t_{J}\right\}$ or $u_{n-1}=\left\{-t_{J}\right\}$ for some $J \subset N_{n-1}$, then $K \prec J$ would imply $n<n-1$ since f is well arranged. If $J=K$, then by the second condition imposed on f, φ_{n-1} and φ_{n} are $u_{n-1}=\left\{t_{K}\right\}$ and $u_{n}=\left\{-t_{K}\right\}$. Hence $a_{n-1}<a_{n}$ follows from 3.4a and 2.4i. q.e.d.

3.6. Theorem.

Let φ be $\Lambda_{i \leqslant n} \varphi_{i}$, each φ_{i} being one of $u_{i} \neq \Lambda$, $u_{i}=\left\{t_{J}\right\}$, $u_{i}=\left\{-t_{J}\right\}$ for some $J \subset N_{n}$. Let f be the function associated with φ as defined above. Then the following are equivalent :
(i) φ is satisfiable by disjoint finite individuals.
(ii) φ is satisfiable by distinct singletons.
(iii) After suitably renumbering u_{1}, \ldots, u_{n}, f is admissible and for all $i, k \in D$ such that $i<k \leqslant n$ and $f(i)=f(k)$, φ_{i} and φ_{k} are $u_{i}=\left\{t_{J}\right\}$ and $u_{k}=\left\{-t_{J}\right\}$, where $J=f(i)$.

Proof.

(i) \Rightarrow (iii) $:$ Let a_{1}, \ldots, a_{n} be disjoint finite individuals satisfying φ. Then a_{1}, \ldots, a_{n} are distinct since φ requires them to be nonempty. We may assume $a_{1}<\ldots<a_{n}$. Now suppose $j \in J=f(i)$. Then $a_{i}=\left\{t_{J}\left[a_{1} \ldots a_{n}\right]\right\}^{M}$ or $a_{i}=\left\{-M_{t_{J}}\left[a_{1} \ldots a_{n}\right]\right\}^{M}$, hence by $3.4 d, a_{j} \leqslant \Sigma_{k \in J} a_{k}=t_{J}\left[a_{1} \ldots a_{n}\right]$ and by 3.4a and 2.4f, $a_{j}<a_{i}$. Hence $j<i$. Assume further that $i, j \in D$, $i<k \leqslant n$, and $f(i)=f(k)=J$. If φ_{i} and φ_{k} were $u_{i}=\left\{t_{J}\right\}$ and $u_{k}=\left\{t_{J}\right\}$, or $u_{i}=\left\{-t_{J}\right\}$ and $u_{k}=\left\{-t_{J}\right\}$, then $a_{i}=a_{k}$ would follow. If φ_{i} and φ_{k} were $u_{i}=\left\{-t_{J}\right\}$ and $u_{k}=\left\{t_{J}\right\}$, then $a_{k}<a_{i}$ would follow by 3.4a and 2.4i, contradicting the assumption that $a_{1}<\ldots<a_{n} . \operatorname{Hence} \varphi_{i}$ and φ_{k} are $u_{i}=\left\{t_{J}\right\}$ and $u_{i}=\left\{-t_{J}\right\}$. (iii) \Rightarrow (ii) : In view of 3.2 , we may assume f to be well arranged. We let $A(\varphi)=\left\langle a_{1}, \ldots, a_{n}\right\rangle$. Then by the definition of A and by $3.5 b$, a_{1}, \ldots, a_{n} are distinct singletons satisfying φ_{0} (ii) \Rightarrow (i) : This is true because any distinct singletons are disjoint finite nonempty individuals. q.e.d.
3.7. Theorem.

It is decidable, for any closed existential formula σ of L, whether σ is a theorem of NF_{2}.

Proof.
In view of 2.2, we have to decide whether, given any open formula $\varphi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$ of $L, \exists x_{1} \ldots \exists x_{n}^{\varphi}$ is valid in M. Since $t_{1} \in t_{2}$ is equivalent to $\left(-\left\{t_{1}\right\}\right) \cup t_{2}=-\Lambda$ in $N F_{2}$, we may assume that φ does not contain the sign \in. By the REDUCTION THEOREM 2.6, we may further assume that φ is a basic conjunction with respect to the empty set of predicate signs, i.e., of the form $j_{n} \& x, x$ being a conjunction of formulas of the form $x_{i}=t\left(x_{1}, \ldots, x_{n}\right)$, where t is a term containing exactly one function sign.

It is now convenient to view x_{1}, \ldots, x_{n} not a variables but as sets, i.e. we shall henceforth "talk in $\operatorname{Th}(M)$ ". We let $m=2^{n}$, and we let u_{1}, \ldots, u_{m} be the 'bits' produced by x_{1}, \ldots, x_{n}, i.e., the 2^{n} sets $y_{1} \cap \ldots \cap y_{n}$ where each y_{i} is x_{i} or $-x_{i}$. The sets u_{1}, \ldots, u_{m} are a partition of the universe, and for every $i \leqslant n$, there is a $I \subset N_{m}$ such that $x_{i}=t_{I}\left(u_{1} \ldots u_{n}\right)$. Every formula $x_{i}=x_{j}, x_{i}=\Lambda, x_{i}=-x_{j}, x_{i}=x_{j} \cup x_{k}$ can be replaced by a conjunction of formulas $u_{k}=\Lambda$. Hence $x_{i} \neq x_{j}$ can be replaced by a disjunction of formulas $u_{k} \neq \Lambda$. The formula $x_{i}=\left\{x_{j}\right\}$ means that exactly one bit of x_{i} equals $\left\{x_{j}\right\}$ and the others are empty; so if $x_{i}=t_{I}, x_{i}=\left\{x_{j}\right\}$ can be replaced by a disjunction of formulas $u_{k}=\left\{x_{j}\right\} \& \Lambda_{\ell \in I \backslash\{k\}} u_{\ell}=\Lambda$, k ranging over I. By a suitable choice of J, we have $x_{j}=t_{J}$. If we transform the result of these replacements into disjunctive form, φ becomes a disjunction of formulas each of which is a conjunction of formulas $u_{k} \neq \Lambda, u_{k}=\Lambda, u_{k}=\left\{t_{J}\right\}$. (This transformation goes back to an idea of V. Ja. Kreînovič, cf. KREINOVIC/ OSWALD [2]). We may suppose that φ is one of these conjunctions and that for every $k \leqslant m$, at least one of $u_{k} \neq \Lambda, u_{k}=\Lambda$ is a factor of φ. Our decision method stops here in each of the following cases :
I. if φ is a propositional contradiction (i.e., for some $k \leqslant m$, both $u_{k} \neq \Lambda$ and $u_{k}=\Lambda$ are factors);
II. if for some $k \leqslant m$ and some $J \subset N_{m}$, both $u_{k}=\Lambda$ and $u_{k}=\left\{t_{J}\right\}$ are factors.

In both cases，there is no partition of the universe satisfying φ ．Other－ wise，by a suitable permutation of subscripts φ becomes（ $\Lambda_{i \leqslant r} u_{i} \neq \Lambda$ ）\＆ $\left(\Lambda_{r<i \leqslant m} u_{i}=\Lambda\right) \& \psi, \psi$ being a conjunction of formulas of the form $u_{i}=\left\{t_{J}\right\}$ ， where $i \leqslant r$ and $J \subset N_{m}$ ．Since u_{1}, \ldots, u_{r} are by themselves a partition of the universe，we omit $\Lambda_{r<i \leqslant m} u_{i}=\Lambda$ and in each factor $u_{i}=\left\{t_{J}\right\}$ of ψ ，we replace t_{J} by t_{J} ，where $J^{\prime}=N_{r} \cap J$ ．Thus φ becomes $\left(\Lambda_{i \leqslant r} u_{i} \neq \Lambda\right) \& \psi, \psi$ being a conjunction of formulas $u_{i}=\left\{t_{J}\right\}$ ，where $i \leqslant r$ and $J \subset N_{r}$ ．Again， our decision method stops here in each of the following cases ：

> III．if for some $i \leqslant r$ and some $J, K \subset N_{r}$ such that $J \neq K$ ，both $u_{i}=\left\{t_{J}\right\}$ and $u_{i}=\left\{t_{K}\right\}$ are factors of ψ 。（Notice that $\mathrm{J} \neq \mathrm{K}$ implies $\mathrm{t}_{\mathrm{J}} \neq \mathrm{t}_{\mathrm{K}}$ ）；

IV．if for all $\mathrm{i} \leqslant \mathrm{r}, \psi$ has a factor $\mathrm{u}_{\mathrm{i}}=\left\{\mathrm{t}_{\mathrm{J}}\right\}$ ．（Notice that the union of the u_{i}＇s is infinite）．

Otherwise for every $i \leqslant r, \psi$ has at most one factor $u_{i}=\left\{t_{J}\right\}$ ，and there is at least one $i \leqslant r$ such that ψ has no factor $u_{i}=\left\{t_{J}\right\}$ ．Let $I=\left\{i \in N_{r} / \psi\right.$ has no factor $\left.u_{i}=\left\{t_{J}\right\}\right\}$ ．In M ，every finite partition of the universe has exactly one cofinite part．If $u_{i}=\left\{t_{J}\right\}$ ，then u_{i} ，being a singleton，is not cofinite．Assume u_{i} to be the cofinite part in the partition u_{1}, \ldots, u_{r} ． Hence $i \in I$ ．Delete the factor $u_{i} \neq \Lambda$ ．If $u_{k}=\left\{t_{J}\right\}$ is any factor of ψ such that $i \in J$ ，then replace t_{J} by $-t_{J}$ ，，where $J^{\prime}=N_{r} \backslash J$ 。 If this is done for every $i \in I$ ，each resulting formula φ ，possibly after a change of subscripts， satisfies the hypothesis of 3.6 ．Since 3.6 iii states a decidable property of φ ，the decision process is complete．q．e．d．
§ 4．A more usable decision method．
Henceforth we let $\psi\left(x_{1}, \ldots, x_{n}\right)$ be a conjunction of some formulas $\psi_{i j}$ ，each $\psi_{i j}$ being either $x_{i} \in x_{j}$ or $x_{i} \notin x_{j}$.

4．1．Definition．
a）We say that $\psi_{i j}$ and $\psi_{k \ell}$ are s imilar and write $\psi_{i j} \sim \psi_{k \ell}$ if both are atomic or both are negations．
b）We call ψ ordered if whenever ψ has factors $\psi_{i k}$ and $\psi_{j k}$ such that $k \leqslant i, j$, then $\psi_{i k} \sim \psi_{j k}$.
c) We call ψ or derable if ψ can be ordered by a permutation of subscripts.
d) We say that ψ^{-}is a restriction of ψ and that ψ is an extens ion of ψ^{-}if ψ^{-}is a conjunction all of whose factors are factors of ψ.
e) We call $\psi \mathrm{n}-\mathrm{complete}$ if ψ is of the form $\Lambda_{i, j \leqslant n} \psi_{i j}$.
f) We call ψ complete if ψ is n-complete for some n.

Let ψ be n-complete. We denote by $\bar{\psi}$ the matrix whose elements $\bar{\psi}_{i j}$ are \in or \notin according as $\psi_{i j}$ is $x_{i} \in x_{j}$ or $x_{i} \notin x_{j}(i, j \leqslant n)$. We call a column of $\bar{\psi}$ homogeneous if it consists solely of \in 's or solely of \neq 's. We say that $c o l u m n s \quad j$ and k of $\bar{\psi}$ are equal if $\psi_{i j} \sim \psi_{i k}$ for all $i \leqslant n$. The following lenma states some immediate consequences of these definitions.
4.2. Lenma.
a) ψ is ordered iff every restriction of ψ is ordered。
b) ψ is orderable iff every restriction of ψ is orderable.
c) If ψ is complete and orderable, then $\bar{\psi}$ has a homogeneous column.

If ψ is n-complete and M is a subset of N_{n}, we denote by ψ_{M} the formula $\Lambda_{i, j \in M} \psi_{i j}$. From 4.2 and the above definitions we conclude :

4.3. Lemma.

If ψ is n-complete, then the following are equivalent : (i) ψ is orderable.
(ii) For every $M \subset N_{n}, \psi_{M}$ is orderable. (iii) For every $M \subset N_{n}, \psi_{M}$ has a homogeneous column.

4.4. Definition.

a) We call $\left\{a_{1}, \ldots, a_{n}\right\} \quad q u a s i-t r a n s i t i v e \quad$ if for every $i \leqslant n$, either $\left|a_{i}\right| \subset\left\{a_{1}, \ldots, a_{n}\right\}$ or $\left|a_{i}\right| \supset|M| \backslash\left\{a_{1}, \ldots, a_{n}\right\}$.
b) We call $\psi \quad$ regular if ψ is complete and orderable and no two columns are equal.

Now we suppose that ψ is n-complete. We let ψ^{-}be ψ_{M} for $M=N_{n-1}$. We
further let $I(\psi)=\left\{i<n / \psi_{i n}\right.$ is $\left.x_{i} \in x_{n}\right\}$ and $I^{\prime}(\psi)=\left\{i<n / \psi_{i n}\right.$ is $\left.x_{i} \notin x_{n}\right\}$. We finally let

$$
S\left(\psi ; a_{1}, \ldots, a_{n-1}\right)=\left\{b \in|M| / M \vDash \psi\left[a_{1} \ldots a_{n-1} b\right]\right\} .
$$

It is clear from this definition that $S\left(\psi ; a_{1}, \ldots, a_{n-1}\right) \neq \phi$ implies that ψ^{-} is satisfied by a_{1}, \ldots, a_{n-1}.

4.5. Lemma.

Let : be ordered and n-complete, and let a_{1}, \ldots, a_{n-1} be individuals satisfying ψ^{-}. Then the following hold :
a) $S\left(\psi ; a_{1}, \ldots, a_{n-1}\right)$ is infinite.
b) Let furthermore ψ be regular and $\left\{a_{1}, \ldots, a_{n-1}\right\}$ be quasi-transitive, and let a_{n} be the least element of $S\left(\psi ; a_{1}, \ldots, a_{n-1}\right)$. Then a_{n} is distinct from a_{1}, \ldots, a_{n-1}, and either $\left|a_{n}\right|=\left\{a_{i} / i \in I(\psi)\right\}$ or $\left|a_{n}\right|=|M| \backslash\left\{a_{i} / i \in I^{\prime}(\psi)\right\} ;$ and $\left\{a_{1}, \ldots, a_{n}\right\}$ is quasi-transitive.

Proof.

We omit the parameters of S, I and I'. From the definition of S, it is clear that $b \in S$ holds iff the following three conditions are satisfied : (i) $M \neq \psi_{n n}[b]$. (ii) For every i $<n$, $a_{i} \in^{M} b$ iff $\psi_{\text {in }}$ is $x_{i} \in x_{n}$. (iii) For every $j<n, b \in^{M} a_{j}$ iff $\psi_{n j}$ is $x_{n} \in x_{j}$ 。Condition (ii) is equivalent to (ii^{\prime}) $:\left\{\mathrm{a}_{\mathrm{i}} / \mathrm{i} \in \mathrm{I}\right\} \subset|\mathrm{b}| \subset|M| \backslash\left\{\mathrm{a}_{\mathrm{i}} / \mathrm{i} \in \mathrm{I}^{\prime}\right\}$. As ψ is ordered, if $j<n$, then $\psi_{n j} \sim \psi_{j j}$. Hence (iii) is equivalent to (iii') : For every $j<n, b \epsilon^{M} a_{j}$ iff a_{j} is cofinite. Now (a) holds since (i) and (ii') are satisfied by an infinite number of individuals b and (iii') excludes only a finite number of them. Next we prove (b), assuming that $\psi_{n n}$ is $x_{n} \notin x_{n}$ (the proof is quite analogous if $\psi_{n n}$ is $x_{n} \in x_{n}$). We let c be the individual determined by $|c|=\left\{a_{i} / i \in I\right\}(c f .2 .4 e)$. By the definition of ϵ^{M}, c is the least b satisfying (i) and (ii'). Assume $j<n$. If a_{j} is cofinite, then $a_{j} \neq c$ since c is finite. If a_{j} is finite, then $\psi_{j j}$ is $x_{j} \notin x_{j}$, hence ψ_{nj} is $\mathrm{x}_{\mathrm{n}} \notin \mathrm{x}_{\mathrm{j}}$. Since ψ is regular by hypothesis, columns j and n are not equal. So there is some $i<n$ such that $\psi_{i j_{M}}$ and $\psi_{i n}$ are not similar. Hence for this i, exactly one of $a_{i} \in^{M} a_{j}$ and $a_{i} \in^{M} c$ holds; so $a_{j} \neq c$. Therefore, c is distinct from a_{1}, \ldots, a_{n-1}. Moreover, since $\left\{a_{1}, \ldots, a_{n-1}\right\}$ is quasitransitive, either $\left|a_{i}\right| \subset\left\{a_{1}, \ldots, a_{n-1}\right\}$ or $\left|a_{i}\right| \supset|M| \backslash\left\{a_{1}, \ldots, a_{n-1}\right\}$
for every $i<n$. It follows that $c \epsilon^{M} a_{i}$ iff a_{i} is cofinite. Hence c satisfies also (iii'), so $c=a_{n}$. Finally, from the definition of c and the hypothesis that $\left\{a_{1}, \ldots, a_{n-1}\right\}$ is quasi-transitive, it immediately follows that $\left\{a_{1}, \ldots, a_{n}\right\}$ is quasi-transitive. q.e.d.

Let ψ be ordered and n-complete. We define an algorithm, denoted by B, which produces a sequence a_{1}, \ldots, a_{n}, denoted by $B(\psi)$, such that ψ is satisfied by a_{1}, \ldots, a_{n}. The definition is by induction on n. If $n=0$ (meaning that ψ is the empty conjunction), then we let $\mathrm{B}(\psi)$ be the empty sequence. If $n>0$ and $B\left(\psi^{-}\right)=\left\langle a_{1}, \ldots, a_{n-1}\right\rangle$, we let a_{n} be the least element of $S\left(\psi ; a_{1}, \ldots, a_{n-1}\right) \backslash\left\{a_{1}, \ldots, a_{n-1}\right\}$ (this set being nonempty by 4.5a). We then set $B(\psi)=\left\langle a_{1}, \ldots, a_{n}\right\rangle$.
4.6. Lenma.

Let $\left\langle a_{1}, \ldots, a_{n}\right\rangle=B(\psi)$.
a) a_{1}, \ldots, a_{n} are distinct.
b) $M \neq \psi\left[a_{1} \ldots a_{n}\right]$.
\therefore If ψ is regular, then $\left\{a_{1}, \ldots, a_{n}\right\}$ is quasi-transitive.

Proof.
In view of 4.5 , the proof by induction on n is inmediate. q.e.d.

4.7. Theorem.

The following are equivalent :
(i) ψ is orderable.
(ii) ψ is satisfiable.
(iii) ψ is satisfiable by a sequence of n distinct individuals.

Proof.
Clearly, we may assume ψ to be complete. By 4.6a, (i) inplies (iii). Trivially, (iii) implies (ii). In order to show that (ii) implies (i), we let a_{1}, \ldots, a_{n} be any individuals satisfying ψ. We assume $a_{1} \leqslant \ldots \leqslant a_{n}$. Then by 2.4 c and $2.4 \mathrm{~d}, \psi$ is ordered. q.e.d.

Example.

Let ψ be $x_{1} \notin x_{1} \& x_{2} \notin x_{2} \& x_{1} \in x_{2} \& x_{2} \in x_{1}$. Then, as remarked in the introduction, $N_{2} F \vdash \exists x_{1} 3 x_{2} \psi$ since for $x_{1}=\operatorname{USC}(V)$ and $x_{2}=\{U S C(V)\}, \psi$ is satisfied, and since the existence of $\operatorname{USC}(V)$ is provable in $N_{2} \mathrm{~F}$.
However, $\exists x_{1} \exists x_{2} \psi$ is not a theorem of NF_{2}. To see this, we notice that $\bar{\psi}$ is

$$
\left(\begin{array}{ll}
\notin & \epsilon \\
\epsilon & \notin
\end{array}\right)
$$

By 4.3, ψ is not orderable since $\bar{\psi}$ has no homogeneous column; so by $4.7, \psi$ is not satisfiable in M. By 2.2, $\exists x_{1} \exists x_{2} \psi$ is not a theorem of NF_{2}.

4.8. Definition.

Let ψ be n-complete, and let $x\left(x_{1} \ldots x_{n}\right)$ be a conjunction of formulas of the form $x_{i}=t\left(x_{1} \ldots x_{n}\right)$, each term t containing exactly one of the function
 the following four conditions holds : (i) If for some $j \leqslant n, x_{j}=\Lambda$ is a factor of x, then for every $i \leqslant n, \psi_{i j}$ is $x_{i} \notin x_{j}$. (ii) If for some $j, k \leqslant n$, $x_{j}=-x_{k}$ is a factor of x, then for every $i \leqslant n, \psi_{i j}$ and $\psi_{i k}$ are not similar. (iii) If for some $j, k, \ell \leqslant n, x_{j}=x_{k} \cup x_{\ell}$ is a factor of x, then for every $i \leqslant n, \psi_{i j}$ is $x_{i} \in x_{j}$ iff $\psi_{i k}$ is $x_{i} \in x_{k}$ or $\psi_{i \ell}$ is $x_{i} \in x_{\ell}$. (iv) If for some $j, k \leqslant n, x_{j}=\left\{x_{k}\right\}$ is a factor of x, then $j \neq k$ and for every $i \leqslant n$, $\psi_{i j}$ is $x_{i} \in x_{j}$ iff $i=k$.

4.9. Lemma.

a) If $\psi \& x$ is satisfied by a sequence of distinct individuals a_{1}, \ldots, a_{n}, then ψ is compatible with x.
b) Let ψ be n-complete and compatible with x. Let $\left\{a_{1}, \ldots, a_{n}\right\}$ be a quasitransitive set of individuals such that ψ is satisfied by a_{1}, \ldots, a_{n}. Then x is satisfied by a_{1}, \ldots, a_{n}.

Proof.
a) is an immediate consequence of the axioms A2 through A5.
b) Clearly we may assume x to be either one of $x_{1}=\Lambda, x_{1}=-x_{2}, x_{1}=\left\{x_{2}\right\}$, $x_{1}=x_{i} \cup x_{j}(i, j \leqslant n)$. We only prove the last case, which is the most
interesting one. We let $M=\{1, i, j\}, P=\{1, i\}$, and $Q=\{i, j\}$. First, we show that
(1) $\quad \psi_{11}$ is $x_{1} \notin x_{1}$ iff $\psi_{i i}$ and $\psi_{j j}$ are $x_{i} \notin x_{i}$ and $x_{j} \notin x_{j}$, respectively.

For assume that ψ_{11} is $x_{1} \notin x_{1}$ and, e.g., $\psi_{i i}$ is $x_{i} \in x_{i}$ (whence $i \neq 1$). Since ψ is compatible with $x, \psi_{1 i}$ and $\psi_{i 1}$ are $x_{1} \notin x_{i}$ and $x_{i} \in x_{1}$, respectively. Hence by $4.2 \mathrm{c}, \psi_{\mathrm{P}}$ is not orderable. In view of 4,3 , this implies that ψ is not orderable. But since ψ is, by hypothesis, satisfiable, it is orderable by 4.7. Or assume $\psi_{11}, \psi_{i i}, \psi_{j j}$ to be $x_{1} \in x_{1}, x_{i} \notin x_{i}, x_{j} \notin x_{j}$, respectively (whence $i \neq 1, j \neq 1$). Then compatibility rules out that $\psi_{1 i}$ and $\psi_{1 j}$ are $x_{1} \notin x_{i}$ and $x_{1} \notin x_{j}$. Assume $\psi_{1 i}$ to be $x_{1} \in x_{i}$. Then it follows that $\psi_{i 1}$ is $x_{i} \in x_{1}$ (orderability of ψ_{p}), $\psi_{i j}$ is $x_{i} \in x_{j}$ (compatibility), $i \neq j$ (since $\psi_{i i}$ is $x_{i} \notin x_{i}$), $\psi_{j 1}$ is $x_{j} \in x_{1}$ (orderability of ψ_{M}), $\psi_{j i}$ is $x_{j} \in x_{i}$ (compatibility). But now, we again have a contradiction since ψ_{Q}, and hence ψ, is not orderable. Now we have to prove that for every individual a,
(2) $a \epsilon^{M} a_{1}$ holds iff at least one of $a \epsilon^{M} a_{i}, a \epsilon^{M} a_{j}$ holds. Compatibility implies that (2) holds for every $a \in\left\{a_{1}, \ldots, a_{n}\right\}$. It remains to prove (2) for $a \notin\left\{a_{1}, \ldots, a_{n}\right\}$. If a_{1} is finite, then by (1) and 2.4 b , a_{i} and a_{j} are both finite. Since $\left\{a_{1}, \ldots, a_{n}\right\}$ is quasi-transitive, $\left|a_{1}\right|$, $\left|a_{i}\right|,\left|a_{j}\right|$ are all subsets of $\left\{a_{1}, \ldots, a_{n}\right\}$; hence (2) holds also for $a \notin\left\{a_{1}, \ldots, a_{n}\right\}$. If a_{1} is cofinite, then by (1) and $2.4 b$, one of a_{i} and a_{j}, say a_{i}, is cofinite. Quasi-transitivity implies that $\left|a_{1}\right|$, $\left|a_{i}\right| \supset|M| \backslash\left\{a_{1}, \ldots, a_{n}\right\}$. Hence (2) holds since for every $a \notin\left\{a_{1}, \ldots, a_{n}\right\}$, $a \in^{M} a_{1}$ and $a \in^{M} a_{i}$. q.e.d.
4.10. Definition.

We call $\left\{a_{1}, \ldots, a_{n}\right\}$ extension al if for all $i, j \leqslant n$ such that $i \neq j$, there is some $k \leqslant n$ such that exactle one of $a_{k} \in^{M} a_{i}$ and $a_{k} \in^{M} a_{j}$
holds.
4.11. Lenma.

For every individual $a, \quad\{b \in|M| / b \leqslant a\}$ is extensional.

Proof.

We let $\mathrm{H}_{a}=\{b \in|M| / b \leqslant a\}$ and assume b_{1}, b_{2} to be distinct members of M_{a}. We distinguish between two cases and use 2.4 c and 2.4 d .
I. Let, e.g., b_{1} be finite and b_{2} be cofinite. If $b_{1}<b_{2}$, then not $b_{2} \in^{M} b_{1}$, but $b_{2} \in^{M} b_{2}$. If $b_{2}<b_{1}$, then $b_{1} \in^{M} b_{2}$ but not $b_{1} \in^{M} b_{1}$.
II. If b_{1} and b_{2} are both finite or both cofinite, let c be any individual such that, e.g., $c \in^{M} b_{1}$ but not $c \in^{M} b_{2}$. Then $c<b_{1}$ if b_{1} is finite, and $c<b_{2}$ if b_{2} is cofinite, hence $c \in M_{a}$ in any case。 q.e.d.

We let h be the recursive function defined by $h(n)=2^{h^{\prime}(n)} \cdot g\left(2^{h^{\prime}(n)}\right)$, where $h^{\prime}(n)=(n+1)(n+2)$ and where g is the recursive function defined in $\S 3$. In view of the REDUCTION THEOREM 2.6 and since any basic conjunction with respect to $\{\in\}$ is of the form $\psi \& x \& \delta_{n}$, the following theorem again implies that the set of the existential theorems of NF_{2} is decidable.

4.2. Theorem.

The existential sentence $\exists x_{1} \ldots \exists x_{n}\left(\psi \& x \& \delta_{n}\right)$ is a theorem of $N F_{2}$ iff there is a number $m \leqslant h(n)$ and a regular extension $\psi^{+}\left(x_{1} \ldots x_{m}\right)$ of ψ such that ψ^{+}is compatible with X.

Proof.
We denote $\exists x_{1} \cdots \exists x_{n}\left(\psi \& x \& \delta_{n}\right)$ by σ.

1. Let ψ^{+}be any regular extension of ψ which is m-complete and compatible with x. We let $B\left(\psi^{+}\right)=\left\langle a_{1}, \ldots, a_{m}\right\rangle$. By $4.6, a_{1}, \ldots, a_{m}$ are distinct and satisfy ψ^{+}, and $\left\{a_{1}, \ldots, a_{m}\right\}$ is quasi-transitive. By $4.9 \mathrm{~b}, a_{1}, \ldots, a_{m}$ also satisfy x. Hence $\psi \& x \& \delta_{n}$ is satisfied by a_{1}, \ldots, a_{n}. Thus σ holds in M; so $\mathrm{NF}_{2} \vdash \sigma$ by 2.2.
2. Conservely, suppose that σ is a theorem of NF_{2} 。 We first prove the existence of ψ^{+}without paying attention to the upper bound for m, Since $N F_{2}+\sigma$, $M \vDash \sigma$ by 2.2. Let a_{1}, \ldots, a_{n} be any individuals satisfying $\psi \& x \& \delta_{n}$. We let

$$
\begin{equation*}
r=\max \quad\left\{a_{1}, \ldots, a_{n}\right\} \tag{1}
\end{equation*}
$$

and we let $a_{n+1}, \ldots, a_{f^{+1}}$ be an enumeration of $\{a \in|M| / a \leqslant r\} \backslash\left\{a_{1}, \ldots, a_{n}\right\}$. Let $m=r+1$, and let $\psi^{+}\left(x_{1} \ldots x_{m}\right)$ be the uniquely determined extension of ψ which is satisfied by a_{1}, \ldots, a_{m}. Since $\left\{a_{1}, \ldots, a_{m}\right\}=\left\{b \in|M| / b \leqslant a_{m}\right\}$, the set $\left\{a_{1}, \ldots, a_{m}\right\}$ is extensional by 4.11 . Hence ψ^{+}is regular. Since x_{n+1}, \ldots, x_{m} do not occur in x, x is also satisfied by a_{1}, \ldots, a_{m}. By 4.9a, ψ^{+}is compatible with x.

We finally show that in (1), one may assume that

$$
\begin{equation*}
r \leqslant h(n)-1 \tag{2}
\end{equation*}
$$

To see this, we inspect the proof of THEOREM 3.7 and apply 3.5a, In the proof of 3.7 , each factor $x_{i} \in x_{j}$ or $x_{i} \notin x_{j}$ of ψ is replaced by $\left(-\left\{x_{i}\right\}\right) \cup x_{j}=-\Lambda$ and $\left(-\left\{x_{i}\right\}\right) \cup x_{j} \neq-\Lambda$, respectively. The result is then transformed into a disjunction of formulas of the form

$$
\begin{equation*}
\exists x_{n+1} \cdots \exists x_{k}\left(x^{\prime} \& \delta_{k}\right) \tag{3}
\end{equation*}
$$

where x^{\prime} is a formula of the same type as x but may contain any of the variables x_{1}, \ldots, x_{k}. Since $\psi \& x \& \delta_{n}$ is satisfiable, at least one the formulas (3) is satisfiable; conversely, whenever a_{1}, \ldots, a_{k} satisfy $x^{\prime} \& \delta_{k}$ in this particular formula, then a_{1}, \ldots, a_{n} satisfy $\psi \& x \& \delta_{n}$. In the transformation process, we have to introduce new variables $x_{n+1}, \ldots, x_{2 n}$ for $\left\{x_{1}\right\}, \ldots,\left\{x_{n}\right\}$, and new variables $x_{2 n+1}, \ldots, x_{3 n}$ for $-\left\{x_{1}\right\}, \ldots,-\left\{x_{n}\right\}$. We may have to add $x_{3 n+1}=\Lambda$ and $x_{3 n+2}=-x_{3 n+1}$. Whenever $\psi_{i j}$ is $x_{i} \notin x_{j}$, we need an additional variable for $x_{2 n+i} \cup x_{j}$ (which stands for $\left.\left(-\left\{x_{i}\right\}\right) \cup x_{j}\right)$. Hence we may assume that in (3), $k \leqslant n^{2}+3 n+2=(n+1)(n+2)$. Now let $x^{\prime} \& \delta_{k}$ in (3) be satisfiable. Then the proof of 3.7 shows that there is some conjunction φ of the form $\Lambda_{i \leqslant p} \varphi_{i}$, where $p=2^{k}$ and each φ_{i} is either $u_{i} \neq \Lambda$ or $u_{i}=\Lambda$, or $u_{i}=\left\{t_{J}\right\}$ for some $J \subset N_{p}$, satisfiable by a partition of the universe. Conversely, from every partition satisfying this particu$\operatorname{lar} \varphi$, a sequence a_{1}, \ldots, a_{k} satisfying $x^{\prime} \& \delta_{k}$ can be recovered. By 3.5a, there is a partition b_{1}, \ldots, b_{p} satisfying φ such that each finite part does not exceed $g(p)$. Let b_{1}, \ldots, b_{q} be the finite nonempty parts (whence $\mathrm{q}<\mathrm{p}$), and let $\mathrm{b}_{\mathrm{q}+1}$ be the unique cofinite part. From 3.5a, we can actually conclude that $b_{i} \leqslant g(q)$ for every $i \leqslant q$. From $2.4 g$ and $2.4 j$, we conclude
that $b_{q+1}=1+\Sigma_{i \leqslant q} b_{i}$ and that $a_{j} \leqslant 1+\Sigma_{i \leqslant q} b_{i}$ for $a l l j \leqslant k$, where a_{1}, \ldots, a_{k} is the solution of $x^{\prime} \& \delta_{k}$ recovered from b_{1}, \ldots, b_{p}. Thus if $\psi \& x \& \delta_{n}$ is satisfiable at all, it is satisfiable by individuals not exceeding $1+q \cdot g(q)$. Now (2) follows from $k \leqslant(n+1)(n+2), p=2^{k}, q<p$, $r \leqslant 1+q \cdot g(q)$ and from the fact that $g(i) \geqslant 2$ for every $i \in \mathbb{N}$. q.e.d.

§ 5. Some examples.

In this section, we omit the reference to M in the function signs and use the conmon notation V for $-\Lambda$.

1) The sentence $\exists x_{1} \exists x_{2}\left(x_{1} \neq x_{2} \& x_{1}=\left\{-\left\{x_{2} \cup\left\{x_{1}\right\}\right\}\right\}\right)$ is a theorem of $N F_{2}$. In order to see this, we first notice that $x_{1}=\left\{-\left\{x_{2} \cup\left\{x_{1}\right\}\right\}\right\}$ is equivalent in $N F_{2}$ to $\exists x_{3} \exists x_{4} \exists x_{5} \exists x_{6}\left(x_{3}=\left\{x_{1}\right\} \& x_{4}=x_{2} \cup x_{3} \& x_{5}=\left\{x_{4}\right\} \& x_{6}=-x_{5}\right.$ $\& x_{1}=\left\{x_{6}\right\}$). We shall look for a 6 -complete regular ψ which is (an extension of the empty conjunction and) compatible with $x_{3}=\left\{x_{1}\right\} \& x_{4}=x_{2} \cup x_{3}$ $\& x_{5}=\left\{x_{4}\right\} \& x_{6}=-x_{5} \& x_{1}=\left\{x_{6}\right\}$. Disregarding the factor $x_{4}=x_{2} \cup x_{3}$, we see that any 6 -complete ψ is compatible with the four remaining factors iff $\bar{\psi}$ is of the following form (the elements marked by dots are arbitrary) :

$$
\bar{\psi}=\left(\begin{array}{l}
\notin \cdot \epsilon \cdot \notin \\
\notin \cdot \notin \cdot \notin \\
\notin \cdot \notin \cdot \notin \epsilon \\
\notin \cdot \notin \cdot \epsilon \\
\notin \cdot \notin \cdot \\
\epsilon \cdot \notin \cdot \notin \in \\
\epsilon
\end{array}\right)
$$

The orderability conditions are $a_{6}<a_{1}, a_{1}<a_{3}, a_{4}<a_{5}, a_{4}<a_{6}$ (by 2.4 c and 2.4d). They reduce to $a_{4}<a_{6}<a_{1}<a_{3}$ and $a_{4}<a_{5}$. We try our luck by arranging the variables x_{1}, \ldots, x_{6} in the order $x_{4}, x_{5}, x_{6}, x_{1}, x_{2}, x_{3}$. Then $\bar{\psi}$ becomes

			5	x_{6}	x_{1}		x_{3}
${ }^{\text {x }}$	-		E	\notin	\notin		\notin
x_{5}	-		\neq	ϵ	\notin		\notin
x_{6}	-		\neq	ϵ	ϵ		\notin
x_{1}	-		\neq	ϵ	\notin		ϵ
x_{2}	-		\notin	ϵ	\notin		\notin
x_{3}			\notin	ϵ	\notin		\notin

After this permutation, ψ has become ordered. (Every column is homogeneous down from the diagonal). We try to complete ψ in a way that it remains ordered and becomes compatible with $x_{4}=x_{2} \cup x_{3}$. Since up to now $\bar{\psi}$ has no homogeneous column, we try by taking \in for the column of x_{4}. Then compatibility with $x_{4}=x_{2} \cup x_{3}$ requires us to take \in for the column of x_{2} with the exception of $\bar{\psi}_{12}$. Since the column of x_{4} consists solely of $\epsilon^{\prime} s$, we have to take \notin for $\bar{\psi}_{12}$ to make ψ regular. Then by 4.12 , we see that the given sentence is a theorem of NF_{2}. If we want to find individuals satisfying the matrix of the given sentence, we apply the algorithm B to ψ. B produces in turn : $a_{4}=V, a_{5}=\left\{a_{4}\right\}=\{V\}, a_{6}=-\left\{a_{4}\right\}=-\{V\}, a_{1}=\left\{a_{6}\right\}=\{-\{V\}\}, a_{2}=-\left\{a_{1}\right\}=$ $-\{\{-\{\mathrm{V}\}\}\}, a_{3}=\left\{\mathrm{a}_{1}\right\}=\{\{-\{\mathrm{V}\}\}\}$. Now if the matrix of the given existential sentence is denoted by φ, we have $M \vDash \varphi\left[a_{1} a_{2}\right]$ and $N F_{2} \vdash x_{1}=\{-\{V\}\}$ \& $x_{2}=-\{\{-\{V\}\}\} \rightarrow \varphi$. Note that since every individual of M corresponds to a term of L, the algorithm B can be applied to produce terms which in NF_{2} provably satisfy the given basic conjunction.
2) If ψ is $x_{1} \in x_{1} \& x_{1} \notin x_{3} \& x_{2} \in x_{1} \& x_{3} \notin x_{1} \& x_{3} \notin x_{2}$, and x is $x_{1}=x_{2} \cup x_{3}$, then $\exists x_{1} \exists x_{2} \exists x_{3}\left(\psi \& x \& \delta_{3}\right)$ is a theorem of $N F_{2}$. It is easy to see that there is only one 3-complete extension of ψ which is orderable and compatible with x; for this ψ,

$$
\bar{\psi}=\left(\begin{array}{lll}
\epsilon & \epsilon & \neq \\
\epsilon & \epsilon & \neq \\
\notin & \nexists & \neq
\end{array}\right)
$$

Then columns of 1 and 2 are equal, so ψ is not regular. If we introduce a new variable x_{4}, then by arranging the variables in the order x_{4}, x_{3}, x_{1}, x_{2} we get a regular extension which is compatible with x :

	x_{4}	x_{3}	x_{1}	x_{2}
x_{4}	\notin	ϵ	ϵ	\notin
x_{3}	\notin	\notin	\notin	\notin
x_{1}	\notin	\notin	\in	\in
x_{2}	\notin	\notin	\in	\in

Hence by 4.12, $\exists x_{1} \exists x_{2} \exists x_{3}\left(\psi \& x \& \delta_{3}\right)$ is a theorem of N_{2}. Applying the algorithm B, we obtain $a_{4}=\Lambda, a_{3}=\left\{a_{4}\right\}=\{\Lambda\}, a_{1}=-\left\{a_{3}\right\}=-\{\{\Lambda\}\}$, $a_{2}=-\left\{a_{3}, a_{4}\right\}=-\{\{\Lambda\}, \Lambda\}$.
3) $\exists x_{1} \exists x_{2}\left(x_{1}=-x_{2} \& x_{1}=\left\{x_{2} \cup\left\{x_{1}\right\}\right\}\right)$ is not a theorem of $N F_{2}$. To see this, we first denote the matrix of the given sentence by x. Then x is equivalent in $N F_{2}$ to $\exists x_{3} \exists x_{4} x^{\prime}, x^{\prime}$ being $x_{1}=-x_{2} \& x_{3}=\left\{x_{1}\right\} \& x_{4}=x_{2} \cup x_{3}$ $\& x_{1}=\left\{x_{4}\right\}$. Compatibility requires $\bar{\psi}_{11}$ and $\bar{\psi}_{44}$ to be \notin and $\bar{\psi}_{14}$ and $\bar{\psi}_{41}$ to be ϵ. Thus for $M=\{1,4\}, \psi_{M}$ is not orderable.

References

1. Boffa M., Crabbé M., Les théorèmes 3-stratifiés de NF_{3}, Comptes Rendus de 1'Académie des Sciences de Paris 280 (1975), p. 1657-1658.
\therefore Kreinovic V.J., Oswald U., A decision metnod for the universal theorems of Quine's New Foundations, to be published.
2. Oswald U., Fragmente von 'New Foundations" und Typentheorie, mimeographed, Swiss Federal Institute of Technology, Zürich 1976.

292, Nordstrasse,
8037 Zürich (Suisse).

