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AXTOMATISING SET THEORY WITH A UNIVERSAL SET

Thomas FORSTER
(Université de Cambridge)

“his paper has grown out of a talk I took round various hospitable logic
seminars in England in the winter term of 1981. I would like to thank
nembers of the Bedford, Cambridge and Leeds seminars for illuminating dis-

cussions which have helped this document into its present form.

ihere are various problems in Set theory with a universal set : chief of
them is persuading people that there is anything worth studying. I shall
say less on this subject than I would like : you who have already read this
car are presumably at least willing to listen. However I will allow myself
one gibe : ZF is obviously the core of amny sensible axiomatic theory of the
wellfounded sets. This is not the same as saying that there are no others.
“uch of the plausibility of ZF as an axiomatisation of Set Theory comes from
nistaking arguments for the first for arguments for the second.

~lthough it is now over 40 years since the first axiomatic set theory with
- € V was published there is stil no agreement on even a core for an axioma-
tisation of set theory with V € V. In this paper I present some (I hope)
versuasive motivations for some axioms. The programme is best begun by loo-
xing at the most basic problem of all namely.

she problem of identity in illfounded set theory.

-he problem of identity in set theory with a universal set is the same as
the problem of identity in the more general case of illfounded set theory.
Indeed T shall not make much of the difference since there seems little
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motivation for illfounded set theory if one is not interested in a universal
set.

The axiom of extensionality

VNN x=y=(V)(z€x=2z€Y))

sunmarises all that conventional wisdom has had to say so far about "='" in
set theory. It is the closest we come to saying in any formal sense that
sets are that-which-is-extensional. A set is just the collection of its
members, that and no more. Thus extensionality, in conjunction with the
axiom of Foundation, enables us to decide when x =y by seeing if their
members are identical. The regress we are here launched on must terminate
because the ranks of the things we look at is reduced by the induction step.
I am becoming more and more convinced that the appeal of the axiom of Founda-
tion is simply that it provides us with this elegant recursive characterisa-
tion of identity and there by spares us the need to do any deep thinking on
the subject of identity of sets. Historically this restriction may have
been fruitful as it enabled us to concentrate our efforts and attention on
those parts of set theory where results could be obtained quickly and ap-
plied widely; recently the profuse growth of parts of wellfounded set theory
of no interest to non-set theorists has begun to suggest that is has had all
the help it needs. Perhaps the time is now ripe to reopen the fundamental

questions we have ignored since the turn of the century.

The problem, then, is that the regress of which I spoke in the last para-
graph ''x = y? Are all their members identical ? Are all their members iden-
tical ? ... ?", cannot be relied upon to terminate. Here we can profitably
introduce some concepts from game theory. Notation and terminology here
will be standard except for use of the word 'Wins" with upper-case 'W' to
mean "has a winning strategy for'' and that a strategy is not a thing that
says 'When here, do this'' but only "When here, do one of these', that is,

2 non-deterministic strategy. This is because, as I have argued clsewhere
[11, AC is probably false in any sensible set theory with a universal set,
so that if we use strategies in the standard sense (which can often be

nothing more than thinly concealed choice functions) we are liable to find
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that a game fails to have a winning strategy — for reasons which are
nothing to do with the game itself. The first game here will be notated
Gx=y ("The identity game') to commemorate the fact that it is being played
to decide whether or not x =y
Player II moves first, choosing a subset R1 of x X y such that
RYX =y aﬁd,\JRyy =X
Player I picks an ordered pair from II's previous choice

Player II picks Rn a subset of x, X Yn (where <ixn,yn:> was

+
PSWWAWCMK@Si'%q”ﬁzﬁammmefﬁy
Player II loses if she is confronted with X, ¥, one of which is empty and
the other not. I loses if she picks<<xn,yn > both of which are empty (noti-
ce that this allows the existence of urelemente). If the game goes on for
ever II wins. The idea is that II is trying to prove x =y, and I is trying
to prove X # y.. In earlier versions of this paper II had to pick bijections
rather than relations, the rationale being that a set cannot have two iden-
tical members. The present version is probably better all the same, because
it does not compel us to decide, before we start playing, whether or not some
things Xy, X, in x are identical (which we could discover only by playing
jx1=x2)' Another way of putting this would be to say that to specify formal-
ly thé rules governing II's moves in the game where she has to play bijec-
tions would use the '"="" symbol whose meaning is explained only by the game

which is yet to be played.

Player II's choice of Rn+1 when faced with X, Yy is obtained by partitio-

ning X, and Yn into equivalence classes under identity and then pairing the
equivalence classes for x,, with those for Yn in some appropriate way.

On the face of it, this suggests that we should always require II's choice

R to satisfy a condition
(uRvA U Rv Au'RVv') »uRv'

but it is not hard to persuade oneself that the resulting games are equi-
valent and the proof is omitted.

Gx:y is an open game. That is to say, if player I wins at all, she has
done so after finitely many moves. So I or II must have a winning strategy.
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It is not hard to see that the relation

II Wins G__
x=y

is an equivalence relation. Indeed it looks like a very good candidate for
a definiens of '"x=y". However there are good reasons for looking for some-

thing even stronger. Let us define j, an operator on maps, SO that
G'H)y'X = £X
and let us define, for each n, an equivalence relation ~n by
~,y iff @) (v a permutation of V A G™Mrm) 'x=y)
~. ¥y iff x ~“nY for all n

and we invoke the notations for equivalence classes [X]11’ [x1], in the
usual way. The importance of n-congruence derives from the fact that if

Y then x and y satisfy the same stratified predicates in which they
are of type 0. This derives from a theorem, important in the folklore of
NF, that

oly.z o) oG, GMy, Rz )

where n, m, k ... are the types of x, ¥, 2 ... in ¢.

This fact, which will not be proved here, will be used later on. Thus

LY says that the top n "layers" of the transitive closure of x look
11ke the top n layers of the transitive closure of y. This being the case,
extensionality would lead us to be very sceptical of the desirability of
having x, y such that x ~, ¥y but x # y. Since there is no obvious way of
constructing a winning strategy in Gx:y simply from the fact that x ~,Yy a

tougher definition of identity will be required.

Consider again the game G x=y * Let us suppose I has a winning strategy.

Let us consider the tree of all plays obtained by T using her winning stra-
tegy and II doing anything legal. This tree is wellfounded since all plays
(branches) terminate after a finite number of steps (the use of DC here may
or may not be significant — see the next game below where a similar problem
occurs) and accordingly has a rank. Let us notate this ordinal S« Y

€ looks rather like a truth-value for "x=y' but the idea of ordinals
>
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as truth-values of anything is profoundly repugnant and suggests that we
have got too much structure here, and that some of it is spurious. Fortu-

nately we have the following crucial fact :

If € and € are both infinite, so is €
X’y y’z X’Z

Proof.

”GX y is infinite" simply says that, for each finite integer n, player II
s
has a strategy that enables her to postpone defeat until after n moves have

been played. If II has such a strategy for Gx=y and one for Gy=Z she can

get one for Gx=z by playing in GX= the composition of the plays prescribed

z
by her strategies in GX=y and Gy=Z , having arbitrarily assigned, given I's
choice of <u,v >, a w such that <u,w > is a play for I in zey and
< w,v > a play for I in Gy=z . What this means is that the relation
"e is infinite"
X,y

is an equivalence relation. And it will be our explication of '='" in ill-
rounded set-theory.

Axiom of strong Extensionality.

V) (¥y)(x =y« (V¥n)(II has a strategy to postpone defeat in Gx=y

for n moves)).

2f course this axiom deliberately expunges a lot of structure : If we had
defined "x=y" as "II Wins Gx=y'| then we would have lots of exciting equi-
valence relations to play with, since w cannot be the only ordinal o such
that"ex’ 2 o'" is an equivalence relation, but we would not have esta-
blished that «-equivalence is identity. A Quine atom is an object x = {x}.
Strong extensionality prevents there being more than one Quine atom. Indeed
it prevents there being more than one object whose transitive closure does
not contain the empty set. It also excludes the possibility of automor-
phisms of the universe.

UX=}’
dels that we obtain by deleting objects, e.g. urelemente, from some initial

has generalisations which can be useful when defining identity in mo-

model. First we identity objects whose symmetric difference consists enti-
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rely of things to be deleted. Then we delete all but one of each equiva-
lence class, and iterate. The same effect can be achieved by playing a
version of GX=y where the domains and ranges of the relations played by II
do not include any objects which are to be deleted.

The next game we consider has a much simpler structure. This game, played
with an initial given set x, is notated GX and is played as follows : I
moves first by picking a member of x. Thereafter I and II alternate moves,
each picking a member of the preceding player's choice, until the game is
ended by one of them trying to pick a member of an empty set (the game may
be played in universes with urelemente) and thereby losing. If the game
goes on for ever it is a draw. Obviously for some x (such as V) there will
be plays in Gx which never terminate (I and II could go on for ever picking
V each time) but one has the feeling that empty sets ought to be sufficient-
ly dense in the transitive closure of x for G, to admit a winning strategy

for one player or the other. Let us adopt the definitions
I={x:1Wins GX} II = {x : II Wins GX}.

Obviously x € T iff (3y € x)(y € II), and dually x € IT iff (Vy e x)(y € I).
We can rewrite this as I = UB"II (where B'x = {y : x € y}) and II = p'l.

If, with a view to readability, we invent a new function letter b so that

b'x = UB"x (the 'b' is an upside-down 'p' to remind us that b corresponds

to (3x€ ...) and p to (Vx € ...)) we can write it as I = b'II and

IT = p'I). This is rather reminiscent of the fact that x € WF iff

(Vy € X)(y € WF). Apart from the elegant characterisation this enables

us to give of I and II in a language whose subformula relation is illfoun-
ded it invites us to consider what happens when we stick in extra quanti-

fiers, like, for example

XE€XIiff Jyex WYwey Juew uey
Y Y 3 v X

or, for short X = b|p|b'Y and Y = p|b|p'x. 1In this case I and II are no
longer unique solutions since b'Y for X and p'X for Y will satisfy the same
identity. This is rather reminiscent of the way e~ splits into sinhx and
coshx when we require not f = Df but merely f = sz. Both in that case and
here we find that by increasing the number of iterations more roots will
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appear. This parallel will not be explored further in this paper.

Once we notice that A € IT and V € 1 the discussion above suggests the fol-
lowing recursive construction :

I = {V} I = UB"II
o] o

a+]

= = !
I, = (A} I, =p'l

taking sumsets at limit ordinals.

“t is not hard to show by induction that Ia and IIu are increasing sequences
.nder inclusion. Let us associate with each object in I or IT its rank —
the least a such that it belongs to Ia or IIQ. We shall need to show that
sverything in I or II does in fact have a rank. The proof is analogous to
“hat in ZF that every wellfounded set has a rank.

~uppose x € IT is unranked. Then every y € x is in I but then some y € X
. unranked, otherwise rank of x is just sup (rank'y + 1). Similarly sup-
v2se x € I is unranked. Then there is y §, y € II. But no such y can be
o rank o, otherwise x € Iu+1.
-21s proof of illfoundedness enables (in either case) the "losing" player to
scnstruct a strategy (""Play unranked sets !') which results in an infinite
rlay and a draw, contradicting the existence of a winning strategy.

is justifies the definition of I and II as the union of their partial sums
cer all ordinals.

sact.

22 and IB are disjoint for all a«, B.
suppose o and g are minimal counterexamples, then we have x € IIa, x € IB'
:> there is y € x such that y € II6 for some ¢ < 8. But any such y (since

TEXE IIa) must also be in IY for some y < o contradicting minimality of

s, 3.
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This enables us to construct a canonical strategy for the winning player.

The minimal strategy.

"When confronted with x, play anything in x N II of minimal rank'.

It is well known that the rank of a wellfounded set x can be defined either
as the rank of € ! TC'x considered as a wellfounded relation or as the least
ordinal o such that x € Va+1.
the pseudorank of x be the least ordinal a such that x € IM1 UIT g

There is a corresponding result here : let

This pseudorank of x is the same as the rank of the tree of plays obtaina-
ble in GX by the Winning player using the minimal strategy and the other
player doing anything legal. The proof is an easy induction on rank and is
left to the reader. The reader may also wish to verify that any wellfounded
set of rank o must have pseudorank o« too. The proofs all have such an enga-
ging familiarity that it suggests one should adopt, as an analogue of the

axiom of foundation the following

Axiom of €-determinacy.
vV=1uII

(There is a slight blemish to the parallel between the axioms of €-determina-
cy and foundation, namely that e-determinacy tells us that we can associate
with each set x a canonical tree which is wellfounded in the weak sense that
every path through it is finite. This involves DC in subsequent proofs.

We could frame €-determinacy in a way that gets round this by defining recur-
sively, on the tree of possible plays in GX , a function that takes two
values, 0 and 1 where "f'y = 1" says "I has a Winning strategy from stage y"
and "f'y = 0" says "II has a winning strategy from stage y". The new ver-
sion of €-determinacy would then say that for all x, this function is defi-
ned on the whole of the tree of plays of GX).

To lend plausibility to this axiom, we can prove it for a large class of

sets
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Theorem.

Let X be n-symmetric,n even (odd) then

either 1 (II) Wins GX in n+2 moves
or II (I) Wins GX in n+3 moves .

Let us consider only the case n = 6, to keep the formulae readable.
Then let "¢ (B'A,X)" be an abbreviation for

EXSEX Vx4€x5 3x3€x4 szEx3 3x1€x2 x; S B'A .

Since II wins GX for any x C B'A this ¢(B'A,X) certainly implies that
I wins GX . (in 8 moves in fact) ¢(A,B) is a stratified wff in which B is
of type 6 and A is of type 1, whence

p(B'A,X) < o((G'm)'B'A, (5017 1%)
for any permutation w. But (j6'ﬂ)'X = X since X is 6-symmetric so

¢ (B'A,X) <= ¢ ((j'7)'B'A,X) for all permutations m.
Let us now suppose that I does not have a strategy to Win in 8 moves.

Then ~¢ (B'A,X), and indeed ~¢ (Y,X) for any Y which is 1-equivalent to B'A.
One such is -P'B'A, whence ~¢ (-P'B'A,X) which is

PRt
Vx5€X3x4€x5Vx3€x43x2€x3Vx1€xz x1$1 P'B'A
the underlined condition simplifies to

axo € )(1 VX_1 c Xo A€ x_1

which is to say II Wins in 9 moves. The proofs for other finite n are si-

milar.

£-determinacy can thus have no counterexamples which are sets definable by
stratified expressions.

€-determinacy gets rid of Quine atoms for us. (Only one play possible in
GX if x = {x} and that never terminates !) But there are equally patholo-
gical objects that it does not get rid of such as x = {x,A}. Such an ob-
ject clearly belongs to I so it does not contradict €-determinacy. Strong
extensionality limits the mumber of such objects to 1 but does not get rid
of them altogether. We shall find such an axiom in the next section where
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the discussion has been broadened a bit.

I am going to introduce some canonical objects, canonical in the sense that
they are distinguished representatives of their kind generated in a very na-
tural way by the theory. Whether or not they are to be set will be left
open. First is

The Canonical Topology.

The pseudorank function given by €-determinacy may eventually give us some
constructive control over V but until we have that sort of wellfoundedness
available again it is more natural to look instead from the top downwards
and classify sets according to what the top few layers of them look like.
For this we naturally turn to n-equivalence classes. We topologise V by
taking a basis consisting of all sets of the form [x] - All neighbor-
hoods will in fact be clopen. If we use Quine ordered pairs (so V = V X V)
we find that the product topology on V2 is in fact identical with the topo-
logy on V. The fact mentioned earlier that

0(%,7,2,-02) < o(GMm) %, GM0y, Gz, )

where n, m, k, ... are the types of x, y, z, ... can accordingly be summari-

sed as

Fact.
Functions defined by stratified formulae are continuous. We have already
seen that Strong extensionality makes the Canonical Topology TO . The bad

news is that

Fact.
The canonical topology is incompact.

In the presence of AC2 we can find a permutation m so that = and j'n are
conjugate (see [1] ). This amounts to saying [w ]k = [j'n]k for some fixed
small k. Also we can show, for any n, that

= N ER R = i 2y 3
(sl =103"sl, (3761 4= 137"8] 4y for any permutation § .

From this it follows that [7 Jy , [3'm], 1 RPN S L I C

- I
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nested sequence of closed sets, whose intersection must be a singleton {a},
say, if the canonical topology is compact. It then follows that a = j'a,
which is to say that a is an automorphism. Any two objects that are inter-
changed by an automorphism must be «-equivalent, so strong extensionality
will imply that there are no non-trivial automorphisms, contradicting com-

pactness.

A set is symmetric if it is isolated in the canonical topology.

X is n-symmetric if [x Ll = {x}.

That is to say, x is symmetric iff it is n-symmetric for some n. The termi-
nology ''symmetric' is motivated by the fact that an n-symmetric set is fixed
by lots of permutations of V, viz : all those that are jn of something. All
sets definable by stratified expressions will be symmetric. This suggest
that the family of symmetric sets might be an appropriate model for any set
of axioms we wish to develop. This possibility is discussed in [ 1] where
it is shown in NF that if SYMM (the family of symmetric sets) is extensional
{(i.e., if x, y are distinct symmetric sets then x A y has a symmetric mem-
ber) then it is a submodel of V elementary for stratified wffs, and that AC2
will fail. One could motivate an axiom V = SYMM rather along the following
lines : strong extensionality implies that [x]_ = {x} for all x, and

V= SYMM says that for each x and some n, {x} =[x hl already. So "V =SYMM"
is a natural strengthening of strong extensionality, but its consequences

are too bizarre for that to be a sufficient reason to adopt it.

A permutation model obtained from V and a permutation = in it, (notated V“)

is the structure obtained by keeping the same elements but rewriting e so
that x € y (in the new sense) iff x € 'y (in the old sense). Such models
have been of great help in the devising of independence and consistency
results in NF since the transition to a permutation model preserves all
stratified sentences true in the original model, and all the axioms of NF
are stratified. To procede further we shall need some notation. Let y be
an arbitrary permutation

Yo = Mentity. vy o= (G'v)ly .
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Now we can express the following piece of folklore

VU E e (6,,2,0-) < VE oG "0 'Y,y 'z -en)

where n, k, m are the types of x, y, z in ¢.

In particular, V' f x ~y Y AEE v X~ Y
We shall now try to identity n-equivalence classes across permutation mo-
dels. We will need an analogue of the j operation for maps m : Vo VY
Calk it m'n (a nonce notation). We have

(m'm)'x = (v"x) in the sense of vY
so m'n =Yy[j'r|o
2,

VUSRI 142
m“rn = [V 3Tl el =y, liT e,

So to say that x (in V°) is n-equivalent to y (in VY) becomes

- I
(A (7 =y, | G o0
1f we set m = identity we see that Vynlcn'x is an object in VY which has

the same n-equivalence class in V' as x does in V. In other words,

V° and V' have the same n-equivalence classes. Another way of expressing

this is to say that the canonical topologies in Vv, VY have the same lattice
of open sets and that the only difference is which nested sequences of clo-
sed sets have empty intersection. By judicious choice of 1 we can arrange
for V' to have, or be free of, Quine atoms. Assuming strong extensionality
the (non)-existence of Quine atoms is equivalent to the following sequence

of closed sets :
[ {A} ]1 » [ {{A}} ]2 , [{{{A}}} ]3 y e

having nomenpty (empty) intersection. This motivates a partial order of
permutations where o < t if more intersections of closed sets of the cano-
nical topology are empty in V° than in V'. Define

o<t iff (DY V@ Ex =1 rlo ')

Thus o precedes t iff we can find a function f which sends each x € V7 to
something £'x € V' which is n-equivalent to it for each n. It is mechani-
cal to verify that < is transitive (take compositions). It is not actually
antisymmetrical because ¢ < j'o < ¢. < has an automorphism generated by —,
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the complementation function. — commutes with everything in J1 S0 jn'-

commutes with everything in Jn+1 . We can use this fact to verify that
o <1 iff—|o <—|1. Permutations can be used to give us models free of
rubbish like Quine atoms. One might well feel that any creature that can
be thus eradicated is probably something we are better off without. This
motivates the

Axiom of Minimality = < t for all permutations t.

Minimality is the promised axiom for getting rid of things like x = {x,A}.
The sweep made by minimality may be cleaner even than that, since no-one

has yet proved that if V contains an infinite Von Neumann ordinal so must
all its permutation models. If this is not true, then minimality would

compel us to assert that all Von Neumann ordinals are finite. The reader
may feel that the absence of infinite Von Neumann ordinals is unfortunate.
But to do arithmetic one does not need Von Neumann ordinals any more than
fingers. It does suggest, however, that if we adopt €-determinacy we will
find that there are no sets of infinite rank, since ﬁJu)(Vd g;Ia U IIa).

However that will depend on the versions of replacement and comprehension

giving us, from a wellorder or length a, the Von Neumann ordinal a.

There are various ways out of this : one could weaken minimality so that it
does not exclude Von Neumann ordinals. Alternately, one could adopt the
point of view that Von Neumann ordinals are pathological objects, of no
more mathematical interest than fingers. After some work has been done on
this one will perhaps see clearly which permutations we wish to invoke

minimality for.

If we consider the special case of minimality that asserts that
identity < complementation we infer (since o<t iff —|o <=—|1) that comple-
mentation < identity and thus that V=V . This particular case has

other motivations :

Let ¢ be obtained from ¢ by replacing € by € throughout and leaving "="
alone. Evidently
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LPC F ¢ iff ILPCF o and
I
¢ is ¢ .
(If we wish to define " in a richer language notice that we negate all

atomic wffs that do not contain '"='". = is always inviolate. This curious

circumstance merits reflection).

When ¢ is a statement about small sets, ¢ is a statement about big sets.
This suggests that we adopt as an axiom a scheme ¢ «> ¢ or even something
stronger. A model theoretic argument is available to show that whenever
<M,E,=> and < M,¢,=> are elementarily equivalent one can find M' such
that both the above are elementarily equivalent to

< M',€,=> which is isomorphic to < M',#,= >.

That is, we might as well postulate the existence of a map (possibly a pro-
per class) o such that (Y x)(V ) (x €y < o'x ¢ a'y).

Such "antimorphisms" are discussed in [ 1] where it is shown that the exis-

tence of antimorphisms which are sets contradicts ACZ' That proof does not
work if the antimorphism is merely a proper class.

Fact.
Any antimorphism of V is unique.

A product of two antimorphisms is an automorphism, of which there are none,
so there is a unique antimorphism, and that is of order 2.

Pending a decision on minimality we shall at least adopt one special case of
it :

Axiom of Duality.

There is a unique antimorphism.

PR

Duality and strong extensionality together get rid of another class of
pathological object, the Boffa atom. x is a Boffa atom if x = B'x (That is,
if x = {y : x € y}). The reader may verify that if x is a Boffa atom and =

an antimorphism then n'x is also a Boffa atom. Also that ='x is self-mem-
bered iff x isn't. If there are any Boffa atoms at all, there must be 4,




75

by duality. For consider there is only one, called one. Then one # w'one,
since one is self-membered iff n'one isn't. So there is another, call him
two. Notice one € two iff two € one, since they are Boffa atoms. By by
duality, if there is a pair of Boffa atoms that are members of each other
there must also be another pair which are not. So there must be at least
two self-membered Boffa atoms. But it is easy to see that if x and y are
self-membered Boffa atoms then II Wins GX=y : IT repeatedly plays a map =
where n'z = z if z contains neither x nor y, or both. If x € z then

'z = z - {x} VU {y} and conversely if y € z.

If there is to be a unique antimorphism we had better set about finding it.
If 7 is an antimorphism it must satisfy the identity ¢ : 7= j'n|- (- is

the complementation function).

This suggests that we devise n by approximation thus
-n .
R b e I b At RN

The infinitary expression of the right-hand side is easily seen to satisfy
the identity ¢. We now note that — is of order 2 and so is jn'— for any n.

k,

So jn'—, j o '- commute with one another so we can rewrite any finite appro-

ximation to the right-hand side as

a :-li-litel M-

If we apply this permutation to some k-symmetric set, with k less than n,
we can ignore the last n-k terms on the right, since they will not move
anything that is k-symmetric. So if x is k-symmetric an'x = am'x for any
n,m = k, and it is this eventually-constant value of the a, that we will
take to be the value of the canonical antimorphism for argument x. It is
now easy to verify that the canonical antimorphism is indeed an antimor-
phism on the symmetric sets. Any attempt to extend it to all sets meets

only partial success : Let o'x be the canonical antimorphism, defined as
above for symmetric sets, and to berﬁngQ}an'x ]n otherwise. Of course
this limit might be empty but if it isn't we argue as follows in the case x
is n-symmetric and y not symmetric (the reverse case is similar and is

ommitted)
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Xey
“«~> an'x g an+1|y
> (jn'n)'an‘x ¢ (jn+1'w)'an+1'y for any n. But a_'x is
n-symmetric so

I+ .
a 'x ¢ G" 1'w)‘anﬂ'y for any w. In particular a_'x
is not a member of o'y.

In the case where neither x nor y are symmetric but ¢'x, ¢'y are defined
we can show x € y iff an'x & an+1'y for each n but we need to find a per-
mutation w such that (jn'n]lan'x = ¢'x and (jn+1'w)|an+1'y = gy simulta-

neously and there is no obvious reason to suppose this can be done.

The set-theoretic treatment above has been far from rigorous, and no con-
sistency proofs are on offer. This second point should be seen as good
news rather than bad, since rather than saying to us that there are no
sensible set theories with a universal set, it tells us that they offer us
a glimpse of a world so different that interpretations of it in terms of
the old are not easy to come by. Besides, history shows that where the
available mathematics is sufficiently absorbing, mathematicians are much
more like to get on with developing it than worry about whether it is con-
sistent or not. The philosophical ramifications of set theory with a
universal set are simply too tempting to be ignored indefinitely.
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