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AXICI4ATISING SET THEORY WITH A UNIVERSAL SET

Thomas FORSTER

(Université de Canbridge)

Ïris paper has grown out of a talk I took round various hospitable logic
-'eminars in England in the winter term of 1981. I would like to thank
rembers of the Bedford, Carnbridge and Leeds seminars for illuuninating dis-
:ussions which have helped this document into i-ts present form.

ftere are various problems in Set theory with a universal set : chief of
:hem is persuading people that there is anything worth studying. I shall
say less on thj-s subject than I would like : you who have already read this
:ar are preswnably at least willing to listen. However I will a11ow myself
:ne gibe : ZF is obviously the core of any sensible axiomatic theory of the
"e11for-[rded sets. This is not the same as saying that there are no others.
I luch of the plausibility of ZF as an axiomatisation of Set Theory comes from
'.istaking argrments for the first for arguments for the second.
.lthough it is now over 40 years since the first axiomatj-c set theory with

" 
€ V was published there is stil no agreement on even a core for an axioma-

:isation of set theory hrith V € V. In this paper I present some (I hope)
:ersuasive motivations for some axioms. The progranme is best begun by loo-
ilng at the most basic problem of all nanely.

.
ihe problem of identity in set theory with a universal set is the same as
the problem of identity in the more general case of illfognded. set theory.
Indeed I shall not make much of the difference since there seems little
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n"rotivation for illfounded set theory i-f one is not interested in a unj-versal

se t .

The axiom of extensionalitY

( V  x ) ( V Y ) ( x  =  Y  =  ( V z )  ( z  e  x =  z  e  Y ) )

st-urunarises al1 that conventional wisdom has had to say so far about rr=rr iI1

set theory. It is the closest we come to saying in any formal sense that

sets are that-whi-ch-is-extensional. A set is just the col lect ion of i ts

members, that and no moIe. Thus extensionality, in conjunction with the

axiom of Foundation, enables us to decide when x = y by seeing if their

members are identj-ca1. The regress we are here launched on must terminate

because the ranks of the things we look at is reduced by the induction step.

I am beconing more and more convi-nced that the appeal of the axiom of Founda-

tion is sinrply that it provides us with this elegant ïecursive characterisa-

tion of identity and there by spares us the need to do any deep thinking on

the subject of identi ty of sets. Histori-cal ly this restr ict ion may have

been fruitful as it enabled us to concentrate oul efforts and attention on

those parts of set theory where results could be obtained quickly and ap-

plied widely; recently the profuse growth of parts of wellfounded set theory

of no interest to non-set theorists has begun to suggest that is has had all

the help it needs. Perhaps the ti:ne is now ripe to reopen the fLrndamental

questions we have ignored since the turn of the century.

The problem, then, is that tire regress of which I spoke in the last pala-

graph ,1x = I ? Are all their members identical ? Are all their members iden-

t ical ? . . .  ?", cannot be rel ied upon to terminate' Here we can profi tably

i-ntroduce some concepts from garne theory. Notation and ternj-nology here

will be standard except for use of the word "wins" with upper-case rlif to

mean "has a winning-strategy for" and that a strategy is not a thing that

Says',When here, do this" but only " l{hen here, do one of these", that is,

a non-cleterministic strategy. This is because, aS I have argued elsewhere

[ 1 ] ,  AC is probably false in any sensible set theory with a r.rniversal set,

so that if we use strategi-es in the standard sense (which can often be

nothing more than thinly concealed choice ftrnctions) we are 1iab1e to find
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that a game fails to have a wirming strategy - for reasons which are

nothi-ng to do with the game itself. The first game here will be notated

Gx=y ("The identity gane") to conrnemorate the fact that it is bei-ng played.

to decide whether or not x = y

Player II moves first, choosing a subset R., of x X y such that

R i ' x = y  a n d - R i ' I = x
Player I picks an ordered pair from II's previous choice

P1ayer II picks Rn*1 a subset of x' x yr, (where (xrr,In> was

I 's previous choice) s.t .  Rr+1 "*rr=I.,  urd\*t "rrr=*r,

Player II loses if she is confronted with Xn, In one of which is empty and

the other not. I loses if she picks (*rr,yr, > both of which are empty (noti-

ce that this a11ows the existence of urelemente). if the game goes on for

ever rI wins. The idea j-s that Ir is trying to prove X = y, and I is trying

to prove x I  y. In earl ier versions of this paper I I  had to pick bi ject ions

rather than relations, the rationale being that a set cannot have two iden-

tical members. The present version is probably better all the same, because

it does not compel us to decide, before we start playing, whether or not some

titings x1, *Z in x are identical (which we could discover only by playing

4..,="r). Another way of putting this would be to say that to specify formal-

iy ' thé rules governing II 's moves in the game where she has to play bi jec-

tions would use the "=" s).Tnbol whose meaning is explained only by the game

xhi-ch is yet to be played.

?1ayer I I 's choice of Rr*.,  when

i-ring x' and y' into equivalence

equivalence classes for 5 with

Jn the face of it, this suggests

R to sati-sfy a condition

faced with 5 , I. is obtained by partitio-

classes under identity and then pairing the

those for y' in some appropriate way.

that we should always require II's choice

( u  R v ^  u '  R v  A u t  R v r )  - u  R v t

but it is not hard to persuade oneself that the resulting games are equi-

r-a1ent and the proof is omitted.

G*=y it an open gane. That is to say, if player I wins at all, she has

done so after finitely many moves. So I or II must have a winning strategy.
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It is not hard to see that the relation

II Wins G*=,

is an equivalence relation. Indeed it looks like a very good candidate for

a definiens of rr1ç=yfr. However there are good reasons for looking for some-

thing even stronger. Let us defi-ne j, an operator onmaps, so that

( i  ' f )  r x  -  f r t x

and let us define, for each n, an equivalence relation -r, by

*  - r ,  I  i f f  ( fn) ( î  a  pennutat lon o f  V Â Un'n) 'x=Y)

x - - Y i f f x - n I f o r a l l n

and we invoke the notat ions for equi-valence classes [x1rr, [x l-  in the

usual way. The importance of n-congruence derives from the fact that if

* -r, y then x and y satisfy the same strati-fied predicates in which they

are of tlpe 0. This derives from a theorem, irnportant i-n the folklore of

NF, that

e  ( x , Y  , z  .  .  . )  *  ç (  (  j n " r )  ' X ,  (  j ^ ' n )  ' y ,  ( j k ' n )  ' '  "  ' )

where f l ,  i l ,  k . .  .  are the types of x, y, z '  "  in p'

This fact, uùrich will not be proved here, will be used lateI on' Thus

* -r, y says that the top n "layers" of the transitive closure of x look

like the top n layers of the transitive closure of y' This being the case'

extensionai;rty would lead us to be vely sceptical of the desirability of

having x, y such that x -- I but x I y. Since there is no obvlous way of

constructing a winning strategy in Gx=y simply from the fact that x -- y a

tougher definition of identlty will be required'

C o n s j . d e r a g a i n t h e g a m e G x = y . L e t u s S u p p o s e l h a s a w i r r r r i n g S t r a t e g y .

Let us consider thè tree of all plays obtained by I using her riinning stra-

tegy and II doi-ng anything legal. This tree is wellfounded since all plays

(branches) terminate after a finj-te m.unber of steps (the use of DC here may

or may not be significant - see the next game below where a similar problem

occurs) and accordingly has a rank. Let us notate this ordj-t"l '*,y

€ looks rather like a truth-value for rr1 = yrr but the idea of ordinals
X , Y
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as truth-values of anything is profor.rndly repugnant and

have got too much structure here, and that some of it is

nately we have the followi-ng crucial fact :

If and are both infinite, so is €
x r Y  Y  ' Z

suggests that we

spurious. Fortu-

X , Z

Proof.

"€-- -- is infinite" simply says that, for each finite integer n, player IIx r I
has a strategy that enables her to postpone defeat until after n moves have

been played. If II has such a strategy for Gx=y and one tor ar=, she can

get one fot G*=, by playing ir G*=, the composition of the plays prescribed

by her strategies in Gx=y ̂ U rr=r, having arbitrarily assigned, gi-ven I's

c h o i c e  o f ( u , v  ) ,  à  w s u c h  t h a t ( u , w  )  i s  a p l a y f o r  I  i n G x = y  a n d
( w,v ) a play for I it G,.=, . What this means is that the relation

,, a is inf ini te,,
x r Y

is an equivalence relation. And it will be our explicatj-on of rr-tt in i11-

iolrrded set-theory.

.\rj-om of strong Extensionality.

.Vx) (Vy)(x  
-  y  *  (Vn)  ( I I  has a  s t ra tegy to  postpone d.e feat  i r  G*=u

for  n  moves)) .

lf course this axiom deliberately expunges a lot of structure : If we had

lef ined rrx=ytr as "I I  Wins G*=r" then we would have lots of excit ing equi-

i-alence relations to play with, since o cannot be the only ordinal o such

that " e-- -. > q" is an equivalence relation, but we would not have esta-X ' Y
:lished that --equivalence is identity. A Quine atom is an object x = {x}.

Strong extensionality prevents there being more than one Quine atom. Indeed

it prevents there being more than one object uhose transitive closure does

:'tot contain the enpty set. It also excludes the possibility of automor-

phisms of the universe.

G*=y h"t generalisations which can be useful when defi-ning identity in mo-

dels that we obtai-n by delet ing objects, €.g. urelemente, from some init ial

model. First we identity objects whose syrmetric difference consists entl-
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rely of things to be deleted. Then we d.elete all but one of each equiva-
lence c1ass, and iterate. The same effect can be achieved by playing a
version of Gx=I where the donains and ranges of the relations played by II
do not include any objects which are to be d.eleted.

The next game we consider has a much sinrpler structure. This garne, played
wi-th an i-nitial given set x, is notated G* and is played as follows : I
moves first by picking a member of x. Thereafter I and II alternate moves,
each picking a member of the preceding player's choice, until the gane is
ended by one of thern trying to pick a member of an empty set (the game rnay
be played in urniverses with urelemente) and thereby losing. If the game
goes on for ever it is a draw. Obviously for some x (such as V) there will
be plays in G* which never termi-nate (I and II could go on for ever picking
V each time) but one has the feeling that empty sets ought to be sufficient-
1y dense in the transitive closure of x for G* to aùnit a winning strategy
for one player or the other. Let us adopt the definitions

I  =  { x :  I  W i n s  G * }  I I  =  { x :  I I  l { i n s  G ^ } .

Obvi .ous ly  x  €  I  i f f  (3y  e  x)  (y  €  I I ) ,  and dua1ly  x  €  I I  | f f  (Vy e  x)  (y  e  I ) .
l ie can rewrite this as I = UB"II (where Brx = {y :  x e y}) and II  = p'I .
If, with a view to readability, we invent a new fr.nction letter b so that
b'x = uB"x (the 'b' is an upside-down rpt to renind us that b corresponds
t o  ( 3 x  e  . . . )  a n d  p  t o  ( V x  e  . . . ) )  w e  c a n  w r i t e  i t  a s  I  =  b ? I I  a n d
II = p'r).  This is rather reminiscent of the fact that x € hF i f f
( Vy e x) (y e htr). Apart from the elegant characterisation this enables
us to give of I and II in a language whose subformula relation is illfoun-
ded it invites us to consider lvhat happens when we stick in extra quanti-

fiers, 1ike, for exarnple

x € X i f f  J I € x  V w e y  J u € w  u € y

Y V I V X

o r ,  f o r  sho r t  x  =  b l p l b 'Y  and  Y  =  p lb l p ' * .  I n  t h i s  case  I  and .  I I  a re  no
longer unique solut ions since b'Y for X and p'X for Y wil l  sat isf) '  the same
identity. This is rather reminiscent of the way ex splits into sirrlr-x and.
coshx when we require not f = Df but merely f = Dzf. Both in that case and
here rve find that by increasing the nunber of iterations more roots ir'i11
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appear. This paral1e1 will not be explored further in this paper.

Once we notice that Â e II and V e I the discussion above suggests the fo1-
lowing recursive constructi_on :

I  , n  =  U B r t I f
01 I  Cr

I I o  =  { Â }  I I o * 1  =  p ' I o

taking sunsets at lirnit ordinals.

-t is not hard to show by induction that Io and IIo are increasing sequences
.nder inclusion. Let us associate with each object in I or II its rank -

:he least s such that it belongs to Io or IIo. We shal1 need to show that
:"-erything in I or II does in fact have a rank. The proof is analogous to
::rat in ZF that every wellfounded set has a rank.

I  = { V }
o

r - rppose  x€  I I  i s  un ranked .  Theneve ryy€x  i _s  i n  I  bu t  t hen  some  y€  x
--. urranked, otherwise rank of x i-s just sup (rank'y * 1). Sirnilarly sup-
. - se  x€  I  i s  un ranked .  Then  the re  i s  yFT ,  r €  I I .  Bu t  no  suchy  canbe
-: rank o, otherwise x € Io*1 .

---:is proof of illfoundedness enables (in either case) the "losing,' player to
-':nstruct a strategy ["P1ay unranked sets !") which results in an infinite
-'-ay and a draw, contradictlng the existence of a winning strategy.

justifies the definition of I and II as the union of their partial surns
a l l  ord ina ls .

] I S

-  : C t .

- - . ,  and Io  are d is jo in t  for  a l l  o ,  B.

:,rppose q and B are minirnal counterexamples,

::  there is y e x such that y e I IU for some
' € 1 e i I^ ) must also be in I  for som€ y (

c t -  Y
' t , 3 .

then we have x  c  I I0 ,  *  €  IB.

ô < B. But any such y (since

o contradicting ninirnality of

f
I

I
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This enables us to constmct a canonical strategy for the winning player.

The ninimal strategy.

"lthen confronted with x, play anything in x n II of minirnal rank".

It i-s well lcrown that the rank of a wellfounded set x can be defined either

as the rank of e I TC'x considered as a wellfounded relation or as the least

o r d i n a l a s u c h t h a t x € V o * l . T h e r e i . s a c o r r e s p o n d i n g r e s u l t h e r e : l e t

the pseudorank of x be the least ordinal s such that x € Io*1 U IIo*1

This pseudorank of x is the same as the rank of the tree of plays obtaina-

b1e in G* by the Winning player using the minimal strategy and the other

player cioing anything 1ega1. The proof is an easy induction on rank and is

left to the reader. The reader may also wish to verify that any wellfounded

set of rank q must have pseudorank cr too. The proofs all have such an enga-

ging fami-liarity that it suggests one should adopt, as arl analogue of the

axion of foundation the following

Axiom of €-determinacy.

V  =  I  u  I I .

(There is a slight blemish to the paralle1 between the axioms of e-determina-

cy and fotrrdation, namely that e-determinacy tel1s us that we can associate

with each set x a canonical tree which is wellfor.rnded in the weak sense that

every path through it is finite. This involves DC in subsequent proofs.

hre could frame e-determinacy in a way that gets round this by defini-ng recur-

sively, on the tree of possible plays in G*, a function that takes two

values, 0 and 1 where 'rfry - 1" says "I has a lVinning Strategy from stage y"

and ,,f,y = 0" says "II has a winning strategy fron stage y". The new ver-

sion of e-d.eterminacy rvould then say that for all x, this firnction is defi-

ned on the whole of the tree of plays of G*)'

To lend plausibili-ty to this axiom, we can prove it for a large class of

sets  :
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Theorem.

Let X be n-syrunetric,n even (odd) then

""n:; i,'iil #ï: :î iTT.: H::
Let us consider only the case n = 6, to keep the formulae readable.
Then let "p(B'A'X)" be an abbreviat ion for

3 x ,  e  X  V * 4 .  * 5  J * j .  * 4  V x ,  e  x ,  1 * 1  .  * 2  x . ,  c  B ' A  .

Since II  wins G* for any x c B'^ this p(B'^,x) certainly implies that
I wins G* . (in B moves in fact) ç (A,B) is a stratified wff i-n which B is
of tlpe 6 and A is of tlpe 1, whence

9 ( B r A , X )  *  p ( U ' n ) ' B ' Â ,  U 6 ' n ) ' x )

for any permutation ï.  But U6'n) 'x = X since x is 6-synrnetr ic so

r ( B | A , X )  * *  ç ( U ' n ) ' B r ^ , X )  f o r  a l l  p e r m u t a t i o n s  r .

Let us now suppose that I does not have a strategy to lvin in g noves.
Then -ç(B 'A,X) ,  and indeed-p(Y,X)  for  any Y which is  1-equiva lent  to  B 'Â.
ùre such is  -P 'B 'Â,  whence-e ( -PrB '^ ,X)  which is

! x ,  e  X  3 * 4 .  * 5  V x ,  e  x O  3 * 2 .  * S  V * t  .  * Z  x 1  É  - P ' B ' ^

the tnderli-ned condition simplifies to

l x o e  x . ,  V x - . ,  e  x o  ' . x _ 1

r','hich is to say II Wins in 9 moves. The proofs for other finite n are si-
n i l a r .

e-determinacy can thus have no counterexamples which are sets definable by
stratified expressions .

e-detenninacy gets rid of Quine atoms for us. (Orly one play possible in
Gx if x = {x} and that never tenninates !) But there are equally patholo-
gical objects that i t  does not get r id of such as x = {x,A}. Such an ob-
ject clearly belongs to I so it does not contradict e-deterrninacy. Strong

, extensionality lirnits the nunber of such objects to 1 but does not get rid

, 
f them altogether. We shal1 find such an axiom in the next section where

L



the discussion has been broadened a bit.

I am going to introduce some canonical objects, canonical in the sense that

they are distinguished representatives of their ki,nd generated in a very na-

tural way by the theory. Whether or not they are to be set will be left

open. First is

The Canonical Topology.

The pseudorank function given by e-determinacy may eventually give us some

constructive control over V but until we have that sort of wellfoundedness

available again it is more natural to look instead frorn the top downwards

and classify sets according to what the top few layers of them look 1ike.

For this we naturally turn to n-equivalence classes. We topologise V by

taking a basi-s consisting of all sets of the form I x ] n 
. All neighbor-

hoo<ls will in fact be clopen. If we use Quine ordered pairs (so V = V X V)

we find that the product topology on V" is in fact identical with the topo-

logy on V. The fact mentioned earlier that

9 ( x , y ,  2 , . . . )  *  I  ( U n ' n ) ' X ,  ( j * ' n ) ' y ,  ( j k ' n ) ' r ,  . . .  )

where n ,  m,  k ,  . . .  are  the t lpes o f  x ,  y ,  2r . . .  can accord ing ly  be s tmrnar i -

sed as

Fact .

Functi-ons defined by stratified

seen that Strong extensionalitY

news is that

fonnulae are continuous. We have already

makes the Canonical Topology To . The bad

Fact .

The canonical topology is incompact.

In the presence of AC, we can find a permutation r so that n and jrn âï€

con juga te  ( see  [ 1 ]  ) .  Th i s  amoun ts  t o  say ing  t "  l k  =  [ j ' n ] k  f o r  some  f i xed

small k. Also we can show, for any n, that

[ ô ] n  =  [  j ' 6 l n  t  j ' ô ] n + l  =  [  j 2 ' ô l n * l  f o r  a n y  p e r r n u t a t i o n  ô

F r o r n  t h i s  i t  f o l l o w s  t h a t  t n  l k  ,  I  j ' n ] k * 1  ,  t i ? ' n l k * 2 , " ' , [ j n ' n ] k * r ,  i s  a

I
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nested sequence of closed sets, whose intersection must be a singleton ia),
Sâ). if the canonical topology is compact. It then follows that a = j'à,

which is to say that a is an automorphism. Any two objects that are inter-

changed by an automorphism must be --equivalent, so strong extensionality

will inrply that there are no non-trivial automorphisms, contradicting con-

pactness.

A set j-s synrnetric if it is isolated in the canonical topology.

-r is n-sfnrnetr ic i f  I  x ]n = ix].

That is to say, x is synrnetric iff it is n-syrrnetric for some n. The termi-

nology "synrnetric" is motivated by the fact that an n-syminetric set is fixed

by lots of permutations of V, viz : all those that are jt of something. All

sets definable by stratified expressions wj.l1 be synunetric. This suggest

that the family of synrnetric sets night be an appropriate model for any set

of axioms we wish to develop. Thi.s possibility is discussed in [ 1 ] where

it is shor.vn in NF that if SYNII{ (the family of synrnetric sets) is extensional

( i .e.,  i f  x, y are dist inct synrnetr ic sets then x A y has a syn.rnetr ic mem-

ber) then j-t is a submodel of V elementary for stratified wffs, md that AC,

"i11 fai-l. Ûne could motivate an axiom V = SYNM rather along the following

lines : strong extensionality implies that I x ]_ = ix] for all x, and

\' = SYÀ'llt{ says that for each x and some n, {x} = [ x ]n already. So "V = SYInlM"

is a natural strengthening of strong extensionality, but its consequences

are too bizarre for that to be a sufficient reason to adopt it.

.\ perrnrtation model obtained from V and a pernrutation n i-n it, (notated Vr)

is the structure obtained by keeping the same elements but rewriting e so

that x e y ( in the new sense) i f f  x € n'I  ( in the old sense). Such models

have been of great help in the devising of independence and consistency

r:esults in NF since the transition to a permutation model preserves all

stratified sentences true in the ori-gina1 nodel, and all the axioms of NF

are stratified. To procede further we shal1 need some notation. Let v be

an arbitrary peilutation

yo  =  i den t i tY .  yn+1  =  ( j ' r r r )  l v
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Now we can express the following piece of folklore

v Y  F  ç ( x , y , 2 , . . . )  ' - ' *  v  F  p ( v r r ' * , v 1 t r  , \ ^ ' 2 . . . )

where tr, k, m are the types of x, Y, z tn ç.

In particular, VY F * -n y iff yrr'* -r, yrr'I.

We shall now try to identity n-equivalence classes across permutation mo-

de1s. We will need an analogue of the j operation for mâps n : f * VY.

Calk it rn'n (a nonce notation). We have

(m'n) '1 = (n"x) i-n the sense of VY

s o  m r î  = - y l j t n l o

^ 2 , n  =  - y l - ( j ' y )  
l j Z , r l j , o l o  =  ' t 2 l j 2 , n l o z .

So to say that x (in Vo) is n-equivalent to y (in V]) becomes

(  3n )  ( I  =  - v r r l  ( j t ' n )  l o r r ' x )

If we set n = identity rtre see that vyrrlorr'* is an object in vry which has

the same n-equivalence class in VY as x does in V. In other words,

f and VY have the same n-equivalence classes. Another way of expressing

this is to say that the ca.nonical topologies in Vo, VY have the same lattice

of open sets and that the only difference is which nested sequences of clo-

sed sets have empty intersection. By judicious choice of t hre can arrange

for Vr to have, or be free of, Quine atorns. Assr-uning strong extensiornlity

the (non)-existence of Quine atoms is equivalent to the following sequence

of closed sets :

t { ^ }  l 1  ' [ { { n i }  ] z  '  [ { { { n } } }  l s  ,  . . .

having nonenpty (ernpty) intersection. This motivates a partial order of

permutations where o ( r if more intersections of closed sets of the cano-

nical topology are'empty in f than in Vr. Define

o  (  r  i f f  (  3 r l  (  V * )  (V  
" )  

C3  n )  ( f  ' x  =  - . n l j * ' n  
l o r , ' x )

Thgs o precedes t j.ff we can find a function f which sends each x e V" to

something f'x € Vr which is n-equivalent to it for each n. It is mechani-

cal to verify that ( is transitive (take cornposi-tions). It is not actually

antisynrnetr ical because o < j to ( o. (has an automorphism generatedby -,



the complementation function. cournutes with everything h Jt so 3n'-
conmutes with everything it J.r*1 . We can use this fact to verify that

o ( t  i f f- lo <-l t .  Permutations canbe used to give us models free of
rubbish like Quine atoms. One might well feel that any creature that ca:r
be thus eradicated is probably something we are better off without. This
motlvates the

Axiom of Minimality = ( r for all pennutations r.

lllinimality is the promised axiom for getting rid of things like x = {x,Â1.
The sweep made by minùnality rny be clea:rer even than that, since no-one
has yet proved that if V contains an infinite Von Newnann ordinal so must
al-1 its permutation models. If this is not true, then ninimality would

compel us to assert that all Von Neunann ordinals are finite. The read.er
nay feel that the absence of infinite Von Neunann ordinals is unfortr.rnate.
But to do arithmetic one does not need Von Neumann ordinals any more than
fingers. It does suggest, however, that if we adopt e-determinacy we will
f ind that there are no sets of inf ini te rank, sj-nce dr) Oo . Io ,  I Io).
However tirat will depend on the versions of replacement and comprehenslon
giving us, from a wellorder or length o, the von Neumarur ordinal o.

There are vari-ous ways out of this : one could weaken minfunality so that it
Coes not exclude Von Netmann ordinals. Alternately, one could adopt the
point of view that Von Netunann ordinals are pathological objects, of no
nore mathematical interest than fingers. After some work has been d.one on
this one will perhaps see clearly which permutations we wish to invoke

ninimality for.

If we consider the special case of minjmality that asserts that
identi ty ( complementation we infer (since o(r i f f  - lo < -1.) that comple-
nentation ( identity and thus that V = V This particular case has
other motivations :

Let ,p be obtained fron r by replacing e by f throughout and 1€aving ,,=rr

a1one. Evidentlv
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LPC I- ç iff LPC I r
^
9  r s p

(If we wish to define 
^ 

in a richer

atomic wffs that do not contain "=".

circurstance merits reflection) .

and

language notice that we negate all

= is always inviolate. This curious

!{hen ç is a statement about smal1 sets, ç is a statement about big sets.

T h i s s u g g e s t s t h a t w e a d o p t a s a n a x i o m a s c h e m e ' p * ô o r e v e n s o m e t h i n g

stronger. A model theoretic argtunent is available to show that whenever

( I{,€,= ) and ( MrÇr= ) are elementarily equivalent one can fi-nd Mt such

,ha'[ bo'lh *" 
î;:,:::,'îï':":Tffi::'.:". M"e,=,.

That is, we might as well postulate the exi-stence of a map (possibly a pro-

pe r  c l ass )  o  such  t ha t  (Vx ) (Vy ) ( x  e  y  < - -+  o r x  #  o ' y ) '

Such "antimorphisns" are discussed in t 1 I where it is shown that the exis-

tence of antirnorphisms which are sets contradicts ACr. That proof does not

lvork j-f the antimorphism is nerely a proper class '

E a n +
l 4 L L .

Any antunorphisrn of V is unique.

Proof.

A product of two antirnorphisms is an automorphism, of which there are none,

so there is a unique antimorphi-sm, and that is of order 2.

Pending a tlecision on mi-nimality we shal1 at least adopt one special case of

i t :

Axion of Duality.

There i-s a unique antimorphisrn.

Duality and strong extensionality together get rid of another class of

pathological object, the Boffa atom. x is a Boffa aton if x = B'x (That is,

i f  x  =  i y :  xe  y ) ) .  The  reade rnayve r i - f y  t ha t  i f  x  i s  aBo f faa tomand  r i

an antimorphisn then n'x is also a Boffa atom. Also that n'x is self-mem-

bered iff x isnrt. If there are any Boffa atoms at all, there must be 4,
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by duality. For consider there is only one, ca11ed one. Then one I nrone,

si-nce one is self-membered iff nfone isn't. So there is another, call him

two. Notice one € two iff two € one, since they are Boffa atoms. By by

duality, if there is a pair of Boffa atoms that are members of each other

there must also be another pair which are not. So there must be at least

two self-menbered Boffa atoms. But it is easy to see that if x and y are

self-membered Boffa atoms then II Wins Gx=y : II repeatedly plays a nap n

rvhere 'rtz = z if z contains neither x nor y, or both. If x € z then

r ' z  =  z  -  { x i  u  { y }  and  conve rse l y  r f ye  7 .

If there is to be a unique antimorphism we had better set about finding it.

I f  n is an antimorphisrn i- t  must satisfy the identl ty ç :  ï  = j 'nl-  (- is

the complementati-on fi-rnction) .

Thls suggests that we devise r by approximation thus

T r  =  l i t ' - l  . . . . .  I i ' - l -

The infin).tary expression of the right-hand side is easily seen to satisfy

the identtty v. l\re now note that - j-s of order 2 and so i-s jt'- fot any n.
n I r

So j'^t-, j^r- conrnute with one another so we can rewrite any finite appro-

ximation to the right-hand side as

a -  :  -  l j  ' -  l j  
2 ' -  

l  l j t ' -
n  t J

If we apply this pennutation to some k-slnunetri-c set, with k less than n,

i\e can i-gnore the last n-k terms on the right, since they will not move

anything that is k-synunetric. So if x is k-synrnetrj.c un'* = ar'x for any

n,m ) k, and it is this eventually-constant value of the a' that we will

take to be the value of the canonical antirnorphism for argument x. It is

noh'€âs/ to verify that the canonical antimorphism is indeed an antimor-

phism on the synunetric sets. Any attenpt to extend it to all sets meets

only partial success : Let o'x be the canonical antimorphism, defined as

above for synrnetr i-c sets, i ld to be n^2r[ ur, '* ]r ,  otherwise. Of course

this limit might be empty but if it rsn't we argue as follows in the case x

is n-synunetric and y not synrnetric (the reverse case is similar and is

onrnitted)



X € Y

I,,", ' ' ,,î:: :,F;ln, ,",.*1 ,r
n-synunetric so

urr , *  É ( j t *1  ' î r )  tan+1 ry

is not a member of oty.

for any n. But arrrx is

for any n. In particular arr'x

In the case where neither x nor y are synmetric but o'x, o'y are defined

we caJr show x e y iff 
"r,'* 

# a.r*l'y for each n but we need to find a per-

mutat ion r  such that  Un 'n)  ian 'x  =  o 'x  and ( jn* l 'n )  la r r * i ' y  =  oy s i rnu l ta-

neously and there is no obvious reason to suppose this can be done.

The set-theoretic treatment above has been far from rigorous, ild no con-

sistency proofs are on offer. This second poi-nt should be seen as good

news rather than bad, since rather than saying to us that there are no

sensible set theories with a universal set, it tells us that they offer us

a glimpse of a world so different that interpretations of it in terms of

the o1d are not easy to come by. Besi.des, history shows that where the

available nathematics is sufficiently absorbing, nnthematicians are much

rnore like to get on with developing it than hiorry about whether it is con-

sistent or not. The philosophical rarnifications of set theory with a

unit'ersa1 set are sinply too tempting to be ignored indefinitely.
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