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Chapter 1

Introduction:
Why Save the Universe?

This book is intended for one of two uses. It could be used as an in-
troduction to set theory. It is roughly parallel in structure to Halmos’s
classic Naive Set Theory, though more topics have been added. The book
contains exercises in most chapters, in line with its superficial character
of being an elementary set theory text, but no representation as to peda-
gogical soundness is made. Some of the exercises are very hard (these are
marked).

The other possible use of the book is to demonstrate the naturalness and
effectiveness of an alternative set theory, Jensen’s corrected version NFU
of W. V. O. Quine’s system “New Foundations” (NF), so-called because
it was proposed in Quine’s paper New foundations for mathematical logic
in 1937. No introduction to set theory based on Quine’s approach has
appeared (to my knowledge) since J. B. Rosser’s Logic for Mathematicians,
which came out in 1953 (second edition 1978). As our title implies, NFU
is a set theory in which there is a universal set.

Quine’s “New Foundations” has a bad reputation. Its consistency rela-
tive to ZFC remains an open question. In 1953 (immediately after Rosser
published his book Logic for Mathematicians, which was based on “New
Foundations”), E. Specker proved that “New Foundations” proves the
negation of the Axiom of Choice! No one has been able to derive a con-
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tradiction from NF, but the failure of AC makes it an unfriendly theory
to work in.

None of this should be allowed to reflect on NFU. NFU is known to be
consistent since the work of Jensen in 1969. It can be extended with
the Axiom of Infinity (this is implicit in our Axiom of Projections). It
is consistent with the Axiom of Choice. It can be extended with more
powerful axioms of infinity in essentially the same ways that ZFC can be
extended; we introduce an Axiom of Small Ordinals which results in a
theory at least as strong as ZFC (actually considerably stronger, as has
been shown recently by Robert Solovay). We believe that if Jensen’s result
had been given before Specker’s, the subsequent history of interest in this
kind of set theory might have been quite different.

These considerations are not enough to justify the use of NFU instead
of ZFC. What positive advantages do we claim for this approach? The
reason that we believe that NFU is a good vehicle for learning set theory
is that it allows most of the natural constructions of genuinely “naive”
set theory, the set theory of Frege with unlimited comprehension (it can
be claimed that Cantor’s set theory always incorporated “limitation of
size” in some form, even before it was formalized). The universe of sets is
actually a Boolean algebra (there is a universe; sets have complements).
Finite and infinite cardinal numbers can be defined as equivalence classes
under equipotence, following the original ideas of Cantor and Frege. Ordi-
nal numbers can be defined as equivalence classes of well-orderings under
similarity. The objects which cause trouble in the paradoxes of Cantor
and Burali-Forti (the cardinality of the universe and the order type of
the ordinals) actually exist in NFU, but do not have quite the expected
properties. Many interesting large classes are actually sets: the set of all
groups, the set of all topological spaces, etc. (most categories of interest,
actually). The reason that the paradoxes are avoided is a restriction on the
axiom of comprehension. These paradoxes, and the paradox of Russell,
are discussed in the text.

The restriction on the axiom of comprehension which NFU shares with
“New Foundations” is not very easy to justify to a naive audience, un-
less one starts with a presentation of the Theory of Types. We do not
introduce NFU in this way; we use a finite axiomatization (Hailperin first
showed that NF is finitely axiomatizable) to introduce NFU in a way quite
analogous to the way that ZFC is usually introduced, as allowing the con-
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struction of sets and relations using certain basic operations. The basic
operations used are quite intuitive. Set-builder notation is introduced
early, and the impossibility of unrestricted comprehension is pointed out
in the usual way using Russell’s paradox. After the arsenal of basic con-
structions is assembled, the schema of stratified comprehension is proved
as a theorem.

Another point for those familiar with the usual treatment of NF and NFU
is that we use notation somewhat more similar to the notation usually
used in set theory, avoiding some of the unusual notation going back to
Rosser or Principia Mathematica which has become traditional in NF and
related theories. Our notation does have some eccentricities, which are
discussed in the section titled “Parentheses, Braces and Brackets” (p. 76).

The usual set theory of Zermelo and Fraenkel is not entirely neglected;
there is an introduction to the usual set theory as an alternative, motivated
in the context of NFU by a study of the isomorphism types of well-founded
extensional relations, in section 19.2.

There is a study of somewhat more advanced topics in set theory at the
end, including the proof of Robert Solovay’s theorem that the existence
of inaccessible cardinals follows from our Axiom of Small Ordinals. There
is also a discussion of the analogous system of “stratified λ-calculus” in
which the notion of function rather than the notion of set is taken as
primitive.

All references are deferred to the section of Notes at the end (Chapter 24,
p. 217).

Exercise

Find and read Quine’s original paper New foundations for mathematical
logic.



14 Chapter 1. Introduction: Why Save the Universe?



Cahiers du Centre de logique
Volume 10

Chapter 2

The Set Concept.
Extensionality. Atoms

If the reader glances at the Introduction, he may expect an unusual treat-
ment of set theory and its use as a foundation for mathematics in these
pages. If our premise is correct, this will not be the case. The basic fact
that mathematics is here founded on the undefined concepts of set and
membership is unchanged. The notion of ordered pair is also treated as
primitive, but we will indicate how it could be defined using the set con-
cept. The techniques which are used to achieve this end differ only in
technical detail from the techniques used in a more familiar treatment.
We believe that the constructions given here are if anything more natural
than the traditional constructions; that is why this book was written.

What is a set? This is not a question that we will answer directly. “Set” is
an undefined notion. The reader will have to count on her intuitive notion
of what a “set” or “collection” is at the start. She may find that some of
the properties of the set concept that we develop here will be somewhat
unfamiliar.

A set or collection has members. The basic relationship between objects
in our theory, written a ∈ b, can be translated “a is an element of b” or
“a is a member of b” or “a belongs to b”. One way in which it should
not be translated is “a is a part of b”. The subset or inclusion relation,
to be introduced later, is a better translation for the intuitive relation of
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part to whole. This is the major intuitive pitfall with set theory; a set
does not have its elements as parts. An important difference between the
membership relation and the relation of part to whole is that the latter is
transitive but the former is not: if A is a part of B and B is a part of C,
then A is a part of C; but it is not the case that given A ∈ B and B ∈ C,
A ∈ C follows. We will see counterexamples to this shortly.

A set is exactly determined by its members. This can be summarized in
our first axiom:

Axiom of Extensionality. If A and B are sets, and for each x, x is an
element of A if and only if x is an element of B, then A = B.

The Axiom of Extensionality can be paraphrased in more colloquial En-
glish: “Sets with the same elements are the same”.

Not all objects in our universe are sets. Objects which are not sets are
called “atoms”. You can think of ordinary physical objects, for instance,
as being atoms. We certainly do not think of them as being sets! Atoms
have no elements, since they are not sets:

Axiom of Atoms. If x is an atom, then for all y, y #∈ x (read “y is not an
element of x”).

An advantage of the presence of atoms is that we can suppose that the
objects of any theory (or the objects of the usual physical universe) are
available for discussion, even if we do not know how to describe them as
sets or do not believe that they are sets. It turns out that our axioms
will allow us to prove the existence of atoms, which is a rather surprising
result!

Observe that the converse is not necessarily true: if an object has no
elements, we cannot conclude that it is an atom. It is possible for there
to be sets with no elements. What we can prove using the Axiom of
Extensionality is that there is no more than one set with no elements:

Theorem. If A and B are sets, and for all x, x is not an element of A and
x is not an element of B, then A = B.

Proof. — For all x, if x is an element of A, it is an element of B and
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vice versa (a false statement implies anything. . . ). By Extensionality, A
and B must be equal. !

We will state axioms shortly which will guarantee the existence of a set
with no elements. This unique set is called the empty set and denoted by
the symbol { }.

A natural way to specify a set is to take the collection of all objects with
some property. For example, we could consider the collection of all prime
numbers greater than 17. This is a technique of specifying sets which has
pitfalls (we will see some of these in later chapters), and we will not use
it as our technique of choice for building sets at first, but it does inspire
a very useful notation for sets. The set of all prime numbers greater than
17 can be written {x | x is a prime number and x is greater than 17}; in
general, the collection of all objects with property φ can be written {x | x
has property φ}, which is read “The set (or class, or collection) of all x
such that x has property φ”. The choice of the letter representing elements
of the proposed set is indifferent: the expressions {x | x has property φ},
{y | y has property φ} and {A | A has property φ} are exactly the same
(as long as appropriate substitutions of y or A for x are made in the
description of the property φ: {x | x is a prime number and x is greater
than 17} is equivalent to {A | A is a prime number and A is greater than
17}).

It will turn out that not every set of the form {x | x has property φ}
actually exists; there are properties which cannot define sets. We will in-
troduce such a property eventually. As a consequence, we will not use the
general technique of collecting all objects with a given property to build
sets; we will use a number of basic (and natural) constructions which ex-
perience indicates are safe to build sets. We will eventually use properties
of these basic constructions to prove a theorem showing that a large class
of properties (the “stratified” properties) do in fact define sets, and after
the proof of this theorem we will use sets of the form {x | x has property
φ} much more freely. Some of the basic constructions which we use are
incorrectly considered to be “dangerous” because they lead to problems in
the context of the usual set theory; for instance, this set theory has a uni-
versal set. Illustrating the fact that such constructions are not dangerous
is one of the aims of this work.

If the reader feels that arbitrary collections of objects of our theory must
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exist in some sense, he can understand the sentence “the set {x | x has
property φ} does not exist” as meaning not that there is no collection of
all objects x of our theory such that φ, but that this collection cannot be
regarded as a set in our theory; such collections which are not sets will
sometimes be discussed (we call them “proper classes”).
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Chapter 3

Boolean Operations on Sets

We will now introduce the first of the basic set constructions promised
in the last chapter. Two particular sets which we might expect to find
are { }, the empty set mentioned in the previous chapter, and V , the
universe, the set which contains everything. Notation for these sets might
be {x | x = x} or {x | True} for V , and {x | x #= x} or {x | False} for { }.
We state an axiom:

Axiom of the Universal Set. {x | x = x}, also called V , exists.

We will not need a special axiom for { }, for reasons which will become
evident shortly. Be warned: this is our first departure from the usual set
theory ZFC; in ZFC, the Axiom of the Universal Set is false; the universe
does not exist. The reasons for this will be made clear in a later chapter.

Given a set A, an obvious set which might leap to mind would be the
set of all things not in A. If A were the set of beautiful things, the
complementary set which would come to mind is the set of things which
are not beautiful. We assert an axiom providing the existence of such sets
(the symbol #∈ is read “is not an element of”):

Axiom of Complements. For each set A, the set Ac = {x | x #∈ A}, called
the complement of A, exists.
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Two things to note here: the Axiom of the Universal Set and the Axiom
of Complements together imply that the empty set { } exists: the empty
set can be constructed as the complement of the universe, i.e., { } =
V c; the Axiom of Complements is uniformly false in ZFC, where no set
has a complement. We believe that the presence of the universe and of
complements together actually give the system of set theory presented
here a more intuitive flavour than the usual set theory.

When we have two sets A and B, a natural set to consider is the set
which contains all the elements of both A and B. If A is the set of green
objects and B is the set of red objects, the set we are interested is the
set of all objects which are either green or red. In this case, the two sets
do not overlap; if A were the set of college professors and B were the set
of absent-minded people, the set we are interested in would be the set of
people who are either college professors or absent-minded or both. We
assert an axiom to provide for this kind of set:

Axiom of (Boolean) Unions. If A and B are sets, the set

A ∪B = {x | x ∈ A or x ∈ B or both},

called the (Boolean) union of A and B, exists.

These are the only new primitive constructions and axioms required for
most of this chapter. There are several derived set operations and relations
among sets which we will need to define.

Given two sets A and B, another set which we might want to consider is
the set of objects in the “overlap” between A and B; if A were the set of
college professors and B were the set of absent-minded persons, the set
of interest would be the set of absent-minded college professors. We can
prove that such sets exist for every A and B:

Theorem. For each set A and B, the set

A ∩B = {x | x ∈ A and x ∈ B},

called the (Boolean) intersection of A and B, exists.

Proof. — A ∩ B = (Ac ∪ Bc)c. An object is an element of (Ac ∪ Bc)c

exactly if it is not an element of Ac ∪Bc. An object is not an element of
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Ac ∪ Bc exactly if it is not the case either that it is an element of Ac or
that it is an element of Bc; equivalently, if it is not the case either that it
is not an element of A or that it is not an element of B. But this is true
exactly if it is an element of A and an element of B. !

Note the possible confusion caused by two different uses of the word “and”
in English: an object belongs to A ∩B if and only if it belongs to A and
belongs to B, but the set made up of the elements of A and the elements
of B is A ∪ B. We simply have to be careful: these two different uses of
“and” are logically totally different from one another.

In some contexts, the “working universe” is not the whole of V . This
causes problems when complements are to be taken. For instance, if we
are working in arithmetic we think of the complement of the set of even
numbers as being the set of odd numbers, rather than the set of all odd
numbers and non-numbers. It is convenient to define a new concept, in-
troduced in the following:

Theorem. For each pair of sets A, B, the set

B −A = {x | x ∈ B and x #∈ A},

called the relative complement of A with respect to B, exists.

Proof. — B −A = B ∩Ac. !

A final operation on sets (only occasionally used):

Definition. For A, B sets, we define the symmetric difference A ∆ B as
(B −A) ∪ (A−B).

A very important relation between sets is the “subset” relation, or “inclu-
sion”. We say that “A is a subset of B” or that “A is included in B” if
every element of A is also an element of B. We give a

Definition. A ⊆ B (A is a subset of B, A is included in B) exactly if A
and B are sets and for every x it is the case that if x is an element of
A, then x is an element of B.

A ⊂ B (A is a proper subset of B, A is properly included in B) exactly
if A is a subset of B and A is not equal to B.
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A ⊇ B and A ⊃ B are the converse relations, read “A is a superset
of B or A contains B”, “A is a proper superset of B or A properly
contains B”.

Theorem. { } ⊆ A for every set A.

Proof. — If x is an element of { }... (anything, including “x is an element
of A”, follows). !

We can see that inclusion is not equivalent to membership; { } ⊆ { } by
the Theorem, but it is not the case that { } is an element of { }! The
relation between inclusion and the operations above is expressed in the
following:

Theorem. For all sets A, B, A ⊆ B exactly if A ∪B = B.

A formal proof is left to the reader. It should be obvious that adding all
the elements of a subset of B to B will not change B!

We define another important relationship between sets:

Definition. Sets A and B are said to be disjoint exactly if for every x,
either x is not an element of A or x is not an element of B or both
(i.e., no x belongs to both A and B).

Sets are disjoint if they do not overlap; this insight is equivalent to the
following result, which we state without proof:

Theorem. Sets A, B are disjoint exactly if A ∩B = { }.

There is no conventional symbol for the relationship of disjointness, so the
result of this Theorem is used to represent disjointness symbolically. It is
not correct to say that disjoint sets A and B have “no intersection”; they
do have an intersection, namely the empty set, but this intersection has
no elements. The notion of disjointness extends to more than two sets:
for example, sets A, B, and C are said to be disjoint if there is no object
which belongs to more than one of them. The condition A ∩B ∩C = { }
is weaker; this merely asserts that there is no object which belongs to all
three sets, and allows for the possibility that an object may belong to two
of them. For this reason, collections of disjoint sets with more than two
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elements are often referred to as pairwise disjoint sets; the real condition
in the case above is that A ∩B = A ∩ C = B ∩ C = { }.

The operations and relations defined in this chapter comprise an inter-
pretation of the field known as “Boolean algebra”; we will distinguish
the operations defined here as “Boolean operations”. We list some useful
facts about them which are also axioms or theorems of Boolean algebra,
expressed in our notation:

commutative laws: A ∩B = B ∩A
A ∪B = B ∪A

associative laws: (A ∩B) ∩C = A ∩ (B ∩C)
(A ∪B) ∪C = A ∪ (B ∪C)

distributive laws: A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩C)
A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪C)

identity laws: A ∪ { } = A
A ∩ V = A

idempotence laws: A ∪A = A
A ∩A = A

cancellation laws: A ∪ V = V
A ∩ { } = { }

De Morgan’s laws: (A ∩B)c = Ac ∪Bc

(A ∪B)c = Ac ∩Bc

double complement law: (Ac)c = A

other complement laws: Ac ∩A = { }
Ac ∪A = V
V c = { }
{ }c = V

inclusion principles: A ⊆ B exactly if A = A ∩B
also exactly if B = B ∪A.
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These laws should remind one to some extent of the ordinary rules of
algebra for addition and multiplication; but notice the exact symmetry
between the two operations, and that nothing in the usual algebra cor-
responds to the complement operation (in particular, not the additive
inverse!)

The operations of union and intersection as we have defined them allow
us to combine finitely many sets, or to find the common part of finitely
many sets, by repeated application of the binary Boolean operations. We
will sometimes want to define unions and intersections of collections of
sets which are not necessarily finite; this is provided by the following

Axiom of Set Union. If A is a set all of whose elements are sets, the set⋃
[A] = {x | for some B, x ∈ B and B ∈ A}, called the (set) union of

A, exists.

The construction of set intersections will require the assistance of axioms
not yet provided. Since we chose Boolean union as a primitive and used
it to define Boolean intersection, we will follow precedent and patiently
wait until we have the required additional machinery needed to construct
set intersections.

Exercises

(a) The smallest Boolean algebra consists of the sets { } and V . Develop
an interpretation of this Boolean algebra in mod 2 arithmetic, giving
definitions of the operations of Boolean algebra in terms of the opera-
tions of the arithmetic. What Boolean algebra operations correspond
to your arithmetic operations? Explain why there are two different
nontrivial interpretations.

(b) Verify that the symmetric difference operation is commutative and
associative, and that intersection distributes over it.

(c) Look up “Venn diagrams” in another source and verify some of the
axioms given at the end of the chapter or the results of the previous
exercise using Venn diagrams.
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Chapter 4

Building Finite Structures

So far, we have no assurance that there are any sets other than V and
{ }. All of the Boolean axioms are satisfied if these are the only sets. We
provide a new axiom which will enable us to build a wide range of finite
structures:

Axiom of Singletons. For every object x, the set {x} = {y | y = x} exists,
and is called the singleton of x.

Definition. If x, y are objects, we define {x, y}, called the unordered pair
of x and y as {x}∪ {y}; we define unordered triples {x, y, z} as {x}∪
{y} ∪ {z} and all unordered n-tuples {x1, ..., xn} in the same way (as
{x1}∪{x2, . . . , xn}, an inductive definition depending on the previous
definition of the (n− 1)-tuple).

Observe that the expression {x, x} represents {x}, and, similarly, a symbol
like {x, x, y} represents {x, y}; duplications in this notation for finite sets
can be ignored. Also, {x, y} = {y, x}; order of items in the name of a
finite set makes no difference to its meaning.

We can build more complicated structures in this way: for example,
we can construct the objects { }, {{ }}, {{{ }}}, etc, or such things as
{{{ }}, {{V }, {{V }}}}. In the usual set theory, the numbers are con-
structed in this way; ‘0’ is defined as { }, ‘1’ is defined as {‘0’}, ‘2’ is
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defined as {‘0’,‘1’}, ‘3’ is defined as {‘0’,‘1’,‘2’}, and so forth. We use sin-
gle quotes to distinguish these “von Neumann numerals” from the rather
different objects which we will identify as the natural numbers. The indi-
vidual von Neumann numerals exist in our system, but the set of all von
Neumann numerals does not necessarily exist (although it is possible for
it to exist).

One general kind of structure that can be constructed deserves its own

Definition. We define 〈x, y〉, the Kuratowski ordered pair of x and y as
{{x}, {x, y}}.

It is straightforward to prove the following Theorem, whose proof is omit-
ted:

Theorem. 〈a, b〉 = 〈c, d〉 exactly if a = c and b = d. In particular, 〈a, b〉 =
〈b, a〉 exactly if a = b (note that 〈a, a〉 = {{a}}).

It is possible to develop the theory of pairs, and thus of functions and
relations, using the Kuratowski pair, but it turns out to be inconvenient
to do so in this set theory. In the usual set theory, 〈a, b〉 is used as the
ordered pair; in a later chapter, we will discuss the problems with use of
the Kuratowski pair in our set theory.

We will introduce the ordered pair as an independent primitive notion,
since use of the Kuratowski pair introduces technicalities which we prefer
to avoid. We start this by means of an

Axiom of Ordered Pairs. For each a, b, the ordered pair of a and b, (a, b),
exists; (a, b) = (c, d) exactly if a = c and b = d.

Notice that we say nothing about whether (a, b) is a set or an atom (and
thus nothing about what might be an element of an ordered pair). We will
be able to prove some results about this later (it will be a consequence of
axioms not yet introduced that “most” pairs must be atoms, a corollary of
the fact, which we will prove, that “most” objects are atoms; this makes
an actual definition of our pair in terms of set constructions impossible).
Pairing, like the construction of singletons, allows us to build new finite
structures:

Definition. The n-tuple (x1, x2, . . . , xn) is defined as (x1, (x2, . . . , xn));
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this is an inductive definition, depending on the prior definition of the
(n−1)-tuple. For example, (x1, x2, x3) = (x1, (x2, x3)). Note that any
n-tuple (x1, . . . , xn−1, xn) is also an (n−1)-tuple, (x1, . . . , (xn−1, xn)).

We close this short Chapter by providing for the construction of certain
collections of ordered pairs :

Axiom of Cartesian Products. For any sets A, B, the set

A×B = {x | for some a and b, a ∈ A, b ∈ B, and x = (a, b)},

briefly written {(a, b) | a ∈ A and b ∈ B}, called the Cartesian product
of A and B, exists.

Definition. For any set A, we define A2 as A × A and An+1 as A × (An)
for each natural number n > 1. Grouping is important here because
the Cartesian product is not associative.

We will hereafter use without comment the kind of extension of our set
builder notation which uses finite structures in place of a simple variable
to represent the typical element of a set, exemplified in the notation of this
axiom. The uses of the specific sets introduced by the axiom will become
apparent in the next chapter.

Exercises

(a) Prove the theorem about Kuratowski ordered pairs.

(b) Look up the alternative definition of the ordered pair in the Notes and
prove that it satisfies the basic property of an ordered pair.

(c) Verify our observation that the Cartesian product is not associative.
Can it ever be true that (A× B)× C = A× (B × C)?

(d) What interpretation might one place on the Cartesian powers A1 and
A0?



28 Chapter 4. Building Finite Structures



Cahiers du Centre de logique
Volume 10

Chapter 5

The Theory of Relations

Just as we associate sets with (some) properties of objects, so we can asso-
ciate sets with relations between two or more objects, with the assistance
of the ordered pair construction. For instance, we interpret the relation
“is less than” among numbers as the set of ordered pairs (m, n) of nat-
ural numbers such that m < n. The use of the pair is that it allows us
to reinterpret a relation pertaining to a “configuration” of two or more
objects as a property of a single “abstract” object associated with that
configuration.

Definition. A relation is a set of ordered pairs. An n-ary relation is a set
of ordered n-tuples (note that any n-ary relation is also an (n−1)-ary
relation, because all n-tuples are also (n− 1)-tuples).

We will use a distinctive notation for relations: if the name of a relation is
R, we will write “x R y” for “x stands in the relation R to y”. The exactly
equivalent statement “(x, y) belongs to R” will be written “(x, y) ∈ R”.

We will want to use certain infix operators which represent relations (for
example, “=” and “⊆”) as names of sets as well. To avoid confusion,
we enclose an infix operator symbol in brackets (as for example “[=]” or
“[⊆]”) when it is being used as the name of a set rather than as an infix.

We provide some specific relations of interest:
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Axiom of the Diagonal. The set [=] = {(x, x) | x ∈ V } exists (this is the
equality relation).

Axiom of Projections. The sets π1 = {((x, y), x) | x, y ∈ V } and π2 =
{((x, y), y) | x, y ∈ V } exist (these are the relations which an ordered
pair has to its first and second terms, which are technically referred
to as its projections). These names may be used as relation symbols.

The names of the last two axioms reflect geometrical concepts; the graph
of y = x on the plane (the Cartesian product of the real line with itself) is
a diagonal, and the coordinates x and y of a point (x, y) in the plane are
its projections onto the coordinate axes. The Axiom of Projections has a
special role which is not immediately obvious; it allows us to prove that
there are infinitely many objects, as we will see below.

The Boolean operations give us operations on relations ”ready-made”. Ob-
serve that { } is a relation (it has no elements which are not ordered pairs!),
and clearly the “smallest” possible (no object stands in this relation to any
other). The “largest” possible relation is V × V , the Cartesian product
of the universe and itself, i. e., the set of all ordered pairs (each object
stands in this relation to each other). The relation symbol we will use for
V ×V will be V 2. (It is possible that V 2 = V , and it would be technically
convenient if we postulated this, but we prefer not to add axioms for rea-
sons of pure technical convenience.) The natural notion of complement for
a relation is relative to V 2, so if R is a relation symbol, we will use Rc as
the relation symbol corresponding to the set V 2 −R; we can write this as
an equation: Rc = V 2 −R. Note that the relation symbol for the relation
that never holds is (V 2)c. The definitions of relation symbols R ∩ S and
R ∪ S do not require comment. We summarize:

Definition. V 2 = V × V ; Rc = V 2 −R.

We now introduce some additional operations on relations. Both are natu-
ral constructions. Suppose that L stands for the relation “loves”; “x L y”
stands for “x loves y”. In English, we can also say “y is loved by x”. The
construction in the theory of relations which corresponds to the passive
voice in English is called the “converse”: the converse of L is written L−1,
and we write “y L−1 x” to mean “y is loved by x”. The converse operation
can be applied both to relation symbols and to set names: for instance,
(A×B)−1 = (B ×A). We state the following
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Axiom of Converses. For each relation R, the set R−1 = {(x, y) | y R x}
exists; observe that x R−1 y exactly if y R x.

Consider the relation “is the paternal grandmother of”. The fact that
x is the paternal grandmother of y is mediated by a third party; x is
the paternal grandmother of y exactly if there is a z such that x is the
mother of z and z is the father of y. This is the model for the second
primitive operation on relations that we introduce. If we write “x M y”
for “x is the mother of y” and “x F y” for “x is the father of y”, the
operation we will introduce will enable us to write “x M |F y” for “x
is the paternal grandmother of y”. The operation defined here is called
“relative product”, and relative products are provided by an

Axiom of Relative Products. If R, S are relations, the set

(R|S) = {(x, y) | for some z, x R z and z S y},

called the relative product of R and S, exists.

A useful notion extending this is the notion of a “power” of a relation:

Definition. We define R0 as [=] and R1 as R for each relation R; for each
positive natural number n, we define Rn as R|(Rn−1).

There is no problem with grouping in this definition, since the relative
product is associative. There is the potential difficulty of ascertaining
whether a Cartesian or relation power is intended, which one hopes will
always be resolvable from the context.

Next, we consider how to get information about relations back down to
the level of sets. If it is true that “x L y” (x loves y), we would like to
say that x is a lover; we would like to be able to define the set of objects
which have the relation L to something, without reference to what that
something might be. The set of things which stand in the relation L to
something is called the domain of L and represented by dom(L); this is
summarized in the

Axiom of Domains. If R is a relation, the set

dom(R) = {x | for some y, x R y},

called the domain of R, exists.
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If dom(L) stands for the set of lovers, we may complain that we have not
provided for the set of beloveds, but this is simply the domain of L−1. We
call the domain of the converse of a relation the range of the relation:

Theorem. If R is a relation, the set rng(R) = {x | for some y, y R x},
called the range of x, exists.

Proof. — rng(R) = dom(R−1). !

We introduce a related notion:

Definition. If R is a relation, we define the field or full domain of R, written
Dom(R), as dom(R) ∪ rng(R).

The final construction we provide here is the construction of “singleton
images” of relations. We would certainly like to believe that for every R
there is a relation SI{R} such that {x} SI{R} {y} exactly if x R y; it
turns out that such relations are important.

Axiom of Singleton Images. For any relation R, the set

SI{R} = {({x}, {y}) | x R y},

called the singleton image of R, exists.

The existence of “singleton images” of sets is an easy theorem:

Theorem. For each set A, the set P1{A} = {{x} | x ∈ A} exists.

Proof. — P1{A} = dom(SI{A×A}). !

The reader might want to prove this

Theorem.
⋃

[P1{A}] = A

With these axioms for sets and relations, we have arrived at a certain
“critical mass” of primitive concepts and propositions. We will spend the
next chapters elaborating the consequences of these axioms; it turns out
that they have a great deal of logical power. We will not introduce more
axioms until we have “digested” some of the consequences of the axioms
we already have.
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We close with a list of axioms for the “algebra of relations” taken from a
book by Tarski and Givant; the “algebra of relations” is generally a less
familiar subject than Boolean algebra. Understanding and verifying these
axioms could be a useful exercise.

A ∪B = B ∪A;
(A ∪B) ∪ C = A ∪ (B ∪ C);
(Ac ∪B)c ∪ (Ac ∪Bc)c = A;
A|(B|C) = (A|B)|C;
(A ∪B)|C = (A|C) ∪ (B|C);
A|[=] = A;
(A−1)−1 = A;
(A ∪B)−1 = A−1 ∪B−1;
(A|B)−1 = (B−1|A−1);
(A−1|((A|B)c)) ∪Bc = Bc.

Exercises

(a) Verify some or all of the axioms for relation algebra given at the end
of the chapter. In particular, prove that the relative product is asso-
ciative.

(b) (open ended) What difficulties would you encounter in trying to de-
velop a system for reasoning about relations using diagrams (analogous
to the method of Venn diagrams which you were asked to read about
in an earlier exercise)? Do you think that such a system could be
developed?
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Chapter 6

Sentences and Sets

We now pause to analyze the structure of the language we are using. We
are going to define the notion “sentence (of first-order logic)”; we will not
introduce any special symbolism, but rather a careful technical definition
of the meaning of certain English expressions.

6.1. The Definition of “Sentence”

The first notion we need to define is “atomic sentence”. Informally, an
atomic sentence asserts that an object x has a property P (we can write
this Px) or that objects x, y stand in a relation R to one another (where
“relation” does not mean “set of ordered pairs”) (we can write this Rxy),
or that a list of objects x1 . . . xn satisfy an “n-ary relation” G (we write
this G[x1, . . . , xn]). Informal examples: Gx, meaning “x is green”; Lxy,
meaning “x loves y”; Txyz, meaning x takes y from z. An atomic sentence
can be thought of as expressing a simple fact about the world (or, at least,
one that we have not analyzed logically).

We now give a semi-formal

Definition. An atomic sentence is a sentence of the form P [x1, . . . , xn],
where P is a predicate (property or relation) applicable to a list of
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n objects. The brackets and commas in the sentence can be omitted
where this is convenient.

The first kind of complex structure we consider is the building of complex
sentences using words like “not”, “and”, “or”, “implies”, and “if and only
if” (usually abbreviated “iff”; we often say “exactly if” or “exactly when”).
These words are called “propositional connectives”. We regard negation
and conjunction as primitive, and we define other English propositional
connectives in terms of these. Their meanings in common English usage
are less precise.

disjunction: (φ or ψ) is defined as not((not φ) and (not ψ)). Notice that
this is the “non-exclusive or”, written “and/or” in legal documents.

implication: (φ implies ψ) or, equivalently, (if φ then ψ) is defined as ((not
φ) or ψ), an odd definition, but one which grows on you.

if and only if: (φ iff ψ) is defined as ((φ implies ψ) and (ψ implies ψ)).

Notice that we allow the non-English expedient of parentheses to clarify
the structure of sentences built with propositional connectives.

The remaining construction of sentences is the use of “quantifiers” such
as “for all x”, “for some x”, “for exactly one x”. We give examples of
sentences using these: “All men are mortal” translates to “For all x, if x
is a man, then x is mortal”. A mathematical sentence using two quantifiers
is “Every number has prime divisors”, which translates to “For all x, if x
is a number then there is a y such that y divides x and y is prime”.

We take “for some x” as primitive. “there is an x such that. . .” and
“there exists x such that . . .” and similar constructions are regarded as
synonymous. We now give the complete semi-formal definition of sentence:

Definition (sentence). The following clauses define our technical meaning
of sentence. (It may be useful to be aware that logicians normally use
the term “formula” for what we call a “sentence” and reserve the term
“sentence” for formulas containing no free variables.)

atomic: An atomic sentence is a sentence.
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negation: If φ is a sentence, “not φ” is a sentence.

conjunction: If φ and ψ are sentences, “φ and ψ” is a sentence.

existential quantifier: If φ is a sentence and x is a variable, “for some
x, φ” is a sentence.

completeness of definition: Every sentence is constructed using these
clauses alone.

We give the definition of the universal quantifier:

Definition (universal quantifier). “for all x, φ” is defined as “not(for some
x, (not φ))”. “for each x” and “for any x” are regarded as synonymous
alternatives to this.

We define some basic notions useful in discussing quantifiers:

Definition. An occurrence of a variable x is said to be bound in a sentence
when it is part of a sentence “for some x, φ”. (and so when it is part
of a sentence “for all x, φ” as well). An occurrence of a variable which
is not bound is said to be free.

Definition. When φ is a sentence and y is a variable, we define φ[y/x] as
the result of substituting y for x throughout φ, but only in case there
are no bound occurrences of x or y in φ. (We note for later, when
we allow the construction of complex names a which might contain
bound variables, that φ[a/x] is only defined if no bound variable of a
occurs in φ (free or bound) and vice versa).

It is possible to give a more general definition of substitution, but this one
is simple. The reason that it is adequate is that it is always possible to
rename a bound variable without changing the meaning of a sentence. A
substitution blocked by the restriction on the definition of substitution can
be carried out by first changing the names of bound variables as indicated
in the following

Fact. The meanings of “for some x, φ” and “for all x, φ” are unaffected
by substitutions yielding “for some y, φ[y/x]” and “for all y, φ[y/x]”,
when the substitutions are meaningful.

For example, “All men are mortal” is equally well translated by “for
all x, if x is a man then x is mortal” and “for all y, if y is a man
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then y is mortal”. This should remind you of similar considerations
regarding “set-builder” notation {x | φ}; the x in this notation is also
a bound variable, as we will see below.

We can now give another

Definition (uniqueness quantifier). “for exactly one x, φ” is defined as
“(for some x, φ) and (for all x, for all y, (φ and φ[y/x]) implies x = y)”.
It is required that φ[y/x] be defined, which may require renaming of
bound variables in φ.

We now show how to introduce names into our language. At the moment,
there are no nouns in our language, only pronouns (variables). The basic
construction for nouns is (the x such that φ), where φ is a sentence. The
meaning of this name will be “the unique object x such that φ, if there
is indeed exactly one such object, otherwise the empty set.” A special
sentence construction which does not fall under this definition is “(the x
such that φ) exists”, which is taken to mean “there is exactly one x such
that φ”.

These names cover not only the case of unique objects as in “0 = (the
natural number n such that for all natural numbers m, n + m = m + n =
m)” but also the case of definitions of operations : the union A ∪ B of
two sets can be defined as (the C such that for all x, x ∈ C iff (x ∈ A
or x ∈ B)) and the set builder notation {x | φ} can be defined as (the
A such that for all x, x ∈ A iff φ). Notice that x is a bound variable
in this “complex name”; there is an additional requirement that there be
no occurrences of A in φ. Variables free in a complex name (as in the
definition of Boolean union) are called parameters of the name.

We give a semi-formal definition of complex names (this is a variation on
Bertrand Russell’s Theory of Descriptions):

Definition. A sentence ψ[(the y such that φ)/x] is defined as “((there is
exactly one y such that φ) implies (for all y, φ implies ψ[y/x])) and
((not(there is exactly one y such that φ)) implies (for all x, (x is the
empty set) implies ψ))”. Renaming of bound variables may be needed.

Definition. A sentence “(the x such that φ) exists” is defined as “there
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is exactly one x such that φ”. “exists” is not to be understood as a
predicate.

A useful logical construction is the restriction of bound variables to sets.
We give definitions.

Definition. “for all x ∈ A, φ” means “for all x, if x ∈ A, then φ”.

“for some x ∈ A, φ” means “for some x, x ∈ A and φ”.

“for exactly one x ∈ A, φ” means “for exactly one x, x ∈ A and φ”.

“the x ∈ A such that φ” means “the x such that x ∈ A and φ” (this
may serve to explain the idiom “the natural number n such that. . .”
used above without comment).

6.2. The Representation Theorem

Our interest in first-order logic is to explain conditions under which sets
{x | φ} exist. What we will do is provide set-theoretical constructions
which parallel the sentence constructions above, using the primitive set
and relation constructions we have given in the last few chapters.

The “predicates” (properties and relations) in atomic sentences correspond
(sometimes) to sets and relations (in the set theory sense “sets of ordered
pairs or n-tuples”). We note this in the context of a

Definition. A property G is said to be realized by the set {x | Gx} if this
set exists. We call the set G! when confusion with the predicate needs
to be avoided.

A relation R[x1, ..., xn] among n objects is said to be realized by the
set {(x1, . . . , xn) | R[x1, . . . , xn]} when this set exists. We will call
this set R! when confusion with the predicate needs to be avoided.

The constructions of sentences not(P ) and (P and Q) have obvious paral-
lels in our arsenal of basic constructions: if {x | φ} and {x | ψ} exist, {x |
not(φ)} = {x | φ}c and {x | (φ and ψ)} = {x | φ} ∩ {x | ψ}. Similarly,
{x | φ or ψ} = {x | φ} ∪ {x | ψ}.
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The construction of sentences with quantifiers involves the use of variables;
we need to develop set-theoretical tools analogous to the use of variables.
What we will do is restrict our attention to sentences φ which involve only
n variables x1, . . . , xn; clearly, we can analyze any sentence if we take n
large enough. We then represent any sentence φ by the collection of tuples
(a1, . . . , an) such that φ would be true if x1 = a1, . . . , xi = ai, . . . , xn = an.
This set can conveniently be written {(x1, ..., xn) | φ}.

We go back to atomic sentences, where we have a difficulty: not all atomic
sentences will involve all the variables, or involve them in the given or-
der. We need to represent atomic sentences like P [x2], Q[x2, x1], or
R[x1, x1, x3, x2] as well as sentences S[x1, . . . , xn] whose representation is
obvious. The trick here is to provide relations among m-tuples (for vary-
ing m) which manage the shuffling and reduplication of variables. Once
we deal with this, the operation analogous to quantification will turn out
to be very easy to represent.

We consider a sentence P [xi] first. This will be represented by

{(x1, . . . , xi, . . . , xn) | P [xi]}.

We could define this as the domain of an intersection of relations Xi ∩
(V ×P !), where Xi is the relation between any (x1, . . . , xi, . . . , xn) and its
“projection” xi and V ×P ! is the relation between anything and an object
of which P is true. The difficulty is now to construct the “projection” rela-
tion Xi. Recall that (x1, . . . , xn) = (x1, (x2, (x3, . . . (xn−1, xn)))). Clearly
X1 = π1. Analysis reveals that X2 = π2|π1, Xi = (πi−1

2 )|π1 for 2 ! i < n,
while Xn = πn−1

2 . The definition of Xn is the only one which depends on
the particular value of n. So P [xi] is represented by dom(Xi ∩ (V × P !)),
which exists by our axioms if P ! exists.

We now consider more complex atomic sentences. The trick is to find
the correct relations to represent lists of variables, as the Xi’s represent
individual variables. In order to represent R[xk1 , . . . , xkm ], where for each
j, 1 ! kj ! n, we will need the relation which holds between any n-tuple
(x1, . . . , xn) and the m-tuple (xk1 , . . . , xkm). For this, we use the following

Definition. Where R, S are relations, R⊗S is defined as (R|π−1
1 )∩(S|π−1

2 ).
Analysis reveals that R ⊗ S = {(x, (y, z)) | x R y and x S z}. Paren-
theses in expressions (R1⊗R2⊗ · · ·⊗Rn) are supplied from the right;
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for example, (R1⊗R2⊗R3) = (R1⊗(R2⊗R3)); this is done to parallel
the grouping of ordered pairs in the definition of the n-tuple.

The desired relation is then (Xk1 ⊗ · · · ⊗ Xkm). We can then show that
the set {(x1, . . . , xn) | P [xk1 , . . . , xkm ]} is represented by dom((Xk1 ⊗ · · ·⊗
Xkm) ∩ (V × P !)). Thus any atomic sentence can be represented in our
current scheme if the relation (in the sense of first-order logic) in it is
represented by a (set) relation in the natural way.

The apparently simple problem of representing atomic sentences turned
out to be rather involved. The problem of representing negation and
conjunction is trivial: use complement and intersection as indicated above.
The representation of quantification turns out to be fairly simple. The
idea is that if a sentence φ is represented by a set φ! = {(x1, . . . , xn) | φ},
the set of n-tuples such that “(for some xi, φ)” is true for the listed
values of xj ’s is the set of (x1, . . . , x′

i, . . . , xn)’s obtained by substituting
any x′

i at all for the specific value of xi in an n-tuple (x1, . . . , xi, . . . , xn)
which belongs to φ!. The point is that the statement (for some xi, φ)
says nothing about the value of xi; it says that some value of xi works;
whereas φ might require some specific value of xi to be true, (for some xi,
φ) allows xi to “float free”. Now this set is very easy to represent: it is
dom((X1 ⊗ · · ·⊗Xi−1 ⊗ V 2 ⊗Xi+1 ⊗ · · ·⊗Xn) ∩ (V × φ!)).

These results taken together show that {(x1, . . . , xn) | φ} is definable
for any sentence φ involving only the variables x1, . . . , xn in which every
relation or property mentioned in an atomic sentence is realized. Suppose
that we want to define the set {x1 | φ}, with fixed values ai for each
variable xi with i > 1; this can be constructed as the domain of the
intersection of {(x1, . . . , xn) | φ} and the sets interpreting the conditions
“xi = ai” (the condition “x = a” on a variable x is realized by {a}). Thus,
we can define {x | φ} for any variable x and sentence φ of first-order logic,
as long as all properties and relations mentioned in atomic sentences are
“realized”. The operations we have defined on n-ary relations are basically
the operations of the “cylindrical algebra” of Tarski, which is to first-order
logic as Boolean algebra is to propositional logic (the logic of “and”, “not”
and their relatives without quantifiers).

We state the result of our discussion as the
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Representation Theorem. For any sentence φ in which all predicates men-
tioned in atomic sentences are realized, the set {x | φ} exists.

A technical point which ought to be made (but which should not be be-
labored) is that statements like the Representation Theorem which begin
with phrases like “for any sentence φ” should not be regarded as involving
quantification over sentences. When we say “for all x, φ”, we are thinking
of φ as a sentence about objects in our domain of discourse, any of which
can be substituted for the variable x to give a true statement. We do not
think of “{x | φ} exists” as a sentence about the sentence φ; we have not
considered the question as to whether we regard sentences themselves as
inhabitants of our universe of discourse. The “sentence” (for all φ, {x | φ}
exists) is not found in our language. This remark will apply to other theo-
rems or axioms stated later as well, such as the Stratified Comprehension
Theorem and the Axiom of Small Ordinals. One should think of an axiom
or theorem of this kind as an infinite list of sentences, one for each specific
sentence φ, rather than as a single sentence of our language at all. Ax-
ioms and theorems of this kind are properly called “axiom schemes” and
“meta-theorems” respectively.

Exercises

(a) Express the sentence “All swans are white” in our formalized language.

(b) Express the sentences “Everybody is loved by somebody” and “Some-
body loves everybody” in our formalized language. Are these sentences
equivalent in meaning? Explain.

(c) Define the set of women with at least two children as in the proof of
the Representation Theorem. You may assume that appropriate basic
predicates are realized by sets.

(d) Express the sentence “The set A has exactly two elements” in our
formalized language, using the membership and equality relations as
the only predicates. Can you express it in terms of membership only?
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Chapter 7

Russell’s Paradox and the
Theorem of Stratified Comprehension

Every set that we have defined, we have defined in the format {x | φ},
where φ is a sentence of first-order logic. The reader should be wondering
by now why we bother with all these special cases instead of adopting the
following

∗Axiom. For each sentence φ, {x | φ} exists.

This axiom is called the (naive) Axiom of Comprehension. It is false.
Consider the relation symbol ∈ for membership. Notice that we did not
include “the set [∈] = {(x, y) | x ∈ y} exists” as an axiom in the natural
place at the end of the last chapter. We have a good reason for this:

Theorem. [∈] does not exist.

Proof (Russell). — Suppose that [∈] existed. We construct the set
dom([=] − [∈]). [=] − [∈] would be the set of ordered pairs (x, y) such
that x = y and x is not an element of y, i.e., the set of ordered pairs (x, x)
such that x is not an element of x, and dom([=]− [∈]) would be the set of
all x such that x is not an element of itself, conveniently abbreviated {x |
not(x ∈ x)}. If this set is an element of itself, it is not an element of itself;
if it is not an element of itself, it is an element of itself. The contradiction
indicates that our original assumption that [∈] existed must have been in
error. !
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The core of this argument, called Russell’s Paradox, is a reductio ad absur-
dum of the proposed Axiom of Comprehension: the set {x | not(x ∈ x)}
cannot exist, and not(x ∈ x) is certainly a sentence of first-order logic. The
specific theorem proved is an artifact of the set theory we are working in.

Since we cannot have [∈], we settle for something less which proves ade-
quate. We append a last axiom to our list of axioms asserting the existence
of specific relations:

Axiom of Inclusion. The set [⊆] = {(x, y) | x ⊆ y} exists.

Using the results of the previous chapter, we see that we can define
{x | φ} if φ mentions no primitive relation other than =, π1, π2, or ⊆.
It turns out that a wide class of sentences φ which mention the relation
∈ of membership, which is not realized, as we saw above, are nonetheless
realized by sets; there is a technique of translation which converts some
sentences with ∈ to sentences without ∈.

We now define the class of “stratified” sentences of first-order logic.

Definition. A sentence φ of first-order logic involving no relation other
than ∈, π1, π2, or = is said to be stratified if it is possible to assign
a non-negative integer to each variable x in φ, called the type of x, in
such a way that:

(a) Each variable has the same “type” wherever it appears.

(b) In each atomic sentence x = y, x π1 y, x π2 y in φ, the “types” of
the variables x and y are the same.

(c) In each atomic sentence x ∈ y in φ, the “type” of y is one higher
than the “type” of x.

Stratified Comprehension Theorem. For each stratified sentence φ, the
set {x | φ} exists.

Proof. — We would like to apply the results of the previous chapter,
but ∈ is not realized. We observe that “y ∈ z” is precisely equivalent to
“{y} ⊆ z”. We choose a natural number N larger than the type assigned
to any variable in φ. Our strategy is to replace all reference to each vari-
able y of type n with reference to the (N −n)-fold iterated singleton of y.
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All occurrences of the relations π1,π2 and = are thus replaced by occur-
rences of iterated singleton images of these relations, which are realized;
all occurrences of ∈ are thus replaced by occurrences of iterated singleton
images of the relation ⊆ (since the singleton operation will be applied once
more on the left than on the right, by the definition of stratification of
atomic membership sentences). Since each variable occurs with only one
type, references to the (N − n)-fold iterated singleton of the variable y
of type n (for example) can be replaced with references to a variable y
“restricted” to the collection of (N −n)-fold singletons, a collection whose
existence follows from our axioms (it is the result of the singleton image
operation on sets applied N − n times to V ). The restriction is achieved
by replacing each “(for some y,φ)” with “(for some y “y is an (N − n)-
fold singleton” and φ′)” (n being the type of y, and φ′ being the result of
replacing references to the (N −n)-fold singleton of y in φ with references
to y) and similarly replacing references to the (N −m)-fold singleton of x
(where m is the type of x) with references to x and imposing the condition
that the new x is an (N −m)-fold singleton. Since the set of (N −n)-fold
singletons exists, the property of being an (N − n)-fold singleton is “real-
ized” for each n. Recall that the type of the variable x in the set definition
{x | φ} has been taken to be m; by applying the result of the previous
chapter at this point (all properties and relations appearing in the modi-
fied φ are now “realized”), we succeed in defining the set of (N −m)-fold
singletons of objects x for which φ is true; we apply the axiom of set union
N −m times to obtain the desired set {x | φ}. The proof of the Stratified
Comprehension Theorem is complete. !

One question which might remain is that we have not explicitly referred
to the presence of atoms in our theory in this discussion. It is sufficient to
note that atoms are exactly those objects which have no subsets; atomhood
is expressible in terms of ⊆.

It is worth mentioning that the Axiom of Singleton Images and the Ax-
iom of Set Union, though they were introduced in earlier chapters, were
not needed for the proof of the Representation Theorem and have found
their first major application in the proof of the Stratified Comprehension
Theorem.
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Exercises

(a) Construct the set P{A} of all subsets of a given set using the primitive
operations for constructing sets now available. (The solution appears
later in the book).

(b) Verify that the intersection
⋂

[A] of all elements of a set A (the set of all
x which belong to each element B of A) has a stratified definition, and
so exists by the theorem of Stratified Comprehension. Then construct
it using the primitive set constructions.



Cahiers du Centre de logique
Volume 10

Chapter 8

Philosophical Interlude:
What is a Set, Anyway?
Motivating Stratification

In contrast with the rather natural basic constructions given in the ax-
ioms, the Stratified Comprehension Theorem is not at all intuitive. The
usual way in which the set theory we are developing is initially presented
is to take as axioms Extensionality, the axiom of Atoms, and Stratified
Comprehension. Our axiom of Ordered Pairs would also be needed if our
precise development were to be followed. The reason we have not done
this is that Stratified Comprehension is not particularly easy to motivate.
However, Stratified Comprehension is a very powerful tool, which we will
want to be able to use. In this section, we will try to provide motivation
for stratified comprehension as a criterion for set existence.

8.1. What is a Set, Anyway?

We begin by returning to the vexed question of set existence on a more
fundamental level; what is a set supposed to be, anyway? We outline an
informal answer to this question.

We don’t intend to give any kind of formal definition of what a set is;
we stated at the outset that set is an undefined notion of our theory.
Nonetheless, we should be now be enough acquainted with a set to say
something about this on an informal level.
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How do sets come into human experience? An obvious example is that of
herds of animals or sets of tools. Collections of discrete physical objects
are our usual first model for the notion of “set”.

But we need to be careful. We think of a herd of animals as a large physical
object of which the individual animals are parts. We have learned that we
cannot view the relation of element to set as the relation of part to whole.
For example, a is an element of {a}, and {a} is an element of {{a}}, but
a is not an element of {{a}}; this makes no sense if “element” is to be
interpreted as “part”, because the relation of part to whole is transitive.
The occurrence of singleton sets in our example is telling; notice that we
do not distinguish between a herd of one animal and that single animal
(though we do regard the former as a very peculiar notion!).

We give an example where we can tell in a mostly pre-mathematical con-
text that the relation of element to set must be distinguished from the
relation of whole to part. Suppose that John, Sam, and Tim are members
of a committee. We ask how many subcommittee rosters of two members
there can be; we comfortably answer “three”. We might be asked for the
set of all possible commmittee rosters; we would probably list seven el-
ements (the empty committee can’t get much done). But observe that,
while we might be reasonably comfortable viewing each committee as an
object formed by conglomerating its members, if we try to view sets of
committee rosters as conglomerations of their elements, we cannot draw
distinctions that we recognize as real; the set {{John, Sam}, {John, Tim}}
of two subcommittees could not be distinguished from the set {{John,
Sam}, {John, Tim}, {Sam, Tim}} of three subcommittees.

Even collections of disjoint physical objects present a difficulty. Consider
the set of all human beings. This is a set we all “know”, whose elements
we can count, more or less. Now consider the set of all human cells! This
is a set we all “know”, can count, more or less, and which has (more
or less) the same physical extent as the previous set – but it is not the
same set because it does not have the same number of elements by many
orders of magnitude! The “sets” of our experience, whose elements are
discrete physical objects, need for their exact identification not only their
physical extent but the kind of individual object into which they should be
partitioned (they can be thought of as “typed” collections). Not all parts
of a “set” thus understood are its “elements”; only those distinguished
parts of the understood “type”.
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We noted above that the correct analogue of the relation of part to whole
in the world of sets is the subset relation rather than the membership
relation. Now use the fact (which we used in the proof of the Stratified
Comprehension Theorem) that the membership relation can be reduced
to the inclusion relation and the singleton operator: x ∈ y iff {x} ⊆ y.
We have explained inclusion as the intuitively familiar relation of part to
whole. It remains to explain the singleton set construction.

The singletons are a collection of pairwise disjoint sets; if we understand
inclusion as the relation of part to whole, we can put this informally by
saying that the singletons, whatever they are, are a collection of discrete,
non-overlapping objects. Singletons are disjoint objects like the physical
objects which are “elements” (actually distinguished parts) of the “sets”
of our everyday experience.

The singleton construction allows us to associate with each object in the
universe of our set theory an object taken from a domain of discrete, non-
overlapping objects.

The construction of a “conglomerate” object from a collection of arbi-
trary sets corresponds to taking the union of the collection (the minimal
collection which has every element of the original collection as a subset).
Quite different collections of arbitrary sets can have the same union. But
distinct collections of singletons do have distinct unions.

We interpret the singleton construction as choosing a “token” or “counter”
to correspond to each object in our universe of discourse (the universe of
things of which we want to build sets). The counters are disjoint objects,
which makes them satisfactory for building sets by aggregation. The sin-
gleton considered as a counter “stands for” its element in the construction
of sets. So we can construe the relation between singleton and element as
a special case of the familiar relation of symbol and referent; a singleton is
a kind of name for its element. If we focus on the extension, we can think
of the singleton as a kind of label affixed to it to make it possible for the
extension to be itself an element of further sets.

In terms of this metaphor, a set will be understood to be an object which
has as its parts names (or tokens, counters, labels) for its elements. (In
everyday terms, it can be thought of as a list or catalogue.) The relation
“x is an element of y” will mean “the name of x is part of y, and y is an
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aggregate of names”. Objects which are not aggregates of names will be
“atoms” in the sense of our set theory (though they will not be “atomic”
objects in terms of this metaphor).

This does not complete the informal definition of “set”, though. It seems
intuitively reasonable that every aggregate of names, however defined,
should exist as an object of some sort, and we already know that certain
of these cannot be sets. Consider the aggregate R made up of all sets x
such that x #∈ x. This would be Russell’s impossible “set”, if it were a
set! This aggregate has as parts all “names” {x} such that x #∈ x, that is,
such that {x} is not part of x. It seems reasonable to suppose that this
object would exist, though it might not be in our universe of discourse.
We maintain informally that it does exist. Is R ∈ R? R ∈ R is defined as
holding if and only if {R} is part of R (by the informal definition of ∈),
but also as holding if and only if {R} is not a part of R (by the definition
of R itself)! But notice that we have not made any provision for an object
{R} (a “name” of R)! We can’t: for if {R} existed, we would be forced to
conclude that R ∈ R iff R #∈ R.

We have not arrived at a contradiction; we have arrived at the conclusion
that R cannot have been assigned a singleton (a “name”, in terms of our
metaphor), which means that it is not in our universe of discourse. This
shows us how to qualify the definition of “set”. This is the missing element
of the definition of “set”: a set is to be understood as an aggregation of
names which itself has a name; our conclusion about R is that it exists (as
an aggregate object) but is not a set. Other aggregations of names may
be understood as real objects (our metaphor certainly suggests that they
exist) but they are not sets. We may informally define “class” to mean
“aggregation of names, not necessarily having a name itself”. Classes
which are not sets may be termed “proper classes”. Proper classes have
elements but are not eligible to be elements.

Because we accept informally that classes which are not sets have some
sort of existence, we will not be too wary in the sequel about using set-
builder notation {x | φ} (and “function-builder notation” (x 0→ T ) when
this is introduced) to refer to classes which might not be sets. But we will
always attempt to warn the reader when this may be happening; we will
not formally admit proper classes as objects of our theory.

Our discussion so far is a philosophical analysis of the term “set” (and
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related terms) which should not prejudice us in our choice of a formal
system of set theory. The Russell paradox may lose some of its “paradox-
ical” flavor as a result of this informal analysis (we hope so). We think of
the paradox as not representing any kind of difficulty with the nature of
reality or fundamental limitation on human understanding (as some seem
to think), but as representing a mistake in reasoning: the failure to ap-
preciate the difference between “arbitrary collection of labels of objects”
and “arbitrary collection of labels of objects which itself has a label”. It
is quite reasonable that any condition at all should define an arbitrary
collection of labels of objects; but it is also quite reasonable that a collec-
tion defined in terms of one’s scheme for labelling collections may prove
impossible to label!

8.2. Motivating Stratified Comprehension

The choice of a particular set theory is determined by what conditions
one thinks ought to define sets. We turn to a motivation of our particular
choice (stratified comprehension).

The motivation we propose here is related to the discipline of abstract
data types in computer science. Properties of the concrete implementa-
tion of an abstract object which do not reflect properties of the object
being implemented should not be used by the programmer when manipu-
lating the implemented abstraction. The abstraction that we are trying to
implement with sets is the notion of a collection, a pure extension. This co-
incides with the notion of class in our intuitive picture. A set implements
a class, but it has an additional feature, the name or label associated with
it. A “type-safe” property of sets or operation on sets should not depend
on details of which objects “label” which collections of objects. Any rela-
tionship between the “label” attached to an extension and the elements of
the extension is an “implementation-dependent” feature of a set, and not
a feature of the class it implements. Self-membership of a set, for example,
is the property of identity between the label and one of the parts of the
extension, which is clearly not a property of the extension of the set; if the
same extension were labelled differently, it would cease to be an element
of itself.

This gives us an a priori reason to reject {x | x ∈ x}, for example, as a set
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definition, prior to any consideration of paradox (in this case, there is no
paradox to consider unless we go on to allow other set constructions, such
as complement). The same reasoning allows us to reject the definition of
the Russell class as a reasonable specification for a set before discovering
that it is impossible to implement.

One possible analysis of the reason for rejecting {x | x ∈ x} (or its para-
doxical complement) is that the same object x appears in the sentence
x ∈ x, further analyzed as {x} ⊆ x, in two different roles, as a label (in
which role we are concerned with it only as an unanalyzed bare object)
and as representing an extension. Further analysis reveals that there is
a hierarchy of further roles. An object can be considered as a bare ob-
ject (as a label), or as the associated extension, a class. But, further, we
may consider an object via the associated extensions of the members of its
associated extension, viewing it as a class of classes of bare objects. We
may consider classes of classes of classes of objects, and so forth. These
roles can be indexed by the natural numbers: an object being considered
by itself is taking role 0, while an object being considered as a collection
of objects themselves taking role n is taking role n + 1. The relationship
between any two distinct roles of one and the same object can be per-
turbed by permuting the underlying “labelling” scheme; we should reject
any definition of a set in which any object appears in more than one role
as “implementation-dependent”. This is exactly the criterion of stratifi-
cation: in any sentence “x ∈ y”, the role taken by y should be expected
to have index one higher than that of the role taken by x if a coherent
assignment of roles to objects is possible; the relations of equality and left
and right projection (π1 and π2) are understood as relations between bare
objects, and so make sense only for pairs of objects playing the same role.

Historically, the motivation of stratification was as a simplification of Rus-
sell’s type theory, in which the different “roles” (object, class of objects,
class of classes of objects, etc.) are played by objects of different sorts or
“types”. Our motivation here is different from the historical motivation in
assuming from the outset that there is only one sort of object. We will use
the word “type” to refer to the different “roles”, sometimes qualifying it
as “relative type” to remind ourselves that we do not assume the existence
of different kinds of object, as in Russell’s original theory, but of different
levels of permitted access to one kind of object.

There is some formal mathematical support for our motivation; it has been
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shown that the stratified conditions are exactly those which are invariant
under all redefinitions of the membership relation by permutation which
preserve the totality of represented sets in a certain technical sense.

There is nothing in our metaphor to suggest that every object that has a
label (and so is capable of being an element of our universe) is an aggregate
of labels (a set). In fact, the Axiom of Choice will allow us to prove that
there must be elements which are not sets.

8.3. Technical Remarks

It needs to be noted that just because a set is defined by an unstratified
condition does not mean that it cannot exist; it simply means that it might
not exist; we are free to reject such a set if it turns out that its existence
would lead to problems. An example of a set which is impossible to define
in a stratified manner, but which can (but need not) exist in our set theory
is the collection having as members exactly the von Neumann numerals
‘0’, ‘1’, ‘2’,. . . defined earlier.

The Stratified Comprehension Theorem is stated for sentences φ in which
the only names of objects used are variables. But recall that we can use
the Theory of Descriptions to introduce names (the x such that φ), where
φ is a sentence.

It is straightforward to determine by examining the way in which names
(the x such that φ) are eliminated that a sentence containing one or
more such descriptions will be stratified after the term is eliminated under
the following refinement of the usual conditions: relative types should be
assignable to all terms (descriptions as well as variables) with the same
rules for atomic sentences, and, in addition, the same type must be as-
signed to the variable x as to any name (the x such that φ) in which it
is bound (since instances of (the x such that φ) will actually be replaced
with instances of x when the description is eliminated). Notice that a
name (the x such that φ) cannot appear in a stratified sentence unless
it is itself stratified (since the sentence φ will still appear as part of the
larger sentence when the name is eliminated).

Operations in our set theory are theoretically implemented by complex
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names with free variable parameters. If a name has variables in it, it is
important to be aware of the difference in type (“role”) between the name
and the free variables which appear in it. Examples: (x, y) means “The
z such that z π1 x and z π2 y”; here z, and so the whole name, has the
same type as x or y; on the other hand, {x} means “the y such that x ∈ y
and for all z, if z ∈ y then z = x”; here y, and so {x} must have type one
higher than that of x. Both of these examples are easily handled using
the intuitive concept of “roles”; the projections of a pair play the same
“role” as the pair itself (we regard pairing as a construction acting on bare
objects), while if x is playing the role of a bare object, it should be clear
that {x} is playing the role of a collection of bare objects! This, in turn,
would enable us to conclude that the relation which every x has to its
singleton {x} is not legitimate. We are not planning to make explicit use
of the Theory of Descriptions; we noted its existence to justify the use of
names in general and their role in relation to the notion of stratification.

Another fact about stratification restrictions should be noted: a variable
free in φ in a set definition {x | φ} may appear with more than one type
without preventing the set from existing, as long as this set definition
is not itself embedded in a further set definition. The reason for this is
that such a set definition can be made stratified by distinguishing all free
variables: the resulting definition is supposed to work for all assignments
of values to those free variables, including those in which some of the free
variables (even ones of different type) are identified with one another. For
example, the set {x, {y}} has a stratified definition; the set {x, {x}} has
an unstratified definition, but the existence of {x, {y}} for all values of x
and y ensures the existence of {x, {x}} for any x. But a term {x, {x}}
cannot appear in the definition of a further set in which x is bound.

The Stratified Comprehension Theorem can be used as an axiom (tech-
nically, an axiom scheme) of this set theory. If it is used as an axiom,
the only other axioms which are needed (of those introduced so far) are
those of Extensionality, Atoms, and Ordered Pairs. Look at the defini-
tions given in set-builder notation for the objects stated to exist by each
other axiom, and you will see that each of the other axioms is actually a
case of Stratified Comprehension.

The use of a primitive ordered pair is not strictly necessary for the de-
velopment up to this point, although it is far more convenient than the
alternative. The Kuratowski pair 〈x, y〉 = {{x}, {x, y}} could have been
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used instead, but the forms of certain axioms would have been very hard
to motivate without the notion of stratification having already been intro-
duced. The main point is that the relations π1 and π2 do not exist for the
Kuratowski pair, because if x and y are assigned type n, the Kuratowski
pair 〈x, y〉 is assigned type n + 2. The relations κ1 and κ2 which {{x}} =
〈x, x〉 and {{y}} = 〈y, y〉, respectively, have to 〈x, y〉 have to be used in-
stead. The other axioms are true for the Kuratowski pair. The results on
representation of sentences of first-order logic are also true for the Kura-
towski pair, but the Axiom of Set Union has to be used to collapse sets of
objects 〈x, x〉 (for example) down to the corresponding sets of objects x at
certain points in the proof, and the Axiom of Singleton Images has to be
used to reverse this process. The use of a primitive ordered pair satisfying
our form of the Axiom of Projections does have some additional strength;
it allows one to prove that the universe is infinite, which we could not do
with the other axioms we have up to this point. We will not consider the
use of the Kuratowski pair further.
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Chapter 9

Special Kinds of Relations:
Equivalence and Order

We now consider some interesting properties which may belong to partic-
ular relations. A relation R is said to be reflexive if x R x for every x in
Dom(R) (recall that this denotes the full domain of R, the union of its
domain and range). This can be readily expressed as

([=] ∩ (Dom(R)×Dom(R))) ⊆ R.

A relation R is said to be symmetric if x R y implies y R x. This can be
expressed very briefly as R−1 = R. A relation is said to be transitive if
(x R y and y R z) implies x R z. This can be abbreviated R|R ⊆ R.

9.1. Equivalence Relations and Partitions

A relation is called an equivalence relation if it is reflexive, symmetric, and
transitive. The “smallest” equivalence relations are subsets of [=]; the
“largest” equivalence relations are of the form X ×X . Each equivalence
relation R is related to a “partition” of dom(R) into disjoint sets:

Definition. A set P of non-empty subsets of a set X is called a partition
of X if for any sets A, B in P , A and B are disjoint (P is a pairwise
disjoint collection of non-empty sets) and

⋃
[P ] = X (the collection P

“covers” all of X).
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Definition. Let X be a set. An equivalence relation R is called an equiv-
alence relation on X exactly if dom(R) = X .

Theorem. Let X be a set, and let R be an equivalence relation on X . Let
[x] = {y | y R x} = dom(R ∩ (V × {x}) for each x in X . Then the
collection X/R of all sets [x] exists and is a partition of X . More-
over, for any partition P of X , the relation [∼P ] = {(x, y) | for some
A ∈ P, x ∈ A and y ∈ A} exists, is an equivalence relation on X , and
X/[∼P ] = P . Each equivalence relation uniquely determines the as-
sociated partition and vice versa.

Proof. — The collection X/R = {A | for some x, for all y, y ∈ A iff
y R x} exists by the Stratified Comprehension Theorem. It is a partition
of X : each x belongs to [x], since x R x; any y in [x] must belong to X ,
since y R x and X = dom(R); thus the union of all the [x]’s covers all of X
and no more than X ; if [x] and [y] meet, they are equal, because if z is in
both, we have z R x and z R y, thus, by symmetry and transitivity, x R y
and y R x, thus any w R x or w R y implies w R y or w R x, respectively,
and [x] and [y] are the same set; thus two sets [x] and [y] are disjoint
if they are different. The relation [∼P ] obviously exists, by Stratified
Comprehension, and is easily seen to be an equivalence relation. The one-
to-one correspondence between equivalence relations and partitions is easy
to verify. !

The classes [x] are called “equivalence classes”; we suggest the notation
[x]R for them if the dependence on R must be made explicit. An equiv-
alence relation on a set X is often used to indicate that certain objects
in X are to be identified for some purpose; if x R y, the corresponding
objects [x] and [y] in X/R are actually equal, so a “version” of X can be
constructed in which the desired identifications are actually realized.

A caution: in a stratified set definition, [x] is not at the same “type” as
x. As a result, the relation between x and [x] does not necessarily exist.
However, the relation between {x} and [x] is definable in a stratified way.
The use of equivalence classes is slightly more difficult technically for this
reason than in the usual set theory; the compensation for this is that many
concepts can be modelled in a natural way using equivalence classes which
cannot be modelled in this way in the usual set theory!
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A solution to this difficulty is to choose an element from each equivalence
class [x] as a “representative” of that equivalence class. The advantage of
this is that the relation between x and the representative element of [x] is
stratified; the representative element of [x] is playing the same “role” as
x in this construction. Although the construction of a set by such choices
seems intuitively reasonable, it is not enabled by any of our axioms so far,
so we introduce the dreaded

Axiom of Choice. For each set P of pairwise disjoint non-empty sets, there
is a set C, called a choice set from P , which contains exactly one
element of each element of P .

On this axiom, there will be a great deal more later. For the moment,
we observe that the Axiom of Choice allows us to “collapse” equivalence
classes to single elements without introducing a stratification problem.

9.2. Order

A class of important kinds of relation are the various kinds of “order”. A
relation R is called antisymmetric if for all x, y, (x R y and y R x) implies
x = y; equivalently, R is antisymmetric iff R ∩R−1 ⊆ [=].

Definition. A relation R is called a (partial) order if it is reflexive, anti-
symmetric and transitive.

It is called a partial order on X if dom(R) = X .

The most natural example of an equivalence relation is equality itself; the
most natural example of a partial order is inclusion. Another interesting
partial order is the extension relation on functions (introduced below; it
is the partial order on functions induced by inclusion).

Where R is a partial order and X = dom(R) (and thus X = rng(R) as
well), one often sees mention of R suppressed and X termed a “partially
ordered set” with R understood. We will attempt to avoid this; we will
refer to X as the domain of the partial order R, which itself is sufficient
to determine X . Similarly, we consider the mathematical structure of the
natural numbers (re Peano arithmetic) to be the ordered pair (addition,
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multiplication); all other elements usually taken to be parts of this struc-
ture (such as the set N itself) can be derived from these by set-theoretical
operations.

If one wonders why general orders are called “partial”, one needs only to
attend to the following

Definition. A linear or total order is an order R such that for each x, y in
dom(R), either x R y or y R x.

The most natural example of a linear order is the usual order relation “less
than or equal to” on the real numbers. By analogy with this example,
orders in many contexts (including partial orders) are written !. When !
is a general order, we say x < y when x ! y and x #= y. If ! is an order,
its converse is also an order, which we write ", and > is defined similarly.
The relations < and > are called “strict orders”. Words like “smaller”,
“larger”, “less”, “greater”, will be used in conformity with the analogy
with the usual order from arithmetic. An element s of the domain of ! is
said to be “least” if s ! x for all x in the domain; s is said to be “minimal”
if there is no x such that x < s. These notions coincide for linear but not
for partial orders. The notions of “greatest” and “maximal” are defined
similarly.

Suppose that A is a subset of the domain of !. Then any b such that b ! a
for all a in A is called a lower bound of A; if there is a greatest among
the lower bounds of A, it is called the greatest lower bound or glb of A
relative to ! and written inf![A] (! may be omitted where understood).
The notions of upper bound and least upper bound (lub; written sup![A])
are defined analogously. A partial order relative to which all subsets of
the domain have glb’s and lub’s is called complete.

If ! is a partial order, X is its domain and x is an element of X , the
segment determined by x, written seg!{x}, or seg{x} if ! is understood,
is the set {y ∈ X | y < x}. Note that the strict order is used in this
definition, and that the type of seg{x} is one higher than the type of x.
If the non-strict order is used instead, we get the “weak segment”; we use
seg+{x} to denote the weak segment for x. The partial order ! on X
is precisely parallel to the inclusion relation on the set of weak segments
relative to !, for any partial order !, with a type differential; this reduces
all partial orders to the canonical one of inclusion, in some sense.
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Observe that there is a set containing all partial orders in this theory; this
will be true of many natural categories of mathematical structures which
would be “too large” to collect in orthodox set theory.

Exercises

(a) Prove or give a counterexample: a transitive, symmetric relation must
be reflexive. (The outcome here is affected by a difference between my
definition of reflexivity and the usual one).

(b) Give an example of a collection of sets S such that the restriction of
inclusion to S is a linear order.

(c) Verify our assertion that the definition of the set X/R is stratified.

(d) Let ! be a partial order. Does the Stratified Comprehension Theorem
allow us to assert the existence of a set {(x, seg+

!{x}) | x ∈ dom(!)}
witnessing the parallelism in structure between a partial order and
the inclusion relation on its weak segments? If not, how could this set
definition be modified so that it would work?
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Introducing Functions

Definition. A function is a relation F with the property that for each x in
dom(F ), there is exactly one y such that x F y. We introduce F (x)
as a name for this unique y; we define F (x) as (the y such that (F
is a function and x F y)). Notice that this definition causes values of
non-functions and values of functions outside their domains to become
{ }.

Observe that the type of F is one higher than the type of x when F (x)
appears in a stratified sentence. The word “map” is used as a synonym
for “function”; F is said to “map” x to F (x).

We will generally write F (x) = y instead of (x, y) ∈ F . y is called the
value of F at x; we also say that F sends x to y; x is called the argument of
F in the expression F (x) The symbol f : X → Y may be used to mean “f
is a function from X to Y ”, or, more explicitly, “f is a function, dom(F )
= X and rng(F ) ⊆ Y ”.

Definition. The set [X → Y ] = {f | f is a function from X to Y } exists by
the Stratified Comprehension Theorem. Another notation frequently
used for this set is Y X . Observe that the type of [X → Y ] is one
higher than the type of X or Y in a stratified sentence.
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Since functions are relations, we have already defined the notions of do-
main and range for functions. We define some related notions.

Definitions. A function in [X → Y ] with the property that rng(f) = Y is
said to be onto Y and is said to be a surjection (relative to Y ).

A function f with the property that f−1 is also a function is said to
be one-to-one or an injection (not only does x F y uniquely determine
y, given x, but it also uniquely determines x, given y; F associates
each x in dom(F ) with one and only one y).

A map in [X → Y ] which is one-to-one and onto Y is called a bijection
from X onto Y (or between X and Y ). (Any injection from X to Y
might be referred to as a bijection from X into Y).

We pause to breathe before introducing more

Definitions. Suppose that dom(F ) = X and A ⊆ X . We define the re-
striction of F to A, F 3A = F ∩ (A × V ). F itself is said to be an
extension of F 3A.

The image of A under F , F [A], is defined as rng(F 3A); this is the
set of all values of F at elements of A. The inverse image f−1[A] is
defined as dom(F ∩ (V × A)); although this may seem a less natural
concept than the image, it turns out to have much nicer properties
(notice that f−1 is not always a function).

The notions of image and inverse image make sense for general rela-
tions, not just for functions.

A related notion is the preimage of an element x of the range of a
relation R (not necessarily a function) under that relation: it is defined
as the inverse image of {x} under R.

If X ⊆ Y , there is an obvious function in [X → Y ] which takes each
element of X to itself; this is called the inclusion map of X (and actually
does not depend on Y at all; it is simply [=] ∩ (X × X)). The inclusion
map of X into X (the same object) is called the identity map on X . Note
that [=] is the identity map on the universe. The identity map on Y ,
restricted to X ⊆ Y , yields the inclusion map from X into Y .
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Observe that [=] is not alone among our primitive relations in being
a function; the projection relations π1 and π2 are also functions, with
π1(x, y) = x and π2(x, y) = y for all x, y. Note that we write f(x, y)
instead of f((x, y)). We define projections of subsets of Cartesian prod-
ucts as their images under the projection functions; of course, there is a
conflict here, since we also call the values under the projection functions
“projections”. It should always be possible to resolve this issue in context.
The words “domain” and “range” are also available for these images, of
course.

Any function F from X to Y can be used to define an equivalence relation
(and a partition) on X : the equivalence relation is R = {(x, y) | x, y ∈ X
and F (x) = F (y)}, and the corresponding partition is the collection of
sets F−1[{y}], the inverse images under F of singletons of elements y of
Y . The map which sends F−1[{y}] to {y} for each y is a one-to-one
map from X/R to P1{Y }; we can use the Axiom of Choice to define a
one-to-one map from representatives of the equivalence classes in X/R
onto Y .

We can associate a function with each set in a natural way. We introduce
the definitions of the numbers 0 and 1: 0 is defined as {{ }} (the set of
all sets with zero elements) and 1 is defined as P1{V }, the set of all sets
with one element. The characteristic function Char(A) of a set A is the
function {(x, y) | if x ∈ A then y = 1 and if not(x ∈ A) then y = 0};
Char(A)(x) = 1 if x is an element of A and 0 otherwise. The operation
Char is a function, since the type of A is the same as the type of Char(A)
in a stratified sentence.

The collection [X → {0, 1}] of restrictions of characteristic functions to
X , which is more usually called the collection of characteristic functions
on X , encodes all the subsets of X . We introduce the set of all subsets
of X :

Definition. P{X} is defined as dom([⊆]∩ (V × {X})), the collection of all
subsets of X . We call P{X} the power set of X. Notice that the type
of P{X} in a stratified sentence would be one higher than the type of
X .

Theorem. There is a natural bijection between P{X} and [X → {0, 1}].



66 Chapter 10. Introducing Functions

Proof. — The map which takes each subset A of X to Char(A)3X can
be shown to exist using Stratified Comprehension. !

We introduce “function-builder” notation analogous to the “set builder”
notation {x | φ}:

Definition. If T is an expression and x is a variable, we define (x 0→ T )
as (the function F such that for all x, F (x) = T ). There must be no
occurrences of F in T .

An example is the typical function f(x) = 2x + 1 from algebra, which
would be written (x 0→ 2x + 1) in this notation. (x 0→ T ) will be defined
if the expressions x and T would be assigned the same type in a stratified
sentence (which includes the implicit condition that T can appear in such
a sentence; some expressions, like x ∩ {x} or x(x), cannot appear in such
a sentence at all, so certainly cannot appear with the same type as x).
Another notation for (x 0→ T ) is the notation (λx.T ) of the “lambda-
calculus”. The construction here is called “function abstraction” from the
name or “term” T , and is formally analogous to set comprehension {x | φ}
from sentences φ.

The notation (x 0→ T ) will also sometimes be used informally for “func-
tions” which actually do not exist as sets in our theory. We will for example
refer from time to time to the “map” (x 0→ {x}), which, as we will see
below, is not a set. You should be able to see now that its definition is
not stratified. We also occasionally refer to restrictions of proper class
functions and images under proper class functions (which may be proper
classes) in the sequel. All instances of such notations should be possible
to eliminate in principle, as we do not formally admit that there are such
objects as proper classes or proper class functions.

Exercises

(a) Verify our assertions about the stratification and relative type of
[X → Y ].

(b) Develop a definition of the number 2 by analogy with the definitions
of 0 and 1 given in the chapter. Give the definition in set-builder nota-
tion, then give it in terms of the primitive operations for constructing
sets.
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(c) What is the type of (x 0→ T ) relative to the term T ? To take a specific
example, is the definition of the function (a 0→ (x 0→ ax)) which takes
a number a to the function “multiply by a” a stratified definition (on
reasonable assumptions about multiplication)?

(d) Verify our assertion that (x 0→ {x}) cannot be shown to exist using
Stratified Comprehension, by expanding its definition into set-builder
notation and verifying that it is not stratified.
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Chapter 11

Operations on Functions and
Families of Sets

11.1. Operations on Functions

The basic operations on functions are analogous to those on relations.

Definition. If f and g are functions, we define the composition of f and
g, denoted by (f ◦ g) or fg, as g|f , the relative product of g and f .

The change in order is motivated by the fact that (f ◦ g)(x) = f(g(x))
(when rng(g) ⊆ dom(f)). There are mathematicians who feel that it is
more natural to put the function name after the argument, writing (x)f
instead of f(x); these will write g|f as gf as well. In some sense, the order
of the relative product is more natural than the order of composition,
because our feeling about f(g(x)) is that we use g to transform x to
g(x), then use f to transform g(x) to f(g(x)). There is another minority
opinion among mathematicians that we ought to define a function f as
{(y, x) | y = f(x)}; holders of this view have no trouble with the notation
for composition.

The converse f−1 of a function is not usually a function. If f−1 is a
function (i.e., if f is one-to-one), then it is called the inverse of f . The
relation of inverse functions to composition deserves to be noted:

(f ◦ g)−1 = (g−1 ◦ f−1).
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We observe that the operation of taking inverse images “commutes with
Boolean operations”:

f−1[Ac] = dom(f)− f−1[A] (complement relative to dom(f));
f−1[A ∪B] = f−1[A] ∪ f−1[B].

One might think that the “image” under f , a more natural notion on the
surface, would have nicer behaviour, but this is not the case. We give
some typical results:

f [A ∪B] = f [A] ∪ f [B];
f [A ∩B] ⊆ f [A] ∩ f [B] (equality does not hold);
rng(f)− f(A) ⊆ f [Ac];

and indicate the relation between image and inverse image (they are not
inverse operations!):

f [f−1[A]] = A;
f−1[f [A]] ⊇ A.

11.2. Operations on Families of Sets

We now turn our attention to some operations in families of sets. One of
these, the operation of set union, we have already introduced. We will use
the set union

⋃
[A] to illustrate the connection with functions.

There is a tendency to consider a family of sets A via a function F from an
index set I to the set A; such a function F is called an “indexed collection”
representing the family A = rng(F ) via the “index set” I = dom(F ). F (i)
is often written ai, leaving the function F anonymous; operations on in-
dexed collections, like the Cartesian product

∏
[F ] which we define below,

would be written
∏

i∈I [ai] in this style, or simply
∏

[ai]. In certain cases,
the presence of the index set I and the anonymous function from I to A
is simply redundant; one context in which it does make sense is when the
operations on families of sets are being considered as infinite analogues of
binary operations; the index formalism makes it possible to formalize in-
finitary analogues of the commutative, associative, distributive, and other
algebraic laws, because they give the “infinite algebraic expressions” more
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structure. Another case is where duplications of objects in the family A
have an effect on the result of the operation. We will suppress the use of
indexed collections where we can; for example, we do not define set union
or intersection for indexed collections.

It is worth noting a relationship between the power set operation and the
set union operation:

⋃
[P{A}] = A; P{

⋃
[A]} ⊇ A.

We now formally introduce the operation of set intersection.

Theorem.
⋂

[A] = {x | for all B, if B ∈ A, then x ∈ B}, called the
intersection of the set of sets A, exists.

Proof. — Use the Stratified Comprehension Theorem. !

⋂
[A] is the complement of the union of the set of complements of elements

of A, a fact analogous to the relationship between binary intersection and
union.

An observation worth making is that the operation of taking inverse images
under a function “commutes with” set intersection and set union just as
it does with the Boolean operations.

Like set intersection, the next operation we introduce extends a binary
operation we have already defined for sets.

Theorem. Let F be a function whose range is A.
∏

[F ] = {f | f is a
function from dom(F ) to P1{

⋃
[A]} (the set of singletons of elements

of elements of A) such that for each i ∈ dom(F ), f(i) ⊆ F (i)}, called
the Cartesian product of F , exists. We may use

∏
[A] to abbreviate∏

[[=]3A]; we signal this by saying that we use A to index itself.

Proof. — Use the Stratified Comprehension Theorem (the application
of stratified comprehension in this theorem is fully analyzed in the next
section). The use of functions from elements of A to singletons of elements
of elements of A, rather than to the elements of the elements of A them-
selves, is dictated by stratification requirements. Note that the functions



72 Chapter 11. Operations on Functions

which are elements of
∏

[A] each encode the choice of one element from
each element of A. !

The analogy between the Cartesian product of a family of sets and the
Cartesian product of a pair of sets is not as close as the analogies in the
cases of set vs. Boolean intersection and union. Since the presence of
duplicate sets in a Cartesian product makes a difference, we must use the
function F , whose domain is an “index set” (the use of an index set here
can be used to see how an index set would be used in the cases of set union
and intersection). The elements of the Cartesian product of a set are not
n-tuples (this would not be feasible if the size of A were not any finite n!),
but functions with domain dom(F ). There is a type-differential between
the elements of a set Cartesian product and the elements of the sets in
the product, which is not the case in the binary Cartesian product. The
Cartesian product of a two-element set is formally related to the Cartesian
product of the two sets, but it is not the same object (

∏
[{A, B}] has the

function which sends A to {a} and B to {b} in place of each (a, b) in
A×B).

The use of any of these operations involves attention to type differentials:
the types of

⋃
[A] and

⋂
[A] are one lower than the type of A, while the

type of
∏

[F ] is one higher than the type of F (similarly for
∏

[A]). This
means that (A 0→

∏
[A]), for example, is not a function; this is also the

case for the other two operations. A function which does exist is the
operation (A 0→ P{

⋃
[A]}) alluded to in passing above; the type-raising

effect of power-set and the type-lowering effect of set union cancel out.

Finally, we observe that the apparently obvious assertion that the Carte-
sian product of any collection of non-empty sets is non-empty is precisely
equivalent to the Axiom of Choice. The proof will motivate the introduc-
tion of a new binary operation on sets and the corresponding operation
on families of sets.

The Axiom of Choice allows us to select an element from each compart-
ment of a partition of any set. This is precisely what is needed to construct
an element of

∏
[A] if A is a pairwise disjoint collection of sets. The trick

needed for the proof of the general result is a device for constructing a
disjoint family of sets from a family of sets which is not disjoint. This is
the set-theoretical operation of forming “disjoint sums”.
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Definition. If A and B are sets, the disjoint sum of A and B, written
A⊕B, is the set {(x, y) | (x ∈ A and y = 0) or (x ∈ B and y = 1)}.

This is a binary operation, so not immediately useful to us. Note that the
types of A, B, and A ⊕ B in a stratified sentence will all be the same.
The corresponding operation on families of sets is less straightforward (it
requires “indexing”).

Definition. If F is a function,
∑

[F ], the disjoint sum of F , is the set
{({b}, i) | b ∈ F (i) and i ∈ dom(F )}. We may use

∑
[A] to abbreviate∑

[[=]3A], the sum of the identity function on A; we say then that we
use A to index itself.

Notice that the elements of
∑

[F ] are not “labelled” elements of elements
of rng(F ), but “labelled” singletons of elements of elements of rng(F );
this is needed to satisfy stratification requirements.

∑
[F ] is actually of

the same type as F , unusually.
∑

[F ] is naturally partitioned into the
pairwise disjoint sets {({b}, i) | b ∈ F (i)} for each i in dom(F ). As with
the Cartesian product, the disjoint sum of a one-to-one function whose
range has two elements is not the same as the disjoint sum of the two
elements of that range, although they are closely related.

We are now ready to prove the promised

Theorem. The Axiom of Choice is equivalent to the assertion that all
Cartesian products of indexed collections of nonempty sets are non-
empty.

Proof. — We indicate how to use the Axiom of Choice to construct an
element of the Cartesian product of any “indexed collection” F of non-
empty sets. Observe that the disjoint sum

∑
[F ] can be partitioned in a

natural way into the collections P1{F (i)}× {i} for each i in dom(F ). We
use the Axiom of Choice to construct a choice set for this partition; this
will be a set with a single element ({b}, i) such that b ∈ F (i) for each i in
dom(F ). This set is a relation, whose converse will be a function taking
each element of dom(F ) to the singleton of an element of F (i), which will
be an element of

∏
[F ] by the definition of that set.

Given a collection P of pairwise disjoint nonempty sets, take
∏

[[=]3P ]
(the self-indexed product of the collection P , which we might write

∏
[P ]
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if we were being slightly less formal); given that
∏

[[=]3P ] is nonempty,
we can construct a choice set for P as the union of the range of an element
of the self-indexed Cartesian product of P . This completes the proof. !

11.3. A Case Study in Stratification

In this section, we will analyze one of the constructions of the last section
with an eye to justifying assertions about relative type and stratification,
and with an eye to giving a reader a model of how to go about supplying
such justifications himself for later assertions of this sort which are not
given explicit support.

Our example will be the definition of the Cartesian product of a collection
of sets “indexed” by a function F . We reproduce the relevant theorem
from above:

Theorem. Let F be a function whose range is A.
∏

[F ] = {f | f is a
function from dom(F ) to P1{

⋃
[A]} (the set of singletons of elements

of elements of A) such that for each i ∈ dom(F ), f(i) ⊆ F (i)}, called
the Cartesian product of F , exists. We may use

∏
[A] to abbreviate∏

[[=]3A]; we signal this by saying that we use A to index itself.

We want
∏

[F ] to contain elements representing each way to choose an
element from each element of the range of the function F . We need to
assign “roles” or relative types to all objects involved in this construction.

Observe that each element of the range A of the function F is supposed
to be a set, since we need to choose an element from each of them. These
elements appear to be the objects of lowest type in the construction, so
we assign these relative type 0 (we think of these as “bare objects”).
This implies that each element B of the range A of F should be assigned
relative type 1 (we think of these as “classes of bare objects”). F itself
is a collection of ordered pairs of the form (i, B), where i is an element
of some index set I (the domain of F ), and B is a set belonging to A,
the range of F . The set B has already been assigned relative type 1. An
ordered pair will have the same relative type as each of its elements, so
we see that we must assign (i, B) and the index i relative type 1 as well.
This means that F (as a class containing (i, B)), the index set I (as a
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class containing i) and the range A of F (as a class containing B) must
be assigned relative type 2 (we think of I and A as “classes of classes of
bare objects”; F is a “class of pairs of classes of bare objects”, and we
assign the same role to pairs of classes that we assign to classes). We have
completed the assignment of roles or relative types to objects that we are
given before the construction starts.

An element of the product we are constructing is supposed to associate
each element i of the index set I with an element x of the set A = F (i).
Naively, we would like to make this element a function f with elements of
the form (i, x). But this is forbidden by considerations of relative type:
we have already seen that we must assign relative type 1 to each index
i ∈ I and relative type 0 to each element x of an element B of the range
A of F . The standard solution to this difficulty is to recall that we can
associate the singleton {x} of relative type 1 with the object x of relative
type 0. We revise our intentions accordingly, using the pair (i, {x}) to code
the choice of the element x from the set F (i). A function f belonging to
the product to be constructed will be a set of pairs (i, {x}) for i ∈ I and
x ∈ F (i). Note that such functions f will be assigned relative type 2 in this
definition, since it is a collection of pairs (i, {x}) which must be assigned
the same relative type 1 as their projections i and {x}. Moreover, such
functions will have domain I = dom(F ) as stated in the Theorem. Each
element x belongs to the union of the range A of F , so each singleton {x}
belongs to P1{

⋃
[A]}, as stated in the theorem: the need to use the P1

construction reflects the underlying need to use the singleton construction.
This justifies the assertion in the theorem that each function f belonging
to the product will be a function from dom(F ) to P1{

⋃
[A]}; we further

select as elements of
∏

[F ] only those pairs (i, {x}) = (i, f(i)) such that
x ∈ F (i), or, equivalently, {x} = f(i) ⊆ F (i). We have now motivated the
form of the definition of

∏
[F ] in terms of considerations of stratification.

Since we can see that the definition of
∏

[F ] is stratified, we see that
∏

[F ]
exists (the need to verify this is the reason that the “definition” of

∏
[F ]

is actually a theorem).

Further, we see that
∏

[F ] must be assigned relative type 3, since its
elements f are assigned relative type 2. The parameter F in the definition
of

∏
[F ] was assigned relative type 2 in our analysis, so we see that the type

of
∏

[F ] in any construction will be 3− 2 = 1 type higher than the type of
its parameter. It is important to recall that our initial assignment of type



76 Chapter 11. Operations on Functions

0 to the elements of the elements of the range of F was arbitrary; in the
context of a larger construction, we might have assigned a different relative
type to these elements, with the effect of displacing all other types in the
construction by a uniform amount. This would leave invariant the fact
that the relative type of

∏
[F ] must be one higher than that of F , which

is the only fact we need to recall for the use of the product construction
in further constructions of sets.

11.4. Parentheses, Braces, and Brackets

This is a natural point at which to explain certain conventions that we
have followed so far. We have the notation f(x) for the result of applying a
function f to an argument x. The observant reader may have noticed that
some of the operations we have defined above, such as the domain dom(x)
have had the same format, while others, such as the power set P{x} or
the set union

⋃
[X ] use different delimiters for their arguments. We do

attempt to follow a consistent convention: functions and those operators
which can be realized as functions (the domain operation, for example, is
actually a function) use parentheses. Operations which raise relative type
(usually, but not always, by one) usually use braces, as in P{x}. The fact
that the braces resemble the braces in the singleton {x} is not accidental;
an operation on x which raises type by one can be understood as the
application of a function to {x}! Other operations (those which lower
type or those which abuse it in worse ways) use brackets as delimiters.
An exception is that negative “powers” of type-raising operations, though
they in fact lower type, seem naturally to call for braces. The use of
brackets in the image operation should be distinguishable from the last
use in principle: the difference between f [X ] (the image of the set X
under the function f) and

⋃
[X ] (the set union of X) is that the symbol

on the left is the name of a set in one case and a special operator in the
other. Brackets may also be used for images of sets under type-raising
operations. A uniform exception is that all of the “operations on families
of sets” introduced in this chapter take brackets, although some could take
parentheses or braces. None of these uses should conflict with the special
use of brackets to convert infix operators to set names as in [=], with the
notation [X → Y ], or with the notation for equivalence classes.
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Exercises

(a) Explain the precondition rng(g) ⊆ dom(f) on the identity (f ◦g)(x) =
f(g(x)).

(b) Prove the correctness of our assertions about the relationships between
the inverse image and image operations and the Boolean operations.

(c) Verify our assertions about the stratification and relative type of the
disjoint sum of an indexed family of sets.
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Chapter 12

The Natural Numbers

12.1. Definition of the Natural Numbers.
Induction and Infinity

We noted earlier that the numbers are defined in a more usual treatment
of set theory as follows: ‘0’ = { }, ‘1’ = {‘0’}, ‘2’ = {‘0’, ‘1’}, and so
forth. These are called the von Neumann numerals, and the existence of
each von Neumann numeral is a consequence of our axioms. Observe that
the successor ‘n’+ of each von Neumann numeral ‘n’ is ‘n’ ∪ {‘n’}, and
you will see why these numerals are unsatisfactory from our standpoint.
The expression x+ = x∪ {x} cannot appear in a stratified sentence, since
it contains x with two different types! If we cannot define the successor
operation for these numerals, we cannot use them effectively.

Fortunately, there is a much more natural definition of the natural numbers
(actually the original set-theoretic definition of number) which succeeds
here (and fails in the more usual treatment of set theory).

We have already defined 0 as {{ }} and 1 as P1{V }. 0 is defined as the
set of all sets with 0 elements, and 1 is defined as the set of all sets with
1 element (but without the circularity suggested by the English phrases).
This seems quite natural. The number 3, for example, can be thought
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of as a property shared by all sets with three elements; properties are
represented by sets, so 3 might be expected to be the set of all sets with
three elements.

Now we need to address the question of whether the number 3 as defined
above actually exists. What we will do is define the successor operation:

Definition. For any set of sets A, we define A + 1 as the collection

{a ∪ {x} | a ∈ A and not(x ∈ a)}

of unions of elements a of A and singletons of objects x not in a.

If the set of all sets with n elements exists (call it “n” for the moment),
then it should be clear that “n” + 1 will be the collection of all sets with
n + 1 elements, for any concrete natural number n. Since we have 0 and
1, we can construct 2 = 1 + 1, 3 = 2 + 1, 4 = 3 + 1, and so forth.

We are now in a better position than with the von Neumann numerals in
two ways: the numerals we are using are more natural objects, and (as
can easily be checked) the function Inc = (A 0→ A + 1) which realizes the
successor operation actually exists. We can go further: we can define the
set of natural numbers (or something which looks as if it ought to be the
set of natural numbers!): it would appear that any set which contains 0
and is closed under the function Inc will contain all natural numbers (by
the principle of mathematical induction) and it seems unreasonable that
any other objects would belong to all such sets. We make some definitions:

Definitions. Inc = (A 0→ A + 1).

Ind, the collection of inductive sets, is defined as {A | 0 ∈ A and
Inc[A] ⊆ A}; an inductive set is one which contains 0 and contains the
“successor” of each of its elements.

N , the collection of natural numbers, is defined as
⋂

[Ind], the collec-
tion of objects which belong to all inductive sets.

Fin, the collection of finite sets, is defined as
⋃

[N ].

A set which is an element of a natural number n may be referred to as
a set of size n or a set with n elements; the natural number to which
a finite set A belongs may be referred to as the size of A.
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It is straightforward to check that the existence of each of the sets defined
above follows from Stratified Comprehension. The definition of Fin may
require a little explanation: the union of N consists of all the elements
of the elements of N ; the elements of a natural number n are the sets
with n elements, so

⋃
[N ] consists of the sets A such that for some natural

number n (depending on A), A has n elements, which seems a reasonable
definition for the collection of finite sets.

An immediate corollary of the definition of the set N is the familiar

Principle of Mathematical Induction. Suppose that S is a set of natural
numbers. If 0 ∈ S and for all n, n + 1 ∈ S if n ∈ S, it follows that
S = N ; all natural numbers are in S.

A formulation in terms of properties of numbers instead of sets of numbers
will work as well, as long as the properties are required to be stratified, so
that they define sets. A later axiom will have as a consequence that induc-
tion holds for unstratified conditions as well, but induction on unstratified
conditions is not needed for arithmetic (it has very strong consequences
in set theory).

We prove a perfectly obvious

Theorem. N is a partition of Fin.

using the following

Definition. Sets A and B are said to be equivalent if there is a bijection
f between A and B.

and

Lemma. Equivalence is an equivalence relation on sets.

Proof of the Lemma. — Equivalence exists as a relation by Stratified
Comprehension. To prove reflexivity, observe that identity functions are
bijections. To prove symmetry, observe that inverses of bijections exist
and are bijections. To prove transitivity, observe that compositions of
bijections are bijections. !

Proof of the Theorem. — We prove that for any A ∈ n, B ∈ n iff A
and B are equivalent. We prove this by induction: consider the set of all n
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such that for any A ∈ n, B ∈ n iff there exists a bijection f between A and
B. Certainly 0 belongs to this set: it has only one element, { }, and there
is a bijection between a set and { } only if the set is itself empty. Suppose
that n belongs to this set: then any A ∈ n + 1 equals A′ ∪ {x}, where
A′ ∈ n and x is not in A′. Similarly, any B ∈ n + 1 equals B′ ∪ {y} with
parallel conditions. By inductive hypothesis, there is a bijection between
A′ and B′, which we extend by mapping x to y. Now suppose that there
is a bijection f between an element A of n + 1 and a set B: A = A′ ∪ {x},
and B = f [A′] ∪ {f(x)}. f [A′] belongs to n by hypothesis, so B belongs
to n+1. It follows that if two natural numbers share an element, they are
equal (since equivalence is an equivalence relation), so the collection N of
natural numbers is pairwise disjoint as a collection of sets, so partitions
its set union Fin. !

There is one possible problem. Suppose that the universe actually con-
tained only n objects for some natural number n. We would then find
that the numeral for n+1 and each subsequent numeral would be { }, the
empty set! Fortunately, we can prove that this is not the case. Usually,
a set theory has an Axiom of Infinity to take care of this case; ours is no
exception, but we have already smuggled in the Axiom of Infinity in the
guise of the Axiom of Projections (this axiom ensures that the relative
types of the projections of an ordered pair are the same as the relative
type of the pair itself). We can see from above that if the universe were
finite, { } would be a natural number. We prove the

Theorem of Infinity. { } is not a natural number.

Proof. — We show that for any set A belonging to a natural number
n, A× {0} belongs to the same natural number. We do this by induction
on the property of n “for all n ∈ N , A ∈ n implies A × {0} ∈ n”. This
is clearly true of 0, since { } (the sole element of 0) is equal to { }× {0}.
Suppose that it is true of n; then the elements of n + 1 are exactly the
objects A∪{x} for A ∈ n and x not in A; but A×{0} is in n for each such
A by inductive hypothesis, and so (A ∪ {x})× {0} = (A× {0}) ∪ {(x, 0)}
belongs to n + 1 (since (x, 0) cannot belong to A × {0}, x not being in
A). Now our condition on n defines a set, which we have just shown to
be inductive, so all elements of N belong to it. Now we show that the
collection of nonempty elements of N is inductive; certainly 0 belongs to
it; if n is nonempty, take an element A of n, and form (A×{0})∪{(0, 1)},
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which must belong to n + 1. !

Corollary. Every natural number n has an element which is not V .

Proof. — This is a corollary of the construction: if X belongs to n,
X × {0} belongs to n and is not equal to V . This means that whenever
we choose an element X of n, we can do it in such a way that there is an
x which is not in X . !

The following theorem gives us the capability of inductive definition of
functions, without any relaxation of stratification restrictions:

Recursion Theorem. If X is a set, x is an element of X , and f is a function
in [X → X ], there is a unique function g in [N → X ] such that
g(0) = x and g(n + 1) = f(g(n)) for each natural number n.

Proof. — The function g is defined very much as N is: it is the inter-
section of all sets which contain (0, x) and are closed under the function
((n, y) 0→ (n + 1, f(y))). !

Definition. For f a function, x any object, and n a natural number, we
define fn(x) as g(n), where g is the function with domain N such that
g(0) = x and g(n + 1) = f(g(n)) for each natural number n.

12.2. Peano Arithmetic

We could give inductive definitions of the operations of addition and mul-
tiplication, but we prefer to give “natural” ones. After defining the oper-
ations, we will prove the axioms of Peano arithmetic.

Definition. For m, n ∈ N , A, B ∈ m, n respectively, we define m + n as
the natural number which contains A⊕B, if there is one.

Theorem. The two definitions of m + 1 agree.

Proof. — The typical element of m + 1 as originally defined is M ∪ {x},
for M ∈ m and x not in M ; the typical element of m + 1 as defined here
is M × {0} ∪ ({x} × {1}) = M × {0} ∪ {(x, 1)}; but M × {0} ∈ m and
(x, 1) is certainly not in M × {0}. !
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Definition. For m, n ∈ N , A, B ∈ m, n respectively, we define mn as the
natural number which contains A×B, if there is one.

The numbers m+n and mn are necessarily unique by the result that N is
pairwise disjoint. We will prove below that they actually exist in all cases.

Theorem. 0 ∈ N .

Proof. — True by definition of N . !

Theorem. If n ∈ N , n + 1 ∈ N .

Proof. — True by definition of N . !

Theorem. If n ∈ N , n + 1 #= 0.

Proof. — { }, the sole element of 0, is not of the form A′ ∪ {x} for an
A′ ∈ n and x not in A′; all elements of n + 1 must be of this form. !

Theorem. If n ∈ N and n #= 0, then n = m + 1 for some m.

Proof. — Trivial induction. !

Theorem. If n, m ∈ N and n + 1 = m + 1, then n = m.

Proof. — We proceed by induction on the property of n “for all m, if
n + 1 = m + 1, then n = m”. If 0 + 1 = m + 1, then every singleton {x}
(element of 0 + 1) is of the form A ∪ {y}, for A ∈ m and y not in A; but
y clearly must be x, and so A must be empty, i.e., m = 0. This shows
that 0 has the property. Suppose that for all m, if n + 1 = m + 1, then n
= m. Now suppose that n + 1 + 1 = m + 1. This means that any set of
the form A ∪ {x} ∪ {y}, where A ∈ n and x, y are distinct and both not
in A, is also a set of the form B ∪ {z}, where B ∈ m and z is not in B
(there are such sets because all numbers are nonempty). We see that B
is nonempty (it must contain x or y or both) so m = q + 1 for some q. If
z is x or y, we see that q + 1 = n + 1, since then B = A ∪ {the other of x
and y}, so q = n and m = n + 1 by inductive hypothesis. If z is not x or
y, we consider B′ = B − {x} ∪ {z}; this belongs to m, because there is a
bijection between it and B. Now B∪{z} = B′∪{x} = A∪{x}∪{y}, and,
by deleting x from both sets, we see that q + 1 = m = n + 1, as before, so
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q = n by inductive hypothesis, and m + 1 = n + 1. We have shown that
n+1 has the property if n does, so the proof is complete by induction (on
a stratified condition which defines a set). !

Theorem. For each m, m + 0 = m.

Proof. — If A ∈ m, B ∈ 0, B = { } and A⊕ { } = A× {0} ∈ m. !

Theorem. For each m, n for which m+n exists, m+(n+1) = (m+n)+1.

Proof. — Let M, N belong to m, n respectively. An element of m+(n+
1) is M × {0}∪ ((N ∪ {x})× {1}) for some x not in N , or M × {0}∪N ×
{1}∪{(x, 1)}. But M ×{0}∪N×{1} belongs to m+n, and (x, 1) belongs
to neither M × {0} nor N × {1}, so this set also belongs to (m + n) + 1.

!

Corollary. m + n exists for all m, n.

Proof. — By induction on the condition on n, “m+n exists for all m”.
This condition, the closure property of addition, is important for the next
section. !

Theorem. For all m ∈ N , m0 = 0.

Proof. — Let M be an element of m. M × { } = { }. !

Theorem. For all m, n ∈ N , m(n + 1) = mn + m.

Proof. — Let M, N belong to m, n and let x not belong to N . M ×
(N ∪{x}) belongs to m(n+1), and is equal to (M ×N)∪ (M ×{x}). The
function which sends (y, z) to ((y, z), 0) for y ∈ M , z ∈ N and sends (y, x)
to (y, 1) for y ∈ M is well-defined and a bijection between this set and
(M ×N)⊕M , an element of mn + m, so these two numbers are equal. !

Corollary. mn exists for each pair of natural numbers m, n.

Proof. — By induction on the condition on n, “mn exists for all m”.
!

All conditions expressed in the language of first-order logic with equality,
addition and multiplication, with all variables restricted to N , are strat-
ified, so the definition of N provides us with the Axiom of Induction for
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Peano arithmetic (we do not need the stronger theorem provable for our
full set theory). We have proven all the axioms of Peano arithmetic as
interpreted in set theory. Of course, with our “natural” definitions of op-
erations, the usual algebraic properties of the system of natural numbers
are fairly easy to prove.

12.3. Finite Sets. The Axiom of Counting

Theorem. Any subset of a finite set is finite.

Proof. — We restate the theorem in the form “for each natural number
n, any subset of an element of n is finite”. We prove this theorem by
induction. It is clearly true in the case n = 0. Now let k be a natural
number such that all subsets of any set of size k are finite. Let A be a set
of size k + 1 and let x be any element of A. Let B be any subset of A.
If x #∈ B, then B ⊆ A − {x}, a set of size k, and B is finite by inductive
hypothesis. If x ∈ B, then B − {x} is finite by inductive hypothesis,
belonging to some natural number m, and B itself is then seen to belong
to m+1, and so is seen to be finite. The proof of the theorem is complete.

!

Theorem. If A and B are finite sets, A ∪B is finite.

Proof. — There is a bijection between A∪B and A⊕(B−A). A is finite
by hypothesis, B −A is finite by the preceding theorem (it is a subset of
B), and disjoint sums of finite sets are finite by the closure property of
addition, proved in the previous subsection. !

Theorem. The union of any finite set of finite sets is finite.

Proof. — We restate this as “for each natural number n, the union of
any collection of n finite sets is finite”. We prove this by induction on n.
The case n = 0 is trivial; the union of the empty set is empty. Let k be
a natural number such that any union of k finite sets is finite. Consider
a set A of k + 1 finite sets, and let A ∈ A. The union of A − {A} is
finite by hypothesis, and A is finite by hypothesis. The union of A is then
the Boolean union of two finite sets, which we know to be finite by the
preceding theorem. The proof of the theorem is complete. !
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Theorem. The power set of any finite set is finite.

Proof. — We restate this as “for each natural number n, the power set of
any element of n is a finite set”. We prove this by induction on n. The case
n = 0 is obvious; the power set of the element of 0 has one element. Let k
be a natural number such that the power set of any element of k is finite.
Let A be an element of k + 1 and let x be an element of A. P{A− {x}}
is finite by hypothesis, and so belongs to a natural number m. There is
an obvious bijection between P{A} and P{A− {x}}⊕P{A− {x}}; send
each subset which does not contain x to its pair with 0 and each subset B
which does contain x to (B − {x}, 1). Thus, we see that P{A} ∈ m + m,
and so is finite. The proof of the theorem is complete. !

Theorem. The “singleton image” P1{A} of a finite set A is finite.

Proof. — The power set of A is finite by the preceding theorem, and
the “singleton image” of A is a subset of this finite set, so finite. !

Theorem. Every natural number n contains a set of the form P1{A}.

Proof. — By induction. This is certainly true for n = 0 (the empty set
is its own “singleton image”). Suppose that it is true for k; we are given a
set P1{A} ∈ k, and we consider P1{A}∪ {{y}} = P1{A∪ {y}} for y #∈ A;
this is clearly an element of k + 1 of the desired form. The proof of the
theorem is complete. !

What we cannot prove is the following obvious

∗Theorem If A ∈ n, P1{A} ∈ n.

We can prove this for each concrete natural number, but the obvious proof
by induction does not work, because the condition “A ∈ n iff P1{A} ∈ n”
is not stratified. Methods beyond the scope of this book show that the
purported theorem cannot be proven from our axioms given so far.

It is straightforward to show that A and B are equivalent iff P1{A} and
P1{B} are equivalent. This justifies the following

Definitions. T {n} is defined as the natural number containing P1{A} for
each A ∈ n. Notice that the relative type of T {n} is one higher than
that of n.
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T−1{n} is defined as the natural number m such that T {m} = n.
Notice that the relative type of T−1{n} is one lower than that of n.

Theorem. T−1{n} is well-defined for every n.

Proof. — By a theorem above, there is a set P1{A} ∈ n. A is finite,
because it is the union of this finite collection of finite (one-element) sets;
it clearly belongs to T−1{n}. !

We now introduce a new axiom (temporarily; it will turn out to be a
consequence of the Axiom of Small Ordinals introduced later):

Axiom of Counting. For all natural numbers n, T {n} = n.

Corollary. For all natural numbers n, T−1{n} = n.

The reader may wonder why we went to the trouble of defining the T
operation and its inverse. The answer lies in the following result:

Restricted Subversion Theorem. If a variable x in a sentence φ is re-
stricted to N , then its type can be freely raised and lowered; i.e.,
such a variable can safely be ignored in making type assignments for
stratification.

Proof. — Any occurrence of a variable n restricted to N can be re-
placed by T {n} (which lowers the type of n by one) or by T−1{n} (which
raises the type of n by one). This can be repeated as needed to give any
occurrence of a variable restricted to N any desired type. !

A more general theorem of the same kind appears in a later chapter.

We prove some obviously true theorems which require the Axiom of Count-
ing:

Theorem. {1, . . . , n} ∈ n.

Proof. — It is straightforward to show that {1, . . . , n} ∈ T 2{n} for each
natural number n, by induction. The double application of T is needed to
stratify the sentence so that the induction can be carried out; the Axiom
of Counting allows us to eliminate it. This obviously true statement was
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the original form in which the Axiom of Counting was proposed by Rosser.
!

Theorem. A union of m disjoint sets each belonging to n belongs to mn
(this is shorthand for “if A ∈ m ∈ N and A ⊆ n ∈ N then

⋃
[A] ∈

mn”).

Proof. — It is straightforward to show by induction that the union of
m disjoint sets each belonging to n has T−1{m}n elements. Also notice
that for A ∈ m ∈ N , B ∈ n ∈ N , it is easy to see that A×B is the union
of T {m} sets, each of size n; the T {m} sets are, of course, the “rows”
{(a, b) | b ∈ B} for each a: there is a stratified definition of a bijection
between the set of “rows” and the set of singletons {a} of elements of
A. The application of T or T−1 are needed for stratification, and are
eliminable by the Axiom of Counting. !

Exercises

(a) Prove that 2 + 2 = 4.

(b) Give a set-theoretical proof of the distributive law of multiplication
over addition.

(c) Prove that the Cartesian product of two finite sets is a finite set.

(d) Define the function (n ∈ N 0→ 2n) recursively (give a definition of
the function as a set of ordered pairs). Try to prove the theorem “for
all n ∈ N , A ∈ n implies P{A} ∈ 2n”. If you do this carefully, you
should find that there is an obstruction to the natural proof involving
stratification. Complete the proof using the Axiom of Counting; what
is the form of the theorem you could prove without using the Axiom
of Counting?
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Chapter 13

The Real Numbers

In this section, we outline the construction of the continuum (the system
R of real numbers).

13.1. Fractions and Rationals

We start by restricting ourselves to the set N+ of positive natural numbers.
This will have the effect of simplifying our constructions.

We will first construct the system F of fractions (a preliminary implemen-
tation of the positive rational numbers).

The basic idea of the construction is that a fraction m
n , where m and n are

positive natural numbers, is a finite structure which we might just as well
identify as (m, n). The difficulty which arises immediately is that there
need to be identifications among fractions. We expect that m

n = r
s will

hold if ms = nr. We make the following

Observation. The relation ∼ defined by “(m, n) ∼ (r, s) iff ms = nr” is an
equivalence relation on pairs of positive natural numbers. (This use
of ∼ is a nonce notation).
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A typical approach now would be to define the positive rational numbers
as equivalence classes under this relation. We prefer not to do this, be-
cause of the difference in relative type between equivalence classes and
their representatives. An example of the difficulty is that the natural map
taking each positive natural number n to the fraction n

1 , which would
be the equivalence class [(n, 1)]∼ under this scheme, would have an un-
stratified definition and so could not be relied upon to be defined (the
Axiom of Counting introduced in the previous section does imply that it
is well-defined, though).

The solution to this problem in general, as we noted above, is the use
of the Axiom of Choice to choose a representative from each equivalence
class. This is not necessary in this case, as there is a familiar way to choose
a canonical fractional representation for a positive rational number.

Definition. We define the function

simplify(m, n) =
( m

gcd(m, n)
,

n

gcd(m, n)

)

for m, n ∈ N+. Observe that this function sends each element of
each equivalence class under ∼ to a unique representative element of
that class. Division of positive natural numbers (and greatest common
divisors) are understood to be defined in the usual way.

Definition. We define the set F of fractions as {simplify(m, n) | m, n ∈
N+}. We define m

n as the fraction simplify(m, n) for each pair of
positive natural numbers m, n.

We define basic operations and relations on fractions.

Definition. Let
m

n
and

r

s
be fractions. We define

m

n
+

r

s
as

ms + nr

ns
and

(
m

n
)(

r

s
) as

mr

ns
. Notice that the definition of fraction notation ensures

that simplifications are understood to be carried out.

Definition. Let
m

n
and

r

s
be fractions. We define a relation

m

n
<

r

s
(and

r

s
>

m

n
)as holding when ms < nr. Observe that this relation imple-

ments the usual linear order on positive rational numbers.
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Definition. Let
m

n
and

r

s
be fractions, with

m

n
>

r

s
. We define

m

n
− r

s

as
ms− nr

ns
; the order condition on the fractions is exactly what is

needed for the subtraction of natural numbers in the numerator to be
well-defined, and it is straightforward to verify that this subtraction
operation has the correct relationship to addition of fractions.

We now construct the system Q of rational numbers. The idea, similar
to that underlying the construction of the system F of fractions, is to let
ordered pairs (p, q) of fractions stand for differences p− q. Of course, we
wish to make certain identifications among these ordered pairs:

Observation. The relation∼ on pairs of fractions defined by “(p, q) ∼ (r, s)
iff p + s = q + r” is an equivalence relation.

Once again, we want to avoid using equivalence relations on pairs for
reasons of stratification.

Definition. We define a function

simp(p, q) =
(1

1
+ p−min(p, q),

1
1

+ q −min(p, q)
)
.

Observe that the function simp collapses each equivalence class under
∼ to the unique member of that class one of whose projections is 1

1 .

Definition. We define the set Q of rational numbers as {simp(p, q) | p, q ∈
F}. Notice that the rational numbers are of three kinds: there is a
unique element (1

1 , 1
1 ) which we denote by 0 (an admitted abuse of

notation), elements (m
n + 1

1 , 1
1 ) which we might denote by +m

n and
elements (1

1 , m
n + 1

1 ) which we might denote by −m
n .

We do not intend to be so careful; we will use the usual notation for
rational numbers, with the attending confusion of positive rationals with
fractions and postive integral fractions and rational numbers with the
corresponding positive natural numbers. We introduce the notation p− q,
where p and q are fractions, for simp(p, q), to simplify the notation of the
next definitions; the notion of subtraction of fractions defined above, for
which we have the same notation, will not be used below.

We define basic operations and relations on the rational numbers:
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Definition. Let p − q and r − s be rational numbers (where p, q, r, s
are fractions). We define (p − q) + (r − s) as (p + r) − (q + s). We
define (p− q)(r − s) as (pr + qs)− (ps + qr). The notions of addition
and multiplication on the right of each equation are those defined on
fractions, so these are definitions.

Definition. Let p− q and r − s be rational numbers (where p, q, r, s are
fractions). We define (p− q) < (r − s) as holding when p + s < q + r
(this is a definition because the order relation on the right is that
defined on fractions).

Definition. The set Z of integers is defined as the collection of all rational
numbers of the forms n

1 − 1
1 or 1

1 −
n
1 , for n ∈ N+. Note that this

usually distinguished set played no special part in our construction.

This development is certainly not the only one possible. All developments
of number systems in set theory are “implementations” of the familiar
systems and must have some essentially arbitrary features. Nor is this
development rigorous; it would be possible to verify all familiar properties
of the rational numbers starting with the axioms for the natural numbers
proved in the previous chapter, but we have not done this. We have
presumed familiarity with the properties of the number systems being
implemented.

An advantage of this implementation is that we need never worry about
zero denominators. The price we pay is the special role of 1

1 in the “sim-
plest form” for differences; zero is not available to us! Another advantage
of this development is that it is more historically accurate; positive ra-
tional numbers were understood before negative numbers, at least by the
Greeks.

13.2. Magnitudes, Real Numbers, and
Dedekind Cuts

Our official implementation of the real numbers will be eccentric in not
being based on the rationals!

We return to the system F of fractions. We observe that the positive
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real numbers correspond exactly to the open initial segments of the set of
positive rational numbers. We define a set M of magnitudes, a preliminary
implementation of the positive real numbers.

Definition. M is defined as {A | A ⊂ F , A #= { } and for all p ∈ F , p ∈ A
iff for some q ∈ A, q > p}. An element of M is called a magnitude. A
magnitude is a proper initial segment of F with no greatest element.
For some purposes, F might be regarded as a special “magnitude” ∞.

Definitions of operations and relations on M are extremely simple:

Definition. If A, B ∈M, A + B = {a + b | a ∈ A, b ∈ B} and
AB = {ab | a ∈ A, b ∈ B}. A < B iff A ⊂ B.

The construction of the system R of real numbers from the system M is
precisely analogous to the construction of the system Q of rational num-
bers from the system F of fractions; for the details see the previous sub-
section. Constructing a system of “extended reals” including ±∞ would
involve some technicalities.

For this nonstandard approach, we could claim once again the authority
of the ancient Greeks, who understood positive reals (or at least some
of them) without ever acknowledging negative numbers or zero. We also
think that there is something very Greek about defining arbitrary magni-
tudes as segments.

We indicate the approach of Dedekind, who based his construction of R
on the full system Q.

Definition. A Dedekind cut is a pair (L, R) of subsets of Q such that

(a) L and R are nonempty.

(b) Each element of L is less than each element of R.

(c) L has no greatest element and R has no least element.

(d) Q− (L ∪R) has at most one element.

It is generally understood (a draft said “intuitively clear” here, which
is certainly not true!) that Dedekind cuts correspond exactly to indi-
vidual real numbers. The definitions of operations on Dedekind cuts are
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somewhat more complicated than the very simple definitions of operations
on M.

A difficulty with type differentials which we avoided in the constructions of
fractions and rational numbers by using representatives instead of equiv-
alence classes is unavoidable in our construction of magnitudes (and so of
reals). The identification of a fraction p

q with the corresponding magni-
tude { r

s | r
s < p

q } cannot be shown to be witnessed by a function from
F to M without an appeal to the Axiom of Counting; its definition is
unstratified. To show that such a function exists using Counting, check
that the map taking T{p}

T{q} to { r
s | r

s < p
q } does have a stratified definition,

and then observe that the Axiom of Counting allows us to ignore the T
operation.

Magnitudes and real numbers, unlike fractions and rationals, have an es-
sentially set theoretical definition; their definition cannot be reduced to
finite structures. This is not surprising, since the additional property
which R has, over and above the axioms of an ordered field which are also
satisfied by Q, is the Least Upper Bound Property, which is an essentially
set theoretical property.

We state and prove the Least Upper Bound Property for M; the develop-
ment of the property for R involves merely technical complications.

Definition. Let A be a set of magnitudes and let m be a magnitude. We
call m an upper bound for A iff for all n ∈ A, m " n.

Least Upper Bound Property. Let A be a nonempty set of magnitudes
with an upper bound. Then A has a least upper bound; i.e., there is
a magnitude m which is an upper bound of A such that for all upper
bounds n of A, m ! n.

Proof. — Recall throughout this proof that the order on M coincides
with inclusion: subsets are less than supersets.

Let B = {m ∈ M | m is an upper bound for A}. We claim that the
least upper bound of A is

⋂
[B]. An intersection of open proper initial

segments of M will either be an open proper initial segment of F (and so
an element of M), a closed proper initial segment of F , or the empty set.⋂

[B] will not be empty because every element of B is a superset of any
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given element of A. Suppose that
⋂

[B] is the closed interval determined
by an element p of F . {q ∈ F | q < p}, the element of M corresponding
to p, would clearly be an upper bound of A, so a superset of

⋂
[B], so

p #∈
⋂

[B], contrary to the purported choice of p. Thus
⋂

[B] ∈ M.
⋂

[B]
will be an upper bound of A because it is a superset of each element of
A; it is less than or equal to each upper bound of A because it is the
intersection of all upper bounds of A. !

Definition. If A is a nonempty subset of M or R with an upper bound,
we define supA as the least upper bound of A. If A is a nonempty
set with a lower bound, we define inf A as the greatest lower bound of
A (the existence of greatest lower bounds is an easy corollary of the
existence of least upper bounds).

We can define infinite sums of magnitudes (and of real numbers with more
work); it is very convenient to allow the “magnitude” ∞ in this context.

Definition. A function with domain a nonempty initial segment (proper
or otherwise) of N will be called a sequence. A sequence whose range
is included in a set A will be called a sequence of elements of A.
A sequence whose domain is a proper subset of N will be called a
finite sequence; a sequence which is not finite will be called an infinite
sequence. The alternative notation sn is available for s(n) when s is
a sequence and n ∈ N .

Definition. The sum
∑

[s] of a finite sequence of fractions (the form of
the definition will be the same for other number systems) is defined
inductively as follows:

∑
[s3{0}] = s(0) (this defines the notion of sum

for one-element sequences);
∑

[s3{0, . . . , n + 1}] =
∑

[s3{0, . . . , n}] +
s(n + 1).

Definition. The sum
∑

[s] of an infinite sequence s of magnitudes is defined
as {

∑
[f ] | f is a finite sequence such that for each n ∈ dom(f), f(n) ∈

s(n)}. This is unstratified (n cannot be consistently typed); the Axiom
of Counting assures us that this definition succeeds (the stratified form
of the definition is {

∑
[f ] | f is a finite sequence such that for each

n ∈ dom(f), f(n) ∈ s(T{n})}.

The problem can be avoided completely by the following alternative
definition: first define finite sums of magnitudes in the same way as
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finite sums of fractions, then define (for s an infinite sequence of mag-
nitudes)

∑
[s] =

⋃
{
∑

[f ] | for some n ∈ N , f = s3{0, 1, . . . , n}}.

Observation. Any sum of magnitudes is itself either a magnitude (in which
case the sum is said to converge) or ∞.

Exercises

(a) Attempt proofs of some or all of the basic rules of algebra in the
systems presented in this chapter.

(b) Prove that for each positive natural number n and magnitude x ∈M,
there is a unique magnitude n

√
x ∈M such that ( n

√
x)n = x.

(c) (hard) How would you define addition of two real numbers defined
as Dedekind cuts in Q? How would you define multiplication of real
numbers defined in this way?

(d) (hard) Present a set theoretical definition of the base e of natural
logarithms.
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Chapter 14

Equivalents of the Axiom of Choice

We now turn to an investigation of various forms of the Axiom of Choice
and their consequences. We do not consider the Axiom of Choice to be
a problematic mathematical assumption. It is rather like the axiom of
parallels in Euclidean geometry; we have the “choice” of systems with and
without the Axiom of Choice, which can be shown to be equally “safe”.
The one curious thing about the Axiom of Choice in the context of this
particular kind of set theory with Stratified Comprehension is that (as we
will see in a later chapter) we can use the Axiom of Choice to prove the
existence of atoms; we do not see any way to prove the existence of atoms
without the Axiom of Choice, but it remains an open problem whether
this can be done.

We restate the Axiom and an equivalent of the Axiom which we have
already established above:

Axiom of Choice. For each set P of pairwise disjoint non-empty sets, there
is a set C of elements of elements of P which contains exactly one
element of each element of P .

Theorem. The Cartesian product of any family of non-empty sets is non-
empty.

If A is a family of sets, we call an element of
∏

[A] (a function which
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takes each element a of A to a singleton {c} ⊆ a) a choice function for A.
We cannot in general have a function taking each a to the corresponding
c due to stratification restrictions. We consider the special case of the
nonempty subsets of some set X ; an element of

∏
[P{X} − {{ }}], the

Cartesian product of the collection of nonempty subsets of X , is called a
choice function for the set X – the choice function sends each nonempty
subset of X to the singleton of one of its elements.

Our discussion of equivalents for the Axiom of Choice involves the intro-
duction of a new kind of order:

Definition. A linear order ! is a well-ordering if every nonempty subset
of dom(!) has a least element relative to !. If X = dom(!), ! is
said to be a well-ordering of X . If ! is a linear order which is a well-
ordering, the corresponding strict linear order < is said to be a strict
well-ordering.

Note that the usual order relation on the natural numbers is a well-
ordering, but that the usual order on the integers is not a well-ordering
(the whole set of integers does not have a least element) so the usual order
of the reals, for example, is not a well-ordering.

We now introduce and prove another theorem equivalent to the Axiom of
Choice, with a preliminary definition:

Definition. If ! is a partial order, a chain in ! is the domain of a subset
of ! which is a linear order.

Zorn’s Lemma. If ! is a partial order such that each chain in ! has an
upper bound relative to !, then the domain of ! has a maximal
element relative to !.

Proof. — We first motivate the proof. The Axiom of Choice allows us
to make many simultaneous, independent choices. What is needed in the
proof of Zorn’s Lemma (or, for example, for a direct proof of the result
that the universe is well-ordered given below), is a technique for making a
long sequence of choices each of which depends on choices made previously.
The way we do this is to consider the set of all situations in which we might
find ourselves in the course of such a sequence of choices, and all possible
“next choices” in each such situation. We make independent choices of
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“next choices” in all possible situations, and from this we are able to
construct a sequence of choices depending on choices made earlier.

For each chain c in !, we define a set Xc as follows: if there is any upper
bound x of c in ! such that x #∈ c, then Xc is the collection of sets
c∪{x} for all such upper bounds x. If there is no such upper bound, then
Xc = {c}. Note that in either case, each element of Xc is a chain, and, in
the latter case, any upper bound for c (there is only one) belongs to c and
is a maximal element for !.

The collection of sets {c}×Xc for c a chain in ! is a set of pairwise disjoint
sets. A choice set for this collection will be a function taking each chain c
to a selected element of Xc. Choose such a function and call it G.

We call a chain c in ! authentic if it is well-ordered by ! and has the
property that for each x ∈ c, G({y ∈ c | y < x}) = {y ∈ c | y ! x}.
(We define x < y as “x ! y and x #= y” in accordance with our stated
convention). So x = max G({x ∈ c | y < x}) (we use the notation max A
here for the largest element of a set A with respect to an understood
order).

The following should be obvious: any initial segment {y ∈ c | y < x} or
{y ∈ c | y ! x} of an authentic chain is an authentic chain; the empty
chain is authentic; if c is an authentic chain, G(c) is an authentic chain.

We now need to prove a technical property. Consider two authentic chains
c and c′ and let a be an element of c such that {x ∈ c | x < a} = {x ∈ c′ |
x < a}. Then a ∈ c′ or c′ = {x ∈ c | x < a}. Indeed, suppose that a #∈ c′

and that c′ #= {x ∈ c | x < a}. So c′ #= {x ∈ c′ | x < a} and there exists
some a′ ∈ c′ which is greater or equal to a. As c′ is authentic, it is well-
ordered and we can assume that a′ is the minimum of {x ∈ c′ | x " a}.
This implies that {x ∈ c′ | x < a} = {x ∈ c′ | x < a′} and also that
{x ∈ c | x < a} = {x ∈ c′ | x < a′}. But then,

a = max G({x ∈ c | x < a}) = max G({x ∈ c′ | x < a′}) = a′ ∈ c′.

So a ∈ c′, a contradiction.

Now, let c1 and c2 be distinct authentic chains. We want to prove that
one of these two chains is an initial segment of the other one. Without
loss of generality, suppose that there is an element of c1 which is not in
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c2; let a be the minimal element of c1 not in c2. So {x ∈ c1 | x < a} ⊆
{x ∈ c2 | x < a}.

If {x ∈ c1 | x < a} #= {x ∈ c2 | x < a}, then we can find some element
which is in c2 but not in c1 and which is smaller than a. Let b be the
minimum of {x ∈ c2 | x #∈ c1 and x < a}. As b is minimal and b < a
and {x ∈ c1 | x < a} ⊆ {x ∈ c2 | x < a}, it is easy to prove that
{x ∈ c2 | x < b} = {x ∈ c1 | x < b}. By the technical property, b ∈ c1 or
c1 = {x ∈ c2 | x < b}. As, by definition, b #∈ c1, we conclude that c1 is an
initial segment of c2. But this contradicts the assumption that a ∈ c1−c2.

So {x ∈ c1 | x < a} = {x ∈ c2 | x < a}. Then, by the technical property,
a ∈ c2 or c2 = {x ∈ c1 | x < a}. As, by definition, a #∈ c2, we conclude
that c2 is an initial segment of c1.

Thus, more generally, we have proved that authentic chains are linearly
ordered by inclusion.

It is straightforward to show that the union of a collection of chains which
is linearly ordered by inclusion will be a chain. It is then easy to see that
the union of any collection of authentic chains will be an authentic chain.
In particular, the union of all authentic chains in ! is an authentic chain;
call it C. G(C) must also be an authentic chain, but this implies that
G(C) = C (since each can be seen to be a subset of the other), which
further implies that C has no upper bound not in C (by the definition of
the function G); C has an upper bound by the assumed properties of !,
which must be a maximal element for !. The proof of Zorn’s Lemma is
complete. !

Theorem. Zorn’s Lemma implies the Axiom of Choice.

Proof. — Let P be a pairwise disjoint collection of nonempty sets. Let
Q be the set of choice sets for subsets of P . It is easy to see that inclusion
on Q satisfies the conditions of Zorn’s Lemma (take the union of a chain
of such sets with respect to inclusion to get an upper bound), and that a
maximal element with respect to this order must be a choice set for P . !

Zorn’s Lemma allows us to prove this attractive

Theorem. There is a well-ordering of V .
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Proof. — Consider the collection of all well-orderings (this exists by
Stratified Comprehension). We define the following order on well-orderings:
we say R ! S if R ⊆ S and for each r in dom(R) and s in dom(S)−dom(R),
rSs; the well-ordering S extends R by adding elements at the end only;
we say that S “continues” R.

Now let C be a chain of well-orderings with respect to continuation; we
claim that the union of C is also a well-ordering, and a continuation of
each of the elements of C. Consider a nonempty subset A of the domain
of the union of C. Since it is nonempty, it has an element x, which belongs
to the domain of some R ∈ C. Since R is a well-ordering, A∩ dom(R)
has a minimal element a. Any element of the domain of the union of C
less than a would belong to dom(R), and so would not belong to A; thus
a is the least element of A with respect to the union of C, and the union
of C is a well-ordering. That it is a continuation of each of the elements
of C is easy to see.

We have shown that the collection of well-orderings ordered by continu-
ation satisfies the conditions of Zorn’s Lemma. A maximal well-ordering
must have domain V , or we could extend it by making some single object
greater than all the previously provided objects. !

Corollary. For any set X , there is a well-ordering on X .

Theorem. The existence of a well-ordering on V implies the Axiom of
Choice.

Proof. — Let P be a pairwise disjoint collection of nonempty sets. Let
! be a well-ordering of V . Let C be the set of least elements with respect
to ! of elements of P ; this C is clearly a choice set for P . Note that we can
define choice sets for any partition given a well-ordering of the universe.

!

We have given four equivalent forms for the Axiom of Choice, the orig-
inal statement, the statement that Cartesian products of collections of
nonempty sets are nonempty, Zorn’s Lemma, and the statement that there
is a well-ordering of the universe.
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Exercises

(a) Prove that every finite collection of disjoint sets has a choice function
without using the Axiom of Choice.

(b) Use Zorn’s Lemma to show that any infinite set contains the range of
some bijection with domain N .

(c) Use Zorn’s Lemma to prove that every vector space has a basis.

(d) Bertrand Russell used the following example in a philosophical discus-
sion of the Axiom of Choice. Suppose we have an infinite collection
of pairs of shoes; it is easy to see that there is a choice function for
this collection of pairs (explain). But the case of an infinite collec-
tion of pairs of socks is more difficult (explain). Use Zorn’s Lemma
to demonstrate that we can choose one sock from each of the pairs in
the infinite collection.

(e) Look up the results of Banach and Tarski on the decomposition of
3-spheres using the Axiom of Choice in the library. What do you
think of our assertion that the Axiom of Choice is not a problematic
assumption?



Cahiers du Centre de logique

Volume 10

Chapter 15

Ordinal Numbers

15.1. Well-Orderings and Ordinals

Let W be the domain of a well-ordering !; then we can justify a method
of proving statements about elements of W somewhat analogous to math-
ematical induction:

Theorem of Transfinite Induction. Let W be the domain of a well-order-
ing !. Let A be a set with the property that for each element a of W ,
a ∈ A if seg!{a} ⊆ A; i.e, A contains a if it contains each element of
W less than a. Then W ⊆ A; all elements of W belong to A.

Proof. — If the set W − A is nonempty, then it has a least element a.
But if a is the least element of W − A, then seg{a} ⊆ A, and a must be
in A. It follows that W −A must be empty, and W ⊆ A. !

The difference between conventional mathematical induction and this vari-
ety is that in conventional mathematical induction we consider the imme-
diate predecessor of an element to show that it is in the set, while in trans-
finite induction we consider the set of all predecessors. This kind of in-
duction can be used on the natural numbers as well; the greater generality
is necessary because not all elements of domains of general well-orderings
have immediate predecessors. The basis step of the usual mathematical
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induction handles the problem that 0 does not have an immediate prede-
cessor in the natural numbers; the “basis step” in a transfinite induction
is trivial, since the set of predecessors of the first element is the empty set,
all elements of which have any property one would care to propose.

We can also prove a recursion theorem:

Transfinite Recursion Theorem. Let W be the domain of a well-ordering
!. Let F be a function from the collection of functions with domains
segments of ! to the collection of singletons. Then there is a unique
function f such that {f(a)} = F (f3seg{a}) for each a ∈ W .

Proof. — By transfinite induction. Let A be the set of elements a of
W such that there is a uniquely determined function g on seg+{b} with
the indicated property for each b < a. We want to deduce that there is a
uniquely determined function f on seg+{a} with the indicated property.
The desired function is the union of the union g of all the functions on
the seg+{b}’s (which must agree with one another by uniqueness) and
{a}×F (g) (remember that F (g) is the singleton of the desired value). The
function on all of W is the union of the functions on the weak segments.

!

The function F gives instructions on how to compute the value of f at a
point in W given the values already computed on the values before that
point.

We now use transfinite induction to define an equivalence relation on the
class of well-orderings.

Definition. Let R and S be well-orderings. We say that R is similar to
S if there is a bijection s between dom(R) and dom(S) such that
s(a)S s(b) iff a R b; we call the map s a similarity between R and S.

Theorem. Similarity is an equivalence relation. Moreover, if R is similar
to S, the similarity between R and S is uniquely determined; if R is
not similar to S, then either S is a continuation of an order similar to
R or R is a continuation of an order similar to S (not both).

Proof. — It is easy to check that similarity is an equivalence relation;
check that the identity map on the domain of a well-ordering is a simi-
larity, that inverses of similarities are similarities, and that compositions
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of similarities are similarities. The rest follows from the Transfinite Re-
cursion Theorem: define s(a) as the least element of dom(S)− s[segR{a}]
(if any) for each a in dom(R) – this defines a unique function. Induction
shows that s(a) is the only possible candidate for the value at a of the
similarity between R and S, if any. If s is defined on all of dom(R), then
S is a continuation of an order similar to R; if s is only defined on a seg-
ment of dom(R) (because dom(S) is exhausted) then R is a continuation
of an order similar to S; the fact that s is uniquely defined ensures that
only one of the three possible situations can occur. !

Since similarity is an equivalence relation, it induces a partition of the set
of all well-orderings into equivalence classes. These equivalence classes are
objects of some interest to us.

Definition. An ordinal number is an equivalence class under similarity.
Ord is the set of all ordinal numbers.

Definition. The order type of a well-ordering is the ordinal number of
which it is an element.

The first ordinal number is the similarity class of the empty relation, which
is certainly a well-ordering; this is the ordinal number 0. The ordinal num-
bers of well-orderings of finite sets are the finite ordinal numbers 0, 1, 2, . . .
(not to be confused with the (cardinal) natural numbers defined above).
An example of an infinite ordinal number is the equivalence class “ω” of
the usual order on the natural numbers.

We feel the need of some structure:

Definition. If α and β are ordinal numbers, and R ∈ α, S ∈ β are well-
orderings, we say that α ! β iff S is a continuation (possibly non-
strict) of a well-ordering similar to R.

Theorem. The relation ! defined on ordinal numbers is a well-ordering.

Proof. — It is easy to show that ! is well-defined (does not depend
on the choice of the well-orderings R and S representing α and β in thee
definition) and that it is a linear order (using the previous theorem). If
A is a set of ordinal numbers, consider a well-ordering R with domain W
belonging to an element of A; consider the set of elements a of W such
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that R restricted to segR{a} belongs to an ordinal in A. If it is empty,
then every ordinal less than the ordinal to which R belongs is not in A,
and this ordinal is itself the smallest ordinal in A; if it is nonempty, it
has a smallest element a, and the ordinal of segR{a} must be the smallest
ordinal in A. !

We define some operations on ordinal numbers:

Definition. If α and β are ordinal numbers, and R and S are well-orderings,
α + β is the ordinal which contains the order on dom(R) ⊕ dom(S)
produced by using the order on R to order dom(R) × {0}, the order
on S to order dom(S)× {1}, and letting all elements of dom(R)× {0}
be “less than” all elements of dom(S)× {1}.

Definition. If α and β are ordinal numbers, and R and S are well-orderings,
αβ is the ordinal which contains the order on dom(R) × dom(S) in-
duced by comparing the second projection using R, then comparing
the first projection using S if the first projections are the same (reverse
lexicographic order).

These operations coincide with the usual arithmetic operations on finite
ordinals, but they do not have desirable algebraic properties. For instance,
ω + 1 is the ordinal containing the order 0 < 1 < 2 < . . . < x, where a
new object x is added following all the numbers; 1 + ω is the ordinal
containing x < 0 < 1 < 2 < . . . , which is simply ω itself. An exponen-
tiation operation can also be defined using transfinite recursion. Ordinal
addition and multiplication can be shown to be functions using Stratified
Comprehension.

We give some examples of well-orderings. The usual order on the integers
is not a well-ordering, because there is no least element of the whole do-
main. But if we redefined the order so that negative numbers were all less
than the positive numbers and zero (as before) but now ordered among
themselves with respect to absolute value, we would have the order

−1 < −2 < −3 < . . . < 0 < 1 < 2 < . . .

of order type ω+ω = ω2. A natural order on linear functions with natural
number coefficients would be

0 < 1 < 2 < . . . x < x + 1 < x + 2 < . . . < 2x < 2x + 1 < 2x + 2 < . . . ,
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an order of type ωω = ω2. The natural order on all polynomials of finite
degree with natural number coefficients which extends this order is an
example of order type ωω (which we have not as yet defined).

15.2. The “Paradox” of Burali-Forti meets T

Observe that every ordinal α has a successor α+1, which is strictly greater
than α. The ordinals have a natural well-ordering !, indicated above.
For any ordinal α, the order ! restricted to seg{α} belongs to a uniquely
determined ordinal T 2{α}; observe that the type of T 2{α} is two types
higher than the type of α in a stratified sentence; this is the reason for the
superscript 2.

The following “inductive” argument might convince us that T 2{α} = α;
consider the smallest ordinal β such that T 2{β} is not equal to β. Now
for each α < β it is easy to see that T 2{α} < T 2{β}. By examining the
order on ordinals, we can see that every ordinal less than T 2{β} must be
T 2{γ} for some γ < β. But it follows that T 2{β} is the smallest ordinal
greater than all T 2{α}’s for α < β, that is, β itself — so there can be no
such β.

Now consider the well-ordering ! itself. The ordinal number containing
! is called Ω. By the “result” of the previous paragraph, we find that
T 2{Ω} = Ω; the ordinal number of ! restricted to seg{Ω} is the same as
the ordinal number of !; but this is clearly impossible, since the latter well-
ordering is a strict continuation of the former, including such additional
ordinals as Ω+ 1.

This is the Burali-Forti paradox, the paradox of the largest ordinal num-
ber. If you were alert, you saw that it does not really work in our set
theory; the point is that “T 2{α} = α” is not a stratified condition, so
does not define a set, and we can only do transfinite induction on condi-
tions which define sets. Instead of the paradox, we obtain the following
(perhaps startling)

Theorem. T 2{Ω} < Ω; i.e, ! on seg!{Ω} is not similar to ! on all
ordinals.

A genuinely surprising result is the following:
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Theorem. The singleton image of ! is not similar to !.

Proof. — The relation between x and seg{x} is not stratified (for x
in W = dom(R), R ∈ α), but the relation between {x} and seg{x} is
stratified. Thus, we can define a similarity between ! on seg{Ω} and the
double singleton image SI2{!} (the relation which obtains between {{α}}
and {{β}} when α and β are ordinals and α ! β). Since SI{SI{!}} is not
similar to !, clearly SI{!} is not similar to !. !

Definition. We can now define T {α} as the order type of the singleton
image SI{R} of an element R of α. T 2{α} will have the intended
meaning.

Theorem. The function (x 0→ {x}) does not exist.

Proof. — If it did, it would be easy to define a similarity between !
and its singleton image. !

Theorem. The inclusion relation restricted to the proper initial segments
of a well-ordering of type α has order type T{α}.

Proof. — The similarity is supplied by the obvious bijection between
proper initial segments of the domain of the well-ordering and singletons
of elements of the domain of the well-ordering. !

T is traditionally used in this kind of set theory for a class of similar
operations on classes of sets or relations involving the singleton; it should
always be possible to figure out which one is intended from context. All
such operations are “singleton image” operations in one way or another.

We define another important operation on the ordinals:

Definition. If A is a set of ordinals, lim A (or sup A) is the smallest ordinal
greater than all elements of A.

For example, if F is the set of finite ordinals, ω = lim F . Of course, some
“limits”, like limOrd, do not exist. If we wanted a function lim, lim(A)
would have to be the singleton of lim A.

In general, ordinals fall into three classes: 0, which has no predecessors,
ordinals α + 1 (successor ordinals), which have immediate predecessors,
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and ordinals limA (limit ordinals), where A is nonempty with no largest
element. An example of a limit ordinal is ω (the smallest one).

If W is a well-ordering, we may interpret W as a “sequence” indexed by
the ordinals as follows:

Definition. Let W be a well-ordering. For each ordinal α, Wα is defined
as the element w of dom(W ) such that segW {w} ∈ α (if there is such
an element).

Notice that the ordinal index α is two types higher than the term Wα. By
the results above, we cannot hope in general to get a function mapping
an initial segment of the ordinals onto dom(W ); some well-orderings are
longer than the natural well-ordering of the ordinals.

The argument for the Burali-Forti paradox above showed that the set
of ordinals such that T {α} = α cannot exist (otherwise the induction
could be carried out). Nonetheless, we are interested in this “property”
of ordinals, and provide a

Definition. A Cantorian ordinal is an ordinal α such that T {α} = α.

Theorem. The set of Cantorian ordinals does not exist.

Proof. — From the Burali-Forti argument. !

The “class” of Cantorian ordinals can be thought of as the “small” ordinals
of our theory. We could already prove with no difficulty that each of the
concrete finite ordinals is Cantorian and without undue difficulty that the
infinite ordinal ω and many of its relatives are Cantorian. The ordinals
which we can show not to be Cantorian are the very large ones like Ω.
The reason for the use of the term “Cantorian” will be given in a later
chapter.

Using Ω, we can build another example of a “class” which, like the “class”
of Cantorian ordinals, is not a set. We first state a theorem about the T
operation on ordinals:

Theorem. For α,β ordinals, α ! β iff T {α} ! T {β}; T {α+ β} = T {α}+
T {β}; and T {αβ} = T {α}T {β}.
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Proof. — The first fact (the one we will use here) is obvious; we omit
the proofs (easy) of the other facts. !

Theorem. The “class” consisting of Ω, T {Ω}, T 2{Ω}, T 3{Ω}, . . ., con-
structed by iterating the T operation on Ω, does not exist.

Proof. — We have proven above that T {Ω} < Ω. Repeated application
of the previous Theorem yields the result that T n+1{Ω} < T n{Ω} for
each natural number n. If the “class” described above were actually a
set, it would have no least element relative to the natural ordering on the
ordinals, which is impossible. !

15.3. The Axiom of Small Ordinals

The last theorem is somewhat disquieting; it means that in some “exter-
nal” sense the ordinals of our set theory are not well-ordered. We will
introduce an axiom which will help allay this disquiet for the Cantorian
or “small” ordinals, first verifying that ω is Cantorian (and so intuitively
“small”), as claimed above.

Definition. A “small” ordinal is an ordinal which is less than some Can-
torian ordinal.

Theorem. ω is Cantorian.

Proof. — One element of ω is the order ! on the natural numbers; one
element of T {ω} is the singleton image of !, an order on the singletons of
natural numbers. A similarity between these orders is defined by s(n) =
{T−1{n}} (the T operation on natural numbers was defined in the section
on finite sets and the Axiom of Counting; results in that section show that
this map is a bijection). Note that we cannot conclude that s(n) = {n}
without appealing to the Axiom of Counting, but we don’t need to do this
to establish the result. !

Corollary. Each finite ordinal is small.

Proof. — Each finite ordinal is less than the Cantorian ordinal ω. !
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Axiom of Small Ordinals. For any sentence φ in the language of set theory,
there is a set A such that for all x, x is a small ordinal such that φ iff
(x ∈ A and x is a small ordinal).

An informal way of stating this (in terms of proper classes) is that for any
sentence φ there is a set A such that the (possibly proper) class {x | φ}
and the set A have the same intersection with the (proper) class of small
ordinals.

We briefly discuss the intuition behind the Axiom of Small Ordinals. It
is certainly true that our well-orderings up to any finite ordinal are “gen-
uine”; there is no “external” collection which has no least element. Up
to some point, our ordinals are “standard” in this sense. A property of
“standard” ordinals α is that they contain seg{α} relative to the natural
order on ordinals; but this is an “illegitimate” (unstratified) property of
ordinals in our intuitive model of set theory, and thus so is the stronger
property of being a “standard” ordinal (with its reference to all subcollec-
tions of the domain of a well-ordering, rather than to those with “labels”
— i.e., those realized by sets). The idea underlying the Axiom of Small
Ordinals is that we let the “illegitimate” notion of “standard” (which jus-
tifies defining sets in terms of any sentence φ, not just stratified sentences)
coincide with the “illegitimate” notion “small” (which says that the “il-
legitimate” relation between ordinals and segments has not yet totally
slipped its leash). We assert that all subsets of the “standard” ordinals
are realized by sets, although large subsets are realized only by extensions
(the class of all Cantorian ordinals is realized by Ord, for instance).

When we apply the Axiom of Small Ordinals, we are likely to consider
classes which may or may not exist as sets (and some which definitely do
not exist as sets). We warn the reader that we will sometimes use the
notations {x | φ} and (x 0→ T ) as notations of convenience for “classes”
and “functions” which do not exist as sets in our theory.

Mathematical Induction Theorem. For each condition φ and variable x,
if φ[0/x] holds and “for all n ∈ N , if φ[n/x] then φ[n + 1/x]” holds,
then “for all n ∈ N , φ[n/x]” holds.

Proof. — It is easy to define the bijection between the finite ordinals
and the corresponding natural numbers. By the Axiom of Small Ordinals,
there is a set A whose small ordinal members are precisely the small or-
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dinals x such that x is finite and φ[n/x] holds of the natural number n
corresponding to x. Let Fin be the set of finite ordinals. Then the image
of A ∩ Fin in N consists of exactly the elements n of N such that φ[n/x]
and is inductive, so includes all of N . !

Theorem of Counting. For each natural number n, T {n} = n.

Proof. — Easy induction on the unstratified condition. !

We see that the Axiom of Counting is redundant once the Axiom of Small
Ordinals is introduced.

The Axiom of Small Ordinals allows induction on unstratified conditions
on general Cantorian well-orderings as well as on the natural numbers:

Cantorian Transfinite Induction Theorem. Let ! be a well-ordering be-
longing to a Cantorian ordinal α. Let φ be any sentence. Suppose
that for all x ∈ dom(!), (if (for all y ! x, φ[y/x]) then φ); φ is true
of x if it is true of all its predecessors in the well-ordering. It follows
that for all x ∈ dom(!), φ.

Proof. — Recall that the notation [!]β represents the element (if any)
of dom(!) determining a segment of order type β, for each ordinal β.
The class of all small ordinals β such that not φ[[!]β/x] would be the
intersection of some set B with the small ordinals. All ordinals less than
α would be small by definition of “small”, so B ∩ seg{α} would be a set.
If this set were nonempty, it would have a smallest element γ. For all
x ! [!]γ we would have φ, but not φ[[!]γ/x]. This is impossible. !

The concept of a “small” ordinal is actually a nonce concept, as the fol-
lowing reveals:

Theorem. An ordinal is small iff it is Cantorian.

Proof. — Let β be a small ordinal. By the definition of “small”, there is
an ordinal α greater than β which is Cantorian. α is small because α+1 is
Cantorian. 0 is Cantorian; successors of Cantorian ordinals are Cantorian;
limits of Cantorian ordinals are Cantorian (because the supremum of a
collection of ordinals T {βα} will be the image under T of the supremum
of the collection of βα’s; thus the limit of a collection of fixed points of
T will itself be a fixed point of T ). The order type of ordinals up to α is
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T 2{α} = α, so we can prove by induction (on an unstratified condition)
that all ordinals < α (including β) are Cantorian. All small ordinals are
Cantorian, so “small” simply means “Cantorian”. !

15.4. Von Neumann Ordinals

We note that the difference between the representation of natural numbers
in the usual set theory and our representation of natural numbers carries
over into the infinite: just as each von Neumann natural number is the
collection of all smaller natural numbers, so each ordinal in the usual set
theory is the collection of all smaller ordinals (with the numerals as the
finite ordinals). Each of the von Neumann numerals is a set in our set
theory, but this is not necessarily the case for the larger von Neumann
ordinals; as we have observed already, even the von Neumann “ω”, which
would be the collection of all the finite von Neumann ordinals, is not
necessarily a set in our set theory, though it is possible for it to exist. We
give a definition:

Definition. A von Neumann ordinal is a set A such that
⋃

[A] ⊆ A and
the restriction of ∈ to A is a strict well-ordering of A.

Definition. For each von Neumann ordinal A, we define A+, the successor
of A, as A ∪ {A}.

Lemma. For each von Neumann ordinal A, A+ is a von Neumann ordinal.

Proof. —
⋃

[A∪ {A}] =
⋃

[A]∪A = A (because
⋃

[A] ⊆ A) ⊆ A∪ {A}.
The restriction of ∈ to A is a strict well-ordering; the restriction of ∈
to A+ extends this relation by adding a single object “greater” than the
elements of A, which will still be a strict well-ordering. !

Note that this is an unstratified condition! We would like to say that
a von Neumann ordinal A corresponds naturally to the order type of the
restriction of ∈ to A, but there is a problem with the von Neumann ordinals
‘0’ = { } and ‘1’ = {{ }}, on which ∈ determines the same empty relation.
The correct formulation is that each von Neumann ordinal corresponds to
the unique ordinal α such that the order type of the restriction of ∈ to
A+ is α+ 1. The same technical point arises in our treatment of ordinals
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in relation to well-founded extensional relations in a later chapter.

Lemma. An element of a von Neumann ordinal A is a “proper initial
segment” of A in the sense of the order induced by ∈ and is itself a
von Neumann ordinal.

Proof. — The fact that ∈ is a strict linear order of A and that each
element of an element of A is an element of A (because

⋃
[A] ⊆ A) ensures

that an element of A is a proper initial segment of A in the sense of the
order induced by ∈. (A ∈ A is impossible because the ordering of A by ∈
must be strict; this is why the initial segments are proper).

Let B ∈ A. Let D ∈ C ∈ B be an arbitrary element of
⋃

[B]; we will
show D ∈ B. C ∈ A because

⋃
[A] ⊆ A (elements of elements of A are in

A); a second application of the same fact gives D ∈ A. Since C and D
are in A and ∈ is a linear order on A, D ∈ C ∈ B implies D ∈ B. Thus⋃

[B] ⊆ B. B is strictly well-ordered by ∈ because it is a subset of A,
which is strictly well-ordered by the same relation. Thus any element B
of A is a von Neumann ordinal. !

It is useful to note that this result is correct in the case of the peculiar
ordinal ‘1’; seg{‘0’} defined with respect to the (empty) order on ‘1’ does
come out correctly as ‘0’.

Lemma. The intersection of two von Neumann ordinals is a von Neumann
ordinal.

Proof. — Let C be the intersection of von Neumann ordinals A and B.⋃
[C] ⊆ (

⋃
[A] ∩

⋃
[B]) ⊆ (A ∩ B) = C. ∈ clearly strictly well-orders C,

since it strictly well-orders its supersets A and B. !

Lemma. Each proper “initial segment” of a von Neumann ordinal A (in
the sense of ∈ restricted to A) is an element of A.

Proof. — There is an ∈-least element B of A which is not an element of
the proper initial segment; each of its elements must be in the proper initial
segment by the fact that it is ∈-least; if B did not contain some element C
of the initial segment, then C would contain B (because ∈ linearly orders
A) and B would belong to the initial segment, contradicting the choice of
B. Thus B must contain exactly the elements of (and so be equal to) the
proper initial segment. !
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Lemma. For any two von Neumann ordinals A and B, we have either
A ∈ B, B ∈ A, or A = B.

Proof. — The intersection of two von Neumann ordinals is a von Neu-
mann ordinal. It is also easy to see that the intersection will be an initial
segment of each of the two originally chosen ordinals. If it is a proper
initial segment of each of them, it will be an element of each of them and
so of itself, which is impossible (this would violate strict well-ordering by
membership). Thus, the intersection of two distinct von Neumann ordi-
nals must be equal to one of them, which will be an element of the other
by the preceding Lemma. !

Lemma. Each von Neumann ordinal A is the set of all von Neumann
ordinals B such that the strict well-ordering of B+ by ∈ has smaller
order type than the strict well-ordering of A+ by ∈.

Proof. — By the Lemmas above, each von Neumann ordinal A has as
elements exactly those von Neumann ordinals B which are proper initial
segments of A with respect to the order determined by ∈. B is a proper
initial segment of the order on A iff the order type of membership on B+

is smaller than the order type of membership on A+; we have to consider
the successors to avoid the strange case of ‘0’ and ‘1’. !

Theorem. The set of von Neumann ordinals does not exist.

Proof. — Suppose that there was a set N whose members were exactly
the von Neumann ordinals. Any element of a von Neumann ordinal is
a von Neumann ordinal, so

⋃
[N ] ⊆ N would hold. It follows from the

lemmas above that ∈ coincides with inclusion on von Neumann ordinals,
so the restriction of ∈ to N would be a set. ∈ would be a strict linear
order on N by a preceding Lemma. Every initial segment of N is a von
Neumann ordinal, on which ∈ is a strict well-ordering; it is easy to see that
a strict linear order every initial segment of which is a strict well-ordering
is a strict well-ordering itself. Thus N would itself be a von Neumann
ordinal, from which it would follow that N ∈ N , but no von Neumann
ordinal can be an element of itself! !

Theorem. The order type of ∈ restricted to a von Neumann ordinal is
Cantorian.
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Proof. — Let α be the order type of ∈ restricted to a von Neumann
ordinal A. The inclusion order on the set of proper initial segments of A
with respect to the order ∈ has the order type T {α}. But this is the same
set with the same order as A ordered by ∈, so α = T {α} is Cantorian. !

It follows that “large” ordinals such as Ω cannot have corresponding von
Neumann ordinals. It is not possible to prove in our set theory that
there are any infinite von Neumann ordinals; it turns out to be consistent
with our axioms that every Cantorian ordinal has a corresponding von
Neumann ordinal.

Exercises

(a) Construct examples of well-orderings and ordinal numbers. Take sums
and products of some of these order types and describe well-orderings
belonging to the sums and products.

(b) Present definitions of addition and multiplication of ordinal numbers
using transfinite recursion. Prove that they are equivalent to the def-
initions given. Propose a definition of ordinal exponentiation using
transfinite recursion.

(c) Construct a well-ordering ! with the property that for any sequence
s of elements of dom(!) which is increasing in the sense of !, there
is an element x of dom(!) with the property that x > sn for each
n ∈ N .

Hint: consider the class of order types of well-orderings of N .

(d) (hard) Finite sets can be modelled in the natural numbers using the
relation m ∈N n defined by “the mth binary digit of n is 1”, where
the mth binary digit is the coefficient of 2m in the binary expansion:
the digit in the “ones place” is the 0th binary digit. Show that the
relation ∈N is represented by a set in our theory. A permutation π is
defined as interchanging each natural number n with {m | m ∈N n}.
Show that the permutation π exists (you need the Axiom of Counting
for this). Now define the relation x ∈π y as x ∈ π(y). The relation ∈π

is not a set (the relative type of y is one type higher than the relative
type of x). Prove that if ∈π is used as the membership relation instead
of ∈, all of our axioms will still hold (you can neglect Small Ordinals,
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though it works as well) and the set of all finite von Neumann ordinals
will exist.
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Cardinal Numbers

We defined the relationship of “equivalence” above as holding between sets
A and B whenever there is a bijection f between A and B. We proved that
“equivalence” is an equivalence relation. We showed that two finite sets
belong to the same natural number n (i.e., are “the same size”) exactly
if they are equivalent. What we will do in this chapter is generalize the
application of “equivalence” as meaning “the same size” to all sets, and
use the notion of “equivalence” to define the notion of cardinal number
for general sets. The intuitive idea that two sets are the same size if we
can set up a one-to-one correspondence between them, taken from our
experience with finite sets, extends to infinite sets fairly well.

16.1. Size of Sets and Cardinals

One counterintuitive consequence of adopting this notion of “size” of sets
is that a proper part of a set need not be strictly smaller than the set:
for instance, to use a classical example due to Galileo Galilei, there is a
bijection between the set of natural numbers N and its proper subset, the
set of perfect squares. In fact, in the presence of the Axiom of Choice,
this failure of our intuition for an infinite set defines the notion of “infinite
set” exactly:
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Theorem (Dedekind). A set is infinite exactly if it is equivalent to one of
its proper subsets.

Proof. — Each set belonging to 0 is not equivalent to any of its proper
subsets. That is, { } is not equivalent to any of its (nonexistent) proper
subsets. Suppose that no element of n is equivalent to any of its proper
subsets. An element A of n + 1 is of the form A′ ∪ {x}, where A′ ∈ n and
not(x ∈ A′). Suppose that A were equivalent to one of its proper subsets.
Remove x from A and the corresponding element from the proper subset;
we may suppose without loss of generality that x does not belong to the
proper subset. A one-to-one correspondence between A′ and a proper
subset of A′ is constructed, contrary to hypothesis. Thus no finite set is
equivalent to a proper subset of itself. Now suppose that X is infinite.
It is sufficient to prove that X contains a subset equivalent to N , since
we can then use a bijection between N and one of its proper subsets to
construct a bijection between X and one of its proper subsets. Consider
the partial order of inclusion on one-to-one maps from subsets of N into
X . This order satisfies the conditions of Zorn’s Lemma (since X is not
finite); a maximal element in this order is a one-to-one map from N into
X . !

We would like to say that a set X is less than or equal to a set Y in size
if there is a one-to-one map from the set X into the set Y . This requires
a little work; it is easy to see that X is less than or equal to X in size
(identity map) and that if X is less than or equal to Y in size and Y is
less than or equal to Z in size, X is less than or equal to Z in size (use a
composition). We also expect, however, that if X is less than or equal to
Y in size and Y is less than or equal to X in size, that X and Y will be
the same size, that is, equivalent. This is the not entirely trivial

Schröder–Bernstein Theorem. If X and Y are sets, and f is a one-to-one
map from X into Y and g is a one-to-one map from Y into X , then
X and Y are equivalent.

Proof. — We need to construct a bijection h between X and Y . It is
sufficient to show that X is equivalent to g[Y ] = g[f [X ]] ⊆ X . The map
g ◦f is a one-to-one map from X into g[Y ]. Let the set Pushset be defined
as the smallest set containing X−g[Y ] and closed under g◦f . Define Push
as the union of the restriction of (g ◦ f) to Pushset and the restriction of
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the identity map to X−PushSet. It is easy to see that Push is a bijection
from X onto g[Y ]. g−1 ◦ Push is the desired h. !

The Axiom of Choice enables us to show that this is a total order on size:

Theorem. For any sets X, Y , either X is less than or equal to Y in size or
Y is less than or equal to X in size.

Proof. — Consider well-orderings R, S on X, Y respectively. If R and
S are similar, X and Y are of the same size; if S is the continuation of
a relation similar to R, X is less than or equal to Y in size; if R is the
continuation of a relation similar to S, Y is less than or equal to X in size;
there are no other alternatives. !

We also need the Axiom of Choice to show the following:

Theorem. If f is a map from X onto Y , then Y is less than or equal to X
in size.

Proof. — Build a choice set C for the collection of inverse images of
singletons {y} of elements y of Y ; map each y to the unique element x of
C such that f(x) = y. !

This removes some possible doubts about the following

Definition. Let A be a set. We define the cardinal number of A, written
|A|, as {B | B is equivalent to A}, which exists by the Stratified
Comprehension Theorem. Note that the type of |A| is one higher
than the type of A.

Observation. The natural numbers are cardinal numbers. We call them
“finite cardinal numbers”.

Definition. We define |A| ! |B| iff A is equivalent to a subset of B.

We have already shown that ! is a linear order on cardinal numbers, but
we can do better.

Theorem. The order ! on cardinal numbers is a well-ordering.

Proof. — Take any set A of cardinals, and choose a cardinal κ from
the set. Choose a set W ∈ κ and choose a well-ordering R of W . We look
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at the cardinal numbers of initial segments of R; consider the set of all a
in W such that | segR{a}| " λ for some λ in A. If this set is empty, κ is
the smallest cardinal in A; if it is nonempty, it has a least element m, and
| segR{m}| is the smallest cardinal in A. !

16.2. Simple Arithmetic of Infinite Cardinals

We define the arithmetic operations of addition and multiplication just as
we defined them for the natural numbers.

Definition. If A and B are sets, |A|+ |B| = |A⊕B| and |A|.|B| = |A×B|.

It is easy to show that the results of these operations do not depend on
the choice of A and B. We will now introduce our first infinite cardinal
number.

Definition. ℵ0 = |N |. A set of cardinality ℵ0 is said to be “countable”.

We prove some theorems about ℵ0 (read “aleph-null” —ℵ is the first letter
of the Hebrew alphabet) and general cardinal numbers which will enable
us to show that a great many sets are countable; in fact, we will begin to
wonder if any infinite sets are not countable.

Theorem. If κ is an infinite cardinal number and n is a finite cardinal
number (a natural number), then κ+ n = κ.

Proof. — Let κ = |A|. A has a countable subset (a subset equivalent to
N ) by the theorem of Dedekind given above (p. 122). Let f be a bijection
from N into A. κ + n is the cardinality of A × {0} ∪ {1, . . . , n} × {1},
applying Rosser’s Counting Theorem to get a set with n elements (the use
of the Counting Theorem is easily avoided). Map each element (a, 0) of
A×{0} to f(f−1(a)+n) if a is in the range of f and to a itself otherwise,
then map (i, 1) to f(i− 1) for 1 ! i ! n, obtaining a bijection onto A. !

Theorem. ℵ0 + ℵ0 = ℵ0.

Proof. — Map N × {0} to the even numbers and N × {1} to the odd
numbers in the natural way. !
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Theorem. κ+ κ = κ, if κ is an infinite cardinal.

Proof. — Let κ = |A|. Apply Zorn’s Lemma to the relation of inclusion
restricted to the set of bijections between X⊕X and X for X ⊆ A. There
are such maps because A has countable subsets. These are easily seen
to satisfy the conditions of the Lemma. A maximal element will be a
bijection from Y ⊕ Y to Y for some Y ⊆ A. We prove that the set A− Y
is finite. If it were not, then A − Y would have a countable subset M ;
it would then be easy to define a bijection from (Y ⊕ M) ⊕ (Y ⊕ M) to
(Y ⊕ M) extending the “maximal” bijection by exploiting the bijection
from (M ⊕M) to M . Now we have shown that |Y |+ |Y | = |Y |, but, since
A− Y is finite, |Y | = |A| by an earlier theorem. !

Theorem. κ+ λ = λ + κ = κ, if λ is an infinite cardinal and κ " λ.

Proof. — Commutativity of addition is obvious. If κ = |A| and λ = |B|,
choose a subset C of A equivalent to B, then define a bijection between
C⊕B and B and use it in the obvious way to build a bijection from A⊕B
to A. !

Theorem. ℵ0ℵ0 = ℵ0.

Proof. — First list the ordered pairs of natural numbers which add
up to 0, then the ordered pairs which add up to 1 (increasing the first
projection and decreasing the second), then the ordered pairs which add
up to 2, and so forth. This sets up a bijection between N ×N and N . !

Theorem. κκ = κ, for κ an infinite cardinal.

Proof. — Let κ = |A|. Apply Zorn’s Lemma to the inclusion order
restricted to bijections between X × X and X , where X ⊆ A. Since A
has a countable subset, there are such maps. A maximal element of this
order is a bijection from Y × Y to Y for some Y ⊆ A. Now suppose that
|Y | < |A|. It would follow that |A−Y | = |A|, since |A−Y |+ |Y | = |A| and
the sum of two infinite cardinals is their maximum. It follows that A− Y
has a subset Z equivalent to Y . Now consider the set (Y ⊕Z)×(Y ⊕Z); this
is the union of four Cartesian products (take one term of each disjoint sum
in each possible way), each having cardinality |Y |× |Y | = |Y | = |Z|. The
union of the three Cartesian products not in the domain of our “maximal”
function must have cardinality |Y | = |Z| by our theorems on addition, and
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so there is a bijection from this set to Z, which can be used then to extend
the “maximal” bijection to a bijection from (Y ⊕Z)×(Y ⊕Z) onto (Y ⊕Z),
contradicting maximality. Thus |Y | = |A|, and we are done. !

Theorem. κλ = λκ = κ if λ is an infinite cardinal and κ " λ.

Proof. — κ ! κλ ! κκ = κ; apply the Schröder–Bernstein Theorem.
!

Corollary. For any infinite cardinals κ,λ, κ+ λ = κλ = max{κ,λ}.

This is all very well, and remarkably simple, but it does not give us any way
of getting any infinite cardinal larger than ℵ0! The results of this chapter
can be used to show that the set Z of integers is countable ((N ⊕{0})⊕N
is clearly of the same cardinality as the set of integers), that the set of
rational numbers is countable (!) (the set Q of rational numbers has a
subset equivalent to Z and is equivalent in an obvious way to a subset of
Z ×Z); the same results apply to intuitively “bigger” sets such as the set
of all points with rational coordinates in three-dimensional space. Are all
infinities the same?

Exercises

(a) Give an algebraic formula for a bijection p ∈ [(N × N ) → N ] (an
explicit witness for ℵ0ℵ0 = ℵ0).

(b) Construct a bijection between the natural numbers and the integers.

(c) Construct a bijection between the natural numbers and the rational
numbers (your description should enable me to compute the rational
number corresponding to each natural number).

(d) Prove that the set of all points with rational coordinates in three-
dimensional space is countable.
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Chapter 17

Exponentiation and
Three Major Theorems

17.1. Exponentiation meets T . Infinite Sums and
Products

The arithmetic operation which we have avoided, even in the realm of
finite sets, is exponentiation. The natural definition of exponentiation is

∗Definition |A||B| = |[B → A]|.
Special case: 2|A| = |[A → {0, 1}]| = |P{A}|.

The idea is that we must make |A| independent choices from a set of size
|B|. The Axiom of Choice protects us from certain possible embarrass-
ments. This definition does not work (in the sense that it does not define
a function) because it is not stratified; the types of A and B are one higher
on the right than on the left.

The solution to the problem is to introduce another T operation (extending
the T operation already defined on natural numbers):

Definition. T {|A|} = |P1{A}|.

It is easy to show that this is a valid definition (it does not depend
on the choice of A). It is less easy to see that it is nontrivial, but we
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need to remember that we have already shown that the natural bijection
(x 0→ {x})3A between A and P1{A} (the set of one-element subsets of A)
does not exist in at least the case A = V . Note that T {κ} has type one
higher than that of κ. In the definitions below we will use the inverse T−1

of this operation, which proves to be a well-defined partial operation on
cardinals (defined only on cardinals less than or equal to |P1{V }|) and
has the effect of lowering relative type rather than raising it.

We can then give a genuine (partial)

Definition. |A||B| = T−1{|[A → B]|}; 2|A| = T−1{|P{A}|}.

Corollary. T {|A|}T{|B|} = |[A → B]|; 2T{|A|} = |P{A}|.

We give the function (κ 0→ 2κ) a name:

Definition. exp = (κ 0→ 2κ).

Exponentiation is a special case of the more general problem of sums and
products of infinite sets of cardinals; we give relevant definitions:

Definition. Let G be an indexed family of sets. Let F be the associated
infinite family of cardinals, defined by F ({i}) = |G(i)| for each i in
dom(G).

We define
∑

[F ], the sum of F , as T−1{|
∑

[G]|}, the result of applying
T−1 to the cardinality of the disjoint sum of G.

We define
∏

[F ], the product of F , as T−2{|
∏

[G]|}, the result of
applying T−2 to the cardinality of the Cartesian product of G.

Self-indexing may be used to define sums and products of sets. Con-
text cues will of course be required to distinguish these notations from
the identical notations for Cartesian products and disjoint sums of
sets!

The criterion for determining the applications of T in these definitions
is that the type of individual cardinals in the infinite sums and products
should be the same as the type of the resulting cardinals.

For the sake of completeness, we develop a definition of exponentiation of
ordinals. Infinite sums and products of ordinals can also be defined, but
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we will not do this. A natural operation on ordinals should, of course, cor-
respond to a natural operation on well-orderings. The product of ordinals
corresponded to the order type of the “reverse lexicographic” ordering of
pairs of elements taken from well-orderings taken from the factors. For
example, ω2 is the order type of the lexicographic ordering on pairs of el-
ements taken from an ordering of type ω (natural numbers, for example).

This suggests that ωω, for example, should be the reverse lexicographic
ordering on strings of numbers of length ω. Unfortunately, one does not
obtain a well-ordering (or even a total order) in this way. Experiment
reveals that one does obtain a well-ordering of items taken from an order
of type β ordered with type α if one observes the restriction that all but
finitely many of the α-ordered items are the smallest element of the order
of type β. Here is the formal definition:

Definition. Let α, β be ordinal numbers. Choose well-orderings R, S, with
least elements r, s respectively, from α, β, respectively. We define a
well-ordering W on the set of all elements of [dom(R) → dom(S)] with
the property that all but finitely many values of the function are s,
the least element of dom(S). For f , g in this set of functions, we say
that f W g if f(x) S g(x), where x is the R-maximal element at which
the values of f and g differ (there must be such a maximal element
because of the restriction on the functions used). The order type of
W will be T {βα}; if the order type of W is not in the range of the T
operation, βα is not defined (this actually never happens).

Ordinal exponentiation can also be defined by transfinite recursion in a
fairly natural way. The need to assign higher priority to positions in
sequences which are later in the α-order motivates the use of reverse lexi-
cographic order here (where it is necessary) and in the definition of ordinal
multiplication (where it seems a bit unnatural; I would rather write 2ω
than ω2, but 2ω = ω).

Ordinal exponentiation does not parallel cardinal exponentiation in its
effects on size. Note, for example, that ωω is the order type of a well-
ordering of a countable set. In fact, the cardinality of the full domain of
a well-ordering of type βα is no larger than the larger of the sizes of full
domains of representatives of α and β. A consequence of this is that βα

is always defined.
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It should be evident that the T operation “commutes” with all operations
of cardinal (and ordinal) arithmetic. This observation is recorded in the
following:

Lemma. If κ and λ are cardinal numbers,

T {κ} ! T {λ} iff κ ! λ (thus T {κ} = T {λ} iff κ = λ);

T {κ+ λ} = T {κ}+ T {λ};

T {κλ} = T {κ}T {λ};

T {κ}T{λ} = T {κλ} — if the latter exists
(thus exp(T {κ}) = T {exp(κ)} — if exp(κ) exists).

Proof. — Omitted. Use the fact that any structure on a collection of
objects corresponds to an exactly parallel structure on the collection of
singletons of those objects. !

17.2. Cantor’s Theorem.
Cantor’s “Paradox” meets P1

We now prove a powerful theorem, whose “naive” form is the last of the
three classical paradoxes of set theory.

Theorem (Cantor). T {κ} < exp(T {κ}).

Proof. — Let κ = |A|. Clearly T {κ} = |P1{A}| ! |P{A}| = exp(T {κ}).
If we had T {κ} = exp(T {κ}), we would have a one-to-one map f from
P1{A} onto P{A}; it suffices to show that the existence of such a map
is impossible. If such an f existed, we could define the set R = {x ∈
A | not({x} ⊆ f({x})}. Now f−1(R) = {r} for some r ∈ A; we see that
r ∈ R exactly if not({r} ⊆ f({r})), i.e., exactly if not(r ∈ R), which is
impossible. !

Corollary. κ < exp(κ).

In completely naive set theory, where we do not doubt that P1{A} is the
same size as A, we get the following



17.3. König’s Theorem 131

∗Corollary (Cantor’s Paradox). |V | = |P1{V }| < |V |.

Of course, what we actually get is the still disturbing

Corollary. |P1{V }| < |V | (note that we can write this |1| < |V | or T {|V |} <
|V |, as well).

which should not surprise us too much, as we have already shown that the
natural “bijection” (x 0→ {x}) does not exist.

Note that we have now proven that there are uncountable sets; ℵ0 = |N | =
T {|N |} < exp(T {|N |}) = |P{N}|; there are more sets of natural numbers
than there are natural numbers. We point out that exp(ℵ0) is also the
cardinal number of R, the set of reals: the union of the reals between 0 and
1 and a countable set (the set of decimal expansions ending in infinitely
many 9’s — countable because equivalent to the rationals between 0 and
1) is equivalent to the set of decimal expansions with zero to the left of
the decimal point, which is equivalent to the set of characteristic functions
of subsets of N , which is equivalent to P{N}. For this reason, exp(ℵ0) is
called c, the cardinality of the continuum.

Since the natural order on cardinals is a well-ordering, there is a first
uncountable cardinal, called ℵ1. It is an open problem whether c is equal
to ℵ1; i.e., whether there are uncountable sets of real numbers which are
not equivalent to R itself. It is known that this question cannot be decided
by the usual axioms of set theory (or by ours!). This famous question is
called the Continuum Hypothesis; it was raised by Cantor at the very
beginning of the subject. An even more powerful assumption, also known
to be undecidable by the axioms, is the Generalized Continuum Hypothesis
(GCH), which asserts that exp(κ) is the smallest cardinal greater than κ
for every cardinal κ for which exp(κ) is defined.

17.3. König’s Theorem

We prove a theorem relating the sizes of infinite products and infinite
sums, of which Cantor’s Theorem is only a special case.

König’s Theorem. Let F and G be functions with the same nonempty
domain I all of whose values are cardinal numbers. Suppose further
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that F (x) < G(x) for all x ∈ I, where the order is the natural order
on cardinals. It follows that

∑
[F ] <

∏
[G].

Proof. — Consider concrete sets A and B of cardinality
∑

[F ] and∏
[G], respectively.

We may suppose that A is the union of disjoint nonempty sets A(x) for
x in a domain of size T−1{|I|}; we assume henceforth that I is a set of
singletons and that the domain of the function A is the union of I, which
we will call J . No generality is lost by assuming that each set A(x) is
nonempty, i.e., that each F ({x}) is nonzero.

We choose sets B(x) of cardinality G({x}) for each x ∈ J and a bijection
h from P2

1{B} onto the set of functions f : J → P1{V } such that f(x) ⊆
B(x). The functions f are the elements of the Cartesian product of B;
they are two types above the elements of B.

Consider any map M : A → B. We construct an element p of B which can-
not be an element of rng(M). It should be clear that this will be sufficient
to prove the theorem. h({{p}}) needs to differ from each h({{M(q)}})
at some element of J . We describe the procedure for construction of
h({{p}})(x) for a fixed x ∈ J ; once we have constructed a suitable func-
tion, the fact that h is a bijection allows us to obtain a suitable p. We want
to choose one element from B(x) in such a way as to frustrate the identi-
fication of h({{p}}) with any h({{M(q)}}) for q ∈ A(x). This is possible
for each x, because there are only |A(x)| = F ({x}) < G({x}) = |B(x)|
values of the form “the element of h({{M(q)}})(x)” to avoid, and |B(x)|
values to choose from. It should be clear that this procedure prevents the
identification of h({{p}}) with any h({{M(q)}}) for q in any A(x), i.e.,
for any q ∈ A. The proof of König’s Theorem is complete. !

The proof of König’s Theorem involves an essential appeal to the Axiom
of Choice, as is not the case for Cantor’s Theorem.

17.4. There are Atoms: Specker’s Theorem

We now prepare to prove a further theorem, due to E. Specker. This is the
surprising result that there are atoms! It is not surprising that there are
atoms; it is surprising that we can prove that there must be atoms, since
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on the face of it we have not talked about anything that could not be a set
(our ordered pairs are not necessarily sets, but we could have used the pair
〈x, y〉 of Kuratowski and done everything in pure set theory). The Axiom
of Choice seems to be necessary for this proof. It is unknown whether the
existence of atoms can be proven from the other axioms of our theory; this
leaves open the possibility of a consistent “atomless” theory in which the
Axiom of Choice is false 1.

Definition. For each cardinal κ, we define the Specker sequence of κ as the
intersection of all sets which contain (0,κ) and contain (n+1, exp(λ))
whenever they contain (n,λ) and exp(λ) is defined (the construction
here is the construction from the proof of the Recursion Theorem
modified for a partial function). The Specker sequence is a (possibly
finite) sequence; we use the notation expi(κ) for its ith term. We
call a cardinal κ a Specker number iff expn(κ) = |V | for some natural
number n (a Specker number is usually defined as a cardinal with a
finite Specker sequence, but our more restrictive definition is better
for our version of the proof).

Theorem (Specker). |P{V }| < |V |, and thus there are atoms.

Proof. — Consider the set of Specker numbers. It must have a smallest
element µ, since the natural order on cardinals is a well-ordering and the
Specker numbers make up a nonempty set. Let s be the Specker sequence
of µ. Since µ is a Specker number, there is an N such that s(N) = |V |.
Now define the function T[s] as the Specker sequence of T {µ}. An easy
induction (on an unstratified condition) using the fact that exp commutes
with T (where defined) proves that T [s](n) = T {s(n)} for each natural
number n, and so T [s](N) = T {|V |}. Now the assertion that there are
no atoms implies the assertion that P{V } = V (P{V } is the collection of
sets), which implies that exp(T {|V |}) = exp(|P1{V }|) = |P{V }| = |V |.
If there were no atoms, we would have T [s](N + 1) = exp(T [s](N)) =
exp(T {|V |}) = |V |, and T {µ} would be a Specker number. But this is
absurd; we would then have T {µ} " µ, since µ is the smallest Specker
number, and so, by an easy induction, we would have T [s](n) " s(n) for
each n (if κ ! λ, exp(κ) ! exp(λ)), and so we would have T {|V |} =
T [s](N) " s(N) = |V |, which is impossible. !

1. For the non-naive reader, this is the question as to whether Quine’s original theory
“New Foundations” is consistent.
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It is worth noting that the use of mathematical induction on an unstrati-
fied condition, which depends on the Axiom of Small Ordinals (the Axiom
of Counting suffices), can be avoided; there is a rather more complicated
proof which requires nothing but Extensionality, Stratified Comprehen-
sion, and the Axiom of Choice (without which we could not show that the
natural order on the cardinal numbers is a well-ordering).

Since the proof actually shows that |P{V }| < |V |, we have shown that
most objects in V are atoms, which also shows that most ordered pairs
(there are |V |.|V | = |V | ordered pairs) are atoms; we cannot hope for a
set theoretical definition of our pair (x, y).

17.5. Cantorian and Strongly Cantorian Sets

In the usual set theory, Cantor’s Theorem is taken to prove that the power
set of a set is larger than the set. This depends on the intuition that the
singleton map (x 0→ {x}) is a function, or at least that |P1{A}| = |A|,
which is not reliable. As we have just seen, there is a set (the universe)
which is larger than its power set!

However, the argument of Cantor will work exactly as intended if the set
A to be compared with P{A} has certain properties:

Definition. A set A is Cantorian if it is equivalent to P1{A}; A is strongly
Cantorian if the singleton map restricted to A exists as a set (that
is, if there is a function (x 0→ {x})3A such that for each x ∈ A,
((x 0→ {x})3A)(x) = {x}). If A is a Cantorian or strongly Cantorian
set, |A| is said to be a Cantorian or strongly Cantorian cardinal. The
order type of a strongly Cantorian well-ordering is said to be a strongly
Cantorian ordinal.

Observations. If A is strongly Cantorian, it is Cantorian; if A is Cantorian,
|A| = |P1{A}| < |P{A}|. If A is the domain of a well-ordering R
which in turn belongs to an ordinal α, then the ordinal α is (strongly)
Cantorian exactly if A is (strongly) Cantorian.

The truly powerful property is that of being strongly Cantorian. With-
out introducing the Axiom of Small Ordinals, we can already “subvert”
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stratification restrictions if we have strongly Cantorian sets:

Subversion Theorem. If a variable x in a sentence φ is restricted to a
strongly Cantorian set A, then its type can be freely raised and low-
ered; i.e., such a variable can safely be ignored in making type assign-
ments for stratification.

Proof. — Let K be the singleton map restricted to A. Any occurrence
of x can be replaced with an occurrence of

⋃
[K(x)], raising the type of

x by one, or with an occurrence of K−1({x}), lowering the type of x by
one, without affecting the meaning of the sentence. !

As a result, unstratified conditions can be used extensively where strongly
Cantorian sets are involved, but variables not subject to stratification
conditions must be “bounded” in a strongly Cantorian set.

Unfortunately, the only sets which can be shown to be strongly Cantorian
with Extensionality, Atoms, Ordered Pairs, and Stratified Comprehension
alone are “standard finite sets”; each finite set for which we can actually
list the elements can be proven to be strongly Cantorian, but we cannot
even prove that all finite sets are strongly Cantorian, much less that N is
strongly Cantorian (although we can prove that N is Cantorian). Even
adopting as an axiom our Axiom of Counting (which shows that N and all
finite sets are strongly Cantorian; we have already enunciated the special
case of the Subversion Theorem which applies the Axiom of Counting)
strengthens the theory considerably. The power of the Axiom of Small
Ordinals or a similar principle is that it enables us to evade stratification
restrictions on a wider range of sets.

It is worth noting that the argument given above to show that all von Neu-
mann ordinals are Cantorian actually demonstrates that they are strongly
Cantorian.

Exercises

(a) Construct a bijection between P{N} and R. Construct a bijection
between R and R2.

(b) We indicate an analytic proof that R is uncountable. Suppose other-
wise. Then we would have a sequence r such that each real number
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x = ri for some i ∈ N . Start with a closed interval [a0, b0] in the reals
which has r0 neither in its interior nor as an endpoint. We construct
a sequence of intervals [ai, bi]. At step i, we divide the current inter-
val in the sequence into three parts of equal length (why do we need
three?) and let the next interval in the sequence be chosen to have
ri+1 neither in its interior nor as an endpoint. Complete the argument
that this allows us to construct a real number not equal to any ri.

(c) Show that Cantor’s Theorem is a special case of König’s Theorem.

(d) Analyze the proof of König’s Theorem from the standpoint of stratifi-
cation; assign relative types to all the objects involved in the argument
and check that the relative types are correct for the relationships pos-
tulated among the objects.

(e) Prove that there are infinitely many cardinals κ such that every set of
size κ contains atoms.

(f) (hard) We outline the approach of Specker to proving that the Axiom
of Choice implies that there are atoms without our appeal to Counting:
assume that P{V } = V , so that exp(T {|V |}) = |V |. Define “Specker
numbers” as cardinals κ such that expn(κ) exists for only finitely many
n, and define µ as the smallest Specker number. Prove that µ = T {µ}
by proving that T {µ} and T−1{µ} are both Specker numbers (one
has to prove that the latter exists), then considering the definition of
µ. Let n be the largest natural number such that expn(µ) is defined.
Considering the fact that µ = T {µ}, show that n = T {n} + 1 or
n = T {n} + 2. Why is this impossible? Complete the details of the
proof.

(g) Suppose that A and B are strongly Cantorian sets. Prove that A∩B,
A∪B, A×B, P{A}, and [A → B] are strongly Cantorian sets, without
appealing to the Subversion Theorem.
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Chapter 18

Sets of Real Numbers

In this section, we resume our treatment of the familiar systems of rational
and real numbers.

18.1. Intervals, Density, and Completeness

We first consider a special property of the total order defined on the ra-
tional and real numbers.

Definition. A linear order ! is said to be dense iff for every pair a < b
of elements of dom(!), there is an element c of dom(!) such that
a < c < b.

We also state a definition of sets important to consider in connection with
linear orders:

Definition. Let ! be a linear order. For any pair of points a < b in
dom(!), we define [a, b] as {c | a ! c ! b}. We call this the closed
interval determined by a and b. We define (a, b), the corresponding
open interval, as [a, b]−{a}−{b}. We define [a, b) and (a, b] as [a, b]−
{b} and [a, b]− {a}, respectively. We allow the use of the symbols ∞
and −∞ as upper or lower limits: [a,∞) = {c | c " a}, for example.
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The subsets of dom(!) described in this definition are called intervals,
including the ones with open “infinite” upper and lower limits.

Observation. For any a < b in the domain of a dense linear order !, the
interval (a, b) is an infinite set.

The linear order on the rationals (and on the reals) is easily seen to be
dense. We see in the next theorem that the order on the rationals is very
special (indeed, in a sense, unique):

Theorem. Let ! be a dense linear order with a countable domain and
without a greatest or least element. Then there is a bijection f from
dom(!) onto Q such that f(x) ! f(y) (the order here is the usual
order on the rationals) iff x ! y. In other words, all such orders have
the same structure as the order on the rationals.

Proof. — Choose a sequence s which is a bijection from N onto dom(!).
Choose a sequence q which is a bijection from N onto Q. We construct
the map f in stages. At stage 0, we set f(s0) = q0. At each subsequent
stage, we will define up to two values of f ; we guarantee that at least f(si)
for each i ! n and f−1(qi) for each i ! n will be defined at the end of
stage n. A finite number of values of f will have been determined at each
stage. At stage n + 1, we check whether f(sn+1) has been defined; if it
has not, we define it as qj , where j is the smallest index such that f−1(qj)
has not already been determined and qj has the same order relations to
each f(si) already defined that sn+1 has to the corresponding si (there
will be such a qj because the order is dense with no largest or smallest
element and there are only finitely many si’s to consider). Then check
whether f−1(qn+1) has been defined; if it has not, define it as sk, where k
is the smallest index such that f(sk) has not already been determined and
sk has the same order relations to each f−1(qi) already defined that qn+1

has to the corresponding qi’s (the reasons that this works have already
been stated). Observe that the conditions which are to hold at each stage
will hold at stage n + 1 if they held at stage n. Induction shows that
each stage can be carried out, giving a complete definition of a function f
with the desired properties. This kind of proof is called a “back-and-forth
argument”. !

The form of this theorem inspires a
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Definition. Two linear orders ! and !∗ are said to be isomorphic iff there
is a bijection f from dom(!) onto dom(!∗) such that x ! y iff f(x) !∗

f(y). It is easy to see that isomorphism is an equivalence relation on
linear orders. The bijection f is said to be an isomorphism.

Observation. The previous theorem can be restated as “All dense linear
orders without endpoints and with countable domains are isomorphic”.

The order on the real numbers is dense, and also complete in a stronger
sense. The order on the rationals has gaps in it in a sense in which the
order on the reals does not.

Definition. A subset A of the domain of a linear order ! is said to be
convex iff for each a, b ∈ A such that a < b, (a, b) ⊂ A.

Interval Classification Theorem. Each nonempty subset of R convex with
respect to the usual order is an interval.

Proof. — If the set has no upper bound, the upper limit of the interval
will be ∞; if the set has no lower bound, the lower limit of the interval
will be −∞. If the interval has an upper bound, take the upper limit of
the interval to be the least upper bound of the set, taking the interval to
be closed or open at the upper endpoint as appropriate. If the interval
has a lower bound, take the lower limit of the interval to be the greatest
lower bound of the set, taking the interval to be open or closed at the
lower endpoint as appropriate. !

Definition. A linear order with respect to which every convex set is an
interval is said to be complete.

This theorem can be understood as telling us that we cannot cut the real
line in a way which misses any real number; for surely the sets above and
below a cut would be convex! The subset {p ∈ Q | p2 < 2} is an example
of a convex subset of the rationals with respect to the usual order which
is not an interval.

We now propose a further extension of our use of the word dense:

Definition. A subset D of the domain of a linear order ! is said to be
dense if for every pair a < b in dom(!), the interval (a, b) contains an
element of D.
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For example, Q is a dense subset of R with respect to the usual ordering
on these sets (and with respect to the usual identification of Q with a
certain subset of R).

We now give a characterization of the structure of the usual order on R:

Theorem. Any complete dense linear order ! with no endpoints and a
countable dense subset D is isomorphic to the usual linear order
on R.

Proof. — Choose an isomorphism f between the order ! restricted to
D and the usual order on the rationals. Each element x of dom(!) − D
uniquely determines the partition of D into subsets (−∞, x) ∩ D and
(x,∞)∩D (any y #= x has a different relation to elements of the nonempty
set (x, y)∩D than x). This determines a partition of the rationals Q into
two convex sets via the isomorphism f , which in turn determines a unique
real number r between the two sets. We define f(x) = r. This process is
reversible; we can determine f−1(r) for each r ∈ R in exactly the same
way. !

18.2. Topology of R
We introduce elementary concepts of topology of the real line.

Definition. A subset of R is said to be open iff it is the union of some
set of open intervals. Equivalently, a set A ⊆ R is open iff for each
element x of A, there is an open interval (y, z) ⊆ A of which x is an
element. Such an interval (y, z) is said to be a neighborhood of x; any
open set containing x may also be called a neighborhood of x.

Definition. A set A ⊆ R is said to be closed iff R−A is open.

We prove some easy theorems.

Theorem. For any set O of open sets,
⋃

[O] is an open set.

Proof. — The union of a collection of unions of open intervals is still
the union of a collection of open intervals. !
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Theorem. For any finite set A of open sets,
⋂

[A] is an open set.

Proof. — For each element x of
⋂

[A], we need to find an open interval
(y, z) ⊆

⋂
[A] containing x. To do this, choose an open interval (yi, zi)

containing x from each element Ai of A; the intersection of this finite
collection of open intervals containing x will be an open interval containing
x and also a subset of

⋂
[A]. !

Theorem. For any set C of closed sets,
⋂

[C] is a closed set.

Proof. — We need to show that R−
⋂

[C] is open. But this is immediate:
another way of writing this set is

⋃
[{R−C | C ∈ C}], which is the union

of a collection of open sets, so open. !

Theorem. The union of any finite collection B of closed sets is closed.

Proof. — This is proved in the same way as the previous theorem;
the complement of the union of a finite collection of closed sets is the
intersection of the finite collection of (open) complements of those closed
sets. !

We define a new concept.

Definition. A real number r is a limit point of a set A iff each open interval
containing r meets A. The closure of a set A is the set of all limit points
of A. A variation on this definition: a real number r is an accumulation
point of a set A iff each open interval containing r meets A− {r}. A
limit point of A which is not an accumulation point of A must be an
element of A and is said to be an isolated point of A.

Theorem. A set is closed iff it contains all of its limit points. A set is
closed iff it is equal to its closure. The closure of any set is closed.

Proof. — Suppose that the set C is closed. Each point in C is certainly
a limit point of C. Each point y in R−C has an open interval containing
it which lies entirely in R−C, because the complement of C is open. This
implies that no point not in C is a limit point of C. It follows that the set
of limit points of C coincides with C.

Suppose that a set L contains all of its limit points. It follows that each
element y of R−L belongs to an open interval not meeting L (because it
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is not a limit point of L). This is exactly what it means for R − L to be
open, and for L to be closed!

Suppose that C is the closure of a set A. A limit point of C is a point
any open interval about which will meet a point x of C. We know that
any open interval containing x ∈ C will meet A (because C is the closure
of A). Thus any limit point of C is also an element of C (a limit point of
A), and we have already seen that a set which contains all of its own limit
points is closed.

The proof of the theorem is complete. !

We give a result depending on the existence of the countable dense subset
Q of R.

Theorem. Any system O of pairwise disjoint open sets (or, more specifi-
cally, open intervals) is at most countable.

Proof. — Each element of O contains an open interval as a subset, which
in turn contains a rational number as an element. Choose one rational
number to associate with each element of O (this does not require the
Axiom of Choice; one could choose the first rational number falling in O
from a fixed sequence containing all the rationals). A different rational
must be associated with each element of O because the elements of O are
disjoint; O can be no larger than the collection of such rationals, and so
no more than countable. (Stratification would require us to associate the
singleton of a rational element with each element of O, but the collection
P1{Q} is countable as well). !

Here is an important theorem depending on the least upper bound prop-
erty:

Definition. A sequence A of sets is said to be nested if Ai+1 ⊆ Ai for
each i.

Theorem. A nested sequence of closed intervals [ri, si] has nonempty in-
tersection.

Proof. — Consider sup {ri | i ∈ N}. This is clearly greater than or
equal to each ri, and also less than or equal to each si, and so belongs to
each interval. !
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We introduce another family of concepts:

Theorem. Any infinite subset A of a closed interval [r, s] has an accumu-
lation point.

Proof. — We construct a sequence of intervals [ri, si] as follows:

" [r0, s0] = [r, s];

" [ri+1, si+1] = [ri,
ri+si

2 ] if this interval contains infinitely many ele-
ments of A;

" otherwise [ ri+si
2 , si]

(this is a definition by recursion). A simple induction shows that each
[ri, si] contains infinitely many elements of A. The diameter of [ri, si]
will be s−r

2i . The intersection of all the ri’s is nonempty (by the previous
theorem) and contains no more than one point (because the diameters
of the [ri, si]’s converge to zero). Call this point p. Any open interval
containing p contains some entire interval [ri, si] (one can take i sufficiently
large that the diameter of [ri, si] will be smaller than the distance from p
to either endpoint of the open interval about p), so contains points of A
distinct from p itself; thus p is an accumulation point of A in [r, s]. The
proof of the theorem is complete. !

Definition. If A is a subset of R and O is a set of open subsets of R, O is
said to be an open cover of A iff A ⊆

⋃
[O].

Definition. A subset of the reals is said to be compact if it is a closed
subset of a closed interval [r, s] (i.e., it is closed and bounded above
and below).

Theorem. A subset K of the reals is compact iff each open cover of K has
a finite subcover (i.e., a finite subset which is also an open cover).

Proof. — If K is not bounded, the set of intervals (r, r+1) will provide
an open cover of K with no finite subcover. If K is not closed, choose a
limit point p of K which is not an element of K, and the collection of all
complements of closed intervals centered at p will provide an open cover
of K with no finite subcover.
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Now suppose that K is closed and bounded. Any open cover of K has a
countable subcover; it suffices to choose one element of the cover contain-
ing each open interval with rational endpoints that is a subset of some
element of the cover. Thus every open cover of K is the range of a se-
quence of open sets O. Suppose that O is a sequence of open sets whose
range has no finite subcover; we can require further that no Oi ∩ K is
covered by the sets Oj ∩K for j < i (we can eliminate redundant sets Oi).
Choose a sequence of points pi ∈ K such that pi ∈ Oi for each i (note the
failure of stratification, which is all right given the Axiom of Counting)
and pi #∈ Oj for any j < i. The sequence p must have an accumulation
point q (because K is a subset of a closed interval), which must be an
element of K (because K is closed). q cannot belong to any open set of
the sequence O, because if it did, so would infinitely many pi’s, which is
impossible by the construction of the sequence of pi’s. But the range of
O purports to be a cover of K. This contradiction completes the proof of
the theorem. !

We return to the distinction between an accumulation point and a mere
limit point.

Definition. Let A ⊆ R. We say that A is perfect iff A is closed, nonempty,
and has no isolated points.

Theorem. The cardinality of a perfect set is c = 2ℵ0 , the cardinality of
the continuum.

Proof. — Let P be a perfect set. |P | ! c = |R| is immediate; we need
to establish |P | " c.

We do this by defining an injection from [N → {0, 1}], a set known to
have cardinality c, to a subset of P .

P contains at least one point x, because it is nonempty. It contains at
least one other point y, because any open interval about x contains a point
of P other than x. We associate with each of x, y an open interval in such
a way that the corresponding closed intervals do not intersect. We now
consider each of the points x and y and repeat this process: for example,
y is in an interval (u, v) chosen at the previous step; since P is perfect,
there is another real number y′ in (u, v)∩P ; choose disjoint open intervals
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about y and y′ in such a way that the corresponding closed intervals do
not intersect.

In this way we obtain a countable set F with the following properties: it
is the union of finite sets Fi for i ∈ N such that F0 = {x}, |Fi| = 2i,
each set Fi is associated with a set Oi of open intervals such that the
corresponding closed intervals are pairwise disjoint and each element of
Oi contains exactly one element of Fi, Fi ⊂ Fi+1 and each element of Oi

contains two elements of Fi+1. We may further require that the radius
of each interval in Oi < 2−i. We associate a finite sequence with each
element of each Fi for i > 0 as follows: with the two elements of F1 we
associate the one-term sequence with 0 as its sole term (this goes with x)
and the one-term sequence with 1 as its sole term (this goes with y). The
map on Fi+1 is determined by assigning to each element of Fi the sequence
obtained by adding one more value, a 0, to the sequence associated with
it at the previous step; the new element of each interval in Oi is assigned
the extension of the finite sequence associated with the old element of the
same interval with one new value, a 1. Assignment of relative types to the
various occurrences of i in this discussion would require some use of the
T operation, which the Axiom of Counting allows us to neglect.

The closure of the set F is a subset of P , because P is perfect and so
closed. Each element of [N → {0, 1}] (infinite sequence of binary digits)
is associated with a unique element of the closure of F and so of P by
considering the intersection of the nested sequence of intervals from which
points associated with finite initial segments of the sequence are chosen.
There are c such sequences, so there are at least c elements in P . The
proof of the theorem is complete. !

We continue the development with a

Definition. For each set A ⊆ R, we define the derivative A′ of A as the
set of accumulation points of A.

Theorem. The derivative of a closed set C is a closed subset of C.

Proof. — The derivative is a set of limit points of C, so certainly a
subset of C.

It is sufficient to show that for any closed set C, any limit point of accu-
mulation points of C is itself an accumulation point of C. A limit point
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of accumulation points of C is a point c any open interval about which
contains an accumulation point a of C. If a = c we are done. If a #= c,
choose an open interval about a included in the interval already chosen
about c and not containing c. This interval must contain a point of C,
which cannot be c, so the original interval about c contained such a point,
so c is an accumulation point of C. The proof of the theorem is complete.

!

Theorem. The set of isolated points of any set of reals A is at most
countable.

Proof. — For each isolated point, we can choose an open interval con-
taining that point which contains no other point of A. We can further
refine this by halving the radius of each chosen interval; the resulting fam-
ily of intervals will be pairwise disjoint. By a theorem above, no set of
pairwise disjoint open intervals can be more than countable. The proof of
the theorem is complete. !

We prove a special case of the Continuum Hypothesis:

Theorem. Each closed subset of R is either finite, countable, or of cardi-
nality c.

The full Continuum Hypothesis would be obtained if we could drop the
word “closed”. The theorem follows immediately from the following

Lemma. Each closed subset A of R is the union C ∪ P of an at most
countable set C and a set P which is either perfect or empty.

This is of course a “Lemma” only for our purposes; it is a substantial
theorem in its own right!

Proof of the Lemma. — Let ! be any well-ordering of an uncountable
set. We can define a function f from dom(!) to subsets of R by transfinite
recursion such that f(w) = A ∩

⋂
[{(f(v))′ | v < w}]. The first set in the

resulting transfinite sequence of sets is A; the successor of any set in the
sequence is its derivative; intersections are taken at limits. It is easy to
see that each f(w) is a closed subset of A.

If we choose the well-ordering ! with large enough domain, the process
described by f must terminate: each set that we construct is a subset of



18.3. Ultrafilters 147

the previous one (because all are closed), so the number of steps we can
go through is bounded by the number of disjoint subsets we can take from
R. Assume that we choose ! so that the process terminates; thus, there
is a u such that we have f(u) = f(v) for all v such that u ! v. We define
P = f(u) and C = A− f(u). P = P ′, so by the definition of “perfect”, P
is either perfect or empty.

It only remains to show that C is countable. C is partitioned into disjoint
sets f(w)−f(w+1) for w ∈ dom(!). f(w)−f(w+1) is the set of isolated
points of f(w) for each w. Let Jn be a sequence whose range is all of the
open intervals with rational endpoints (this is a countable set). For each
element c of C, define Ic as the first interval in the sequence J such that
for some w ∈ dom(!), Ic∩f(w) = {c}. Since there is a set f(w)−f(w+1)
which contains c, and c is an isolated point of this f(w), there is such an Ic.
It is straightforward to show that no two points c, d ∈ C can have Ic = Id,
and so C is at most countable. It is worth noting that this implies that
there can be no more than countably many distinct f(w)’s. The proof of
the Lemma is complete. !

Proof of Theorem. — A closed subset of R is seen by the Lemma to
be the union of a set which is either finite or countable with a set which
is either empty or has cardinality c; the union of two such sets is either
finite, countable, or has cardinality c. !

We reluctantly leave this fascinating area of application of set theory.

18.3. Ultrafilters. An Alternative Definition of R.
Nonstandard Analysis

We outline an elegant alternative definition of the real numbers, which
gives us an occasion to introduce the notions of filter and ultrafilter (along
with the dual notions of ideal and prime ideal). We go on to discuss the
application of ultrafilters to construction of “nonstandard models” of sets,
and sketch the application of this construction to analysis.

Definition. Let ! be a partial order. A filter on X is a subset of dom(!)
with the following properties:
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(a) If p ∈ F and p ! q, q ∈ F .

(b) For any p, q ∈ F , there is r ∈ F such that r ! p and r ! q.

Notice that dom(!) can be a filter under this definition, but only in
case every pair of elements of dom(!) has a lower bound. If there are
pairs of elements of dom(!) which do not have a lower bound (as will
be the case for the orders we will consider), then filters on ! must be
proper subsets of dom(!).

An ultrafilter is a filter which has no proper superset which is a filter.

An ideal (prime ideal) on ! is a filter (ultrafilter) on ".

Theorem. For any filter F on !, there is an ultrafilter U on ! which
extends F , i.e., such that F ⊆ U .

Proof. — Consider the order on filters on ! determined by inclusion.
The union of any chain of filters in this order is a filter, so the conditions
of Zorn’s Lemma are satisfied and there is a maximal filter in this order.
The proof of the theorem is complete. !

Our alternative definition of the real numbers follows:

Definition. A real number is an ultrafilter on the inclusion order on the set
of bounded closed intervals [p, q] = {x | p ! x ! q} for p ! q elements
of Q. The real number corresponding to a rational p is simply the set
of closed intervals that contain p. R is the set of all real numbers.

Definition. Let r, s be real numbers. r + s is the set of intervals I such
that there are intervals J ∈ r and K ∈ s such that I = {p + q | p ∈ J
and q ∈ K}. The product rs is defined analogously. r ! s is said to
hold iff there are intervals J ∈ r, K ∈ s such that for all p ∈ J , q ∈ K,
p ! q.

Verification that this definition “works” is left to the reader. One way of
understanding it is to think of the closed interval elements of the ultrafilter
as “estimates” p ± q (p and q rational, q " 0); this estimate denotes the
interval [p − q, p + q]. A real number is a maximal collection of rational
estimates of this kind which are consistent with one another. A sufficient
condition for a filter on the inclusion order on the closed intervals to be



18.3. Ultrafilters 149

an ultrafilter is that it contain closed intervals of every positive diameter;
the existence of ultrafilters extending any given filter on this order can be
proved without an appeal to Zorn’s Lemma!

We outline the verification of the least upper bound property. Consider a
nonempty set A ⊂ R which is bounded above and below. Now consider
the set

⋂
[A] of closed intervals in Q which belong to all elements of A. The

set
⋂

[
⋂

[A]] is the set of rational numbers which are “between” elements
of A in a suitable sense. Choose closed intervals of each positive diameter
which contain an element of

⋂
[
⋂

[A]] and an upper bound of
⋂

[
⋂

[A]]; the
unique real number containing all of these intervals as elements will be the
least upper bound of A. It is easy to deduce from the least upper bound
property for nonempty sets bounded below that the least upper bound
property holds for all nonempty sets.

It is usual to consider filters and ideals over the inclusion order on families
of sets. There is a nice characterization of ultrafilters on the family of
nonempty subsets of a set X :

Theorem. Let U be a filter on the inclusion order on P{X} − {{ }} for
some set X . U is an ultrafilter iff for each set A ⊆ X , either A ∈ U
or X −A ∈ U .

Proof. — Suppose that for some set Y , Y #∈ U and X − Y #∈ U . We
show that U is not maximal. Consider the set

U ′ = U ∪ {(A ∩ Y ) ∪ Z | A ∈ U and Z ⊆ X}.

It is straightforward to verify that U ′ is a filter on nonempty subsets of
X properly extending U . On the other hand, if U does contain each set
or its relative complement, it is easy to see that U is maximal; if Y #∈ U ,
it follows that X − Y ∈ U , so we cannot adjoin Y to U and still satisfy
the definition of a filter on the inclusion order on nonempty subsets of X ;
there is no nonempty subset of X below a set and its relative complement!

!

Observation. For each element x of a set X , the set of subsets of X which
contain x as an element is an ultrafilter on the inclusion order on
nonempty subsets of X . Such an ultrafilter is called a principal ultra-
filter on X .
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We describe a way to make an infinite set X look like a larger object X∗

with the same properties (in a suitable sense) by adjoining some “non-
standard” objects using an ultrafilter.

Theorem. Let A be an infinite set. There is a nonprincipal ultrafilter on
the inclusion order on nonempty subsets of A.

Proof. — The set of sets X such that X − A is finite (these are called
cofinite subsets of A) makes up a filter on the inclusion order on nonempty
subsets of A. This filter can be extended to an ultrafilter, and this ultrafil-
ter cannot be principal: each element a of A fails to belong to the cofinite
set {a}c. !

Let A be an infinite strongly Cantorian set (the Axiom of Counting allows
us to assert that there are such sets), and let U be a nonprincipal ultrafilter
on the inclusion order on nonempty subsets of A. Let X be an infinite
set. We make some definitions.

Definition. We define X∗
U (or X∗ where U is understood) as a partition

of [A → X ]. The equivalence relation ∼U which determines the par-
tition is defined thus: f ∼U g iff {a ∈ A | f(a) = g(a)} ∈ U . It is
straightforward to verify that ∼U actually is an equivalence relation.
Each element x of X corresponds to an element x∗ of X∗, the equiva-
lence class of the constant function on A with value x. x∗ is two types
higher than x. The set X∗

U is called an ultrapower.

Definition. For any predicate R[x1, . . . , xn] of objects xi in X , we define
a predicate R∗

U [[f1], . . . , [fn]] (we may omit U where it is understood)
of objects [fi] (equivalence classes of functions fi) in X∗

U as holding
iff {a ∈ A | R[f1(a), . . . , fn(a)]} ∈ U . Here is where the strongly
Cantorian character of A becomes significant; the variable a does not
need to be assigned a consistent relative type, because it is restricted to
a fixed strongly Cantorian set, so it is possible to define the set needed
for the definition of R∗ even when R is a predicate whose arguments
have different relative types (such as ∈). For any sentence φ, we can
define a sentence φ∗ by replacing all predicates R with predicates R∗

and references to specific constants c with c∗ (it is useful to suppose
here that we have eliminated all complex names from φ using the
theory of definite descriptions), and restricting all quantifiers to X∗.
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!Loś’s Theorem. Suppose either that the set X whose ultrapower we con-
sider is strongly Cantorian or that we restrict all sentence variables
to the stratified sentences. For any sentence φ with free variables
a1, . . . , an, φ∗ holds for specific values of its free variables ai iff {a ∈
A | φ′} ∈ U , where φ′ is obtained from φ by replacing free variables ai

with terms a′
i(a) with a′

i ∈ X∗ representing the value to be assigned to
the free variable ai. A special case of this is that φ holds iff φ∗ holds in
the special case where there are no free variables, or in the case where
all free variables code standard elements of X (are equivalence classes
of constant functions).

Proof. — We proceed by induction on the structure of φ.

(a) If φ is atomic, this follows by the definition of predicates R∗.

(b) Suppose that the result holds for ψ and ξ. That it holds for “not ψ”
follows from the fact that U contains a set iff it does not contain its
complement relative to A. That it holds for “ψ and ξ” follows from
the fact that U is closed under Boolean intersection.

(c) Suppose that the result holds for ψ. We want to determine whether
it holds for “for some x, ψ”. x is free in ψ. If “for some x ∈ X∗, ψ∗”
holds, then ψ∗ holds for a specific x ∈ X∗, so {a ∈ A | ψ′} ∈ U holds
by inductive hypothesis (using that specific value of x ∈ X∗ as x′), and
{a ∈ A | (for some x, ψ)′} ∈ U holds because a superset of an element
of U is an element of U . If {a ∈ A | (for some x, ψ)′} ∈ U , we want
to show that for some x′ ∈ X∗, {a ∈ A | ψ′} ∈ U . A specific value
of x′ which works is any function which takes each a in {a ∈ A | (for
some x, ψ)′} to an x such that ψ and takes other objects to anything;
we don’t care what. For such an x′, the sets {a ∈ A | (for some x,
ψ)′} and {a ∈ A | ψ′} are the same set, which is known to be in U .
Caution is required here: the function x′ can be relied upon to exist
only under restricted conditions: one that works is “X is strongly
Cantorian”; another that works is “φ is stratified”. !

We usually expect that there will be “new” objects in an ultrapower X∗:
e.g., the identity function on A will represent an element of A∗ different
from all analogues of standard elements of A (it differs from each constant
function on a cofinite subset of A).
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We present applications to “nonstandard analysis”, a way of defining basic
concepts of the calculus using infinitesimals.

Our observations on “nonstandard analysis” will be brief. Carry out the
construction above with A = N . We can work with X = V here because
notions of analysis can be presented in stratified form. The objects in
V ∗ will be equivalence classes of sequences of elements of V . Consider the
equivalence class of a sequence of positive real numbers converging to 0. It
will be an element of (R+)∗ less than all elements of (R+)∗ corresponding
to standard real numbers and greater than 0∗; in other words, it will be a
positive infinitesimal.

Let s be a sequence of real numbers. We assert (as usual) that lim s = L
iff for each real number ε > 0, there is a natural number N such that for
each i " N , |si − L| < ε.

We present an equivalent notion in terms of ultrapowers: let s∗ be the
sequence of real numbers corresponding to s in an ultrapower V ∗

U , U an
ultrafilter over the natural numbers. We claim that lim s = L iff for each
nonstandard i in N ∗, we have |s∗i −L∗| infinitesimal (or zero). The proof
is straightforward: if lim s = L is true, let N = [t] be any nonstandard
natural number; there will be a standard function M such that for any
ε > 0, and natural number k, k > M(ε) implies |sk − L| < ε; the set
{i | ti > M(ε)} is in U for each (standard) ε > 0, consequently the set
{i | |sti−L| < ε} is in U too, showing that |s∗N−L∗| is infinitesimal. On the
other hand, if lim s = L is not true, a strictly increasing standard sequence
t can be defined such that |sti − L| > ε for all i with a fixed positive real
ε; the element of the ultrafilter corresponding to the sequence t will be a
nonstandard integer N such that |s∗N − L∗| > ε∗ for the analogue ε∗ of
that fixed ε.

This kind of reasoning can be extended to allow the presentation of the
basic notions of the calculus in terms of infinitesimals. For example, the
derivative f ′ of a function f from the reals to the reals can be defined as the
unique function f ′ (if any) such that the absolute value of the difference

between f ′∗(x) and
f∗(x + dx) − f∗(x)

dx
is infinitesimal for each nonzero

infinitesimal dx in R∗.
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Exercises

(a) (hard: Baire Category Theorem) Prove that the intersection of a
countable collection of open dense subsets of the reals is dense. We
define a nowhere dense set as a set which is not dense in any interval.
Prove that the union of a countable collection of nowhere dense sub-
sets of the real line is not the entire real line. The union of a countable
collection of nowhere dense subsets is called a meager set.

(b) (hard: Borel sets) The set B of Borel sets is defined as the smallest
subset of R which contains all intervals and is closed under unions
and intersections of its countable subcollections. Show that all open
sets and all closed sets are Borel sets. Show that |B| = |R| (so most
sets of reals are not Borel). A hierarchy of sets indexed by the natural
numbers can be obtained by starting with the open sets as stage 1,
then adding all countable intersections of stage 1 sets to get stage 2
sets, all countable unions of stage 2 sets to get stage 3 sets, and so
forth, taking countable intersections to get even stages and countable
unions to get odd stages. Show that each of the stages contains new
sets. Show that there are Borel sets which are not constructed at stage
n of this process for any n ∈ N .

(c) Find a book on nonstandard analysis and read the proofs of some
familiar theorems of analysis.
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Strongly Cantorian Sets and
Conventional Set Theory

19.1. Consequences of the Axiom of
Small Ordinals

We “take the gloves off” and start using the Axiom of Small Ordinals.

Theorem. All Cantorian sets (thus cardinals, ordinals) are strongly Can-
torian.

Proof. — Let A be a Cantorian set. Let R be a well-ordering of A;
R then belongs to a Cantorian ordinal α, and R is similar to the natural
order on seg{α}. The similarity which witnesses this fact is a bijection
between A and seg{α}. It is sufficient to show that seg{α} is strongly
Cantorian. Define a map by transfinite recursion: f(0) = {0}; f(β + 1) =
{γ+1} if f(β) = {γ}; f(limB) = the singleton of the limit of the collection
of

⋃
[f(β)]’s for β ∈ B. It is straightforward to prove by (stratified)

transfinite induction that f(α) = {T−1{α}} for each ordinal α which is
an image under T ; it follows that f(α) = {α} for each Cantorian α. We
have already established that each ordinal less than a Cantorian ordinal
is Cantorian, so f(β) = {β} for each β < α, so f witnesses the fact that
seg{α} is strongly Cantorian. !
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This shows that the concepts of Cantorian and strongly Cantorian sets, or-
dinals, or cardinals collapse together in the presence of the Axiom of Small
Ordinals. We will use the term “Cantorian” hereafter for this concept.

Theorem. Every set of Cantorian ordinals is Cantorian.

Proof. — The map f defined in the proof of the preceding theorem
sends each Cantorian ordinal to its singleton; its restriction to any set A
of Cantorian ordinals witnesses the Cantorian character of A. !

We show that the Cantorian sets are closed under certain constructions.

Theorem. Any pair {a, b} is Cantorian.

Proof. — Obvious. !

Theorem. There is an infinite Cantorian set.

Proof. — N . !

Theorem. If A is Cantorian, {x ∈ A | φ} exists for any sentence φ.

Proof. — If A is Cantorian, there is a bijection f between A and seg{α}
for a Cantorian ordinal α. f [{x ∈ A | φ}] is a collection of small ordinals
definable by a sentence, and so has exactly the small ordinal elements of
a set B. The set f−1[B ∩ seg{α}] is the desired set. !

This gives us comprehension for any property at all (that we can express
in our language) as long as we restrict our attention to elements of a fixed
Cantorian set.

Theorem. If A is Cantorian, P{A} is Cantorian.

Proof. — If K is the map which takes a to {a} for each a in A, the
map (B 0→ K[B]) for B in P{A} has a stratified definition, and sends
each B to P1{B}. The map (P1{B} 0→ {B}) has a stratified definition;
composition yields the singleton map on P{A}. !

Since |P{A}| > |A| for A Cantorian, this enables us to build larger and
larger Cantorian sets.
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Definition. We use transfinite recursion to code pairs of ordinals as ordi-
nals:

" define 〈〈0, 0〉〉 as 0;

" define 〈〈β, γ + 1〉〉 as 〈〈β, γ〉〉+ 2, where γ < β;

" define 〈〈α,β〉〉 as 〈〈β,α〉〉+1 whenever α < β (notice that the first
projection is greater than or equal to the second in each other case
defined here);

" define 〈〈α, lim B〉〉 as lim{〈〈α,β〉〉 | β ∈ B} when B has no greatest
element and α is greater than all elements of B;

" define 〈〈β + 1, 0〉〉 as 〈〈β,β〉〉+ 1;

" define 〈〈lim B, 0〉〉 as
lim {〈〈β, γ〉〉 | β, γ ∈ B}, where B has no greatest element.

This definition can be pictured as follows:

A

B

Ord

Ord

Each point of B is
greater than each
point of A.

x

y

Ord

Ord

When π1(x) > π2(y),
x > y because x
is farther up the
diagonal than y
(π1(x) < π2(y)
would imply y > x)

Ord

Ord

x

y

If the projections
of x and y onto
the diagonal are equal
(π1(x) = π2(y))
then x > y because x
is higher than y.

Notice that the projections of a coded pair are at the same relative type
as the coded pair. Observe that the order on the codes of pairs of ordinals
is determined by considering first the maximum of the two ordinals, then
the smaller ordinal, then the position of the larger ordinal; technically,
the order on codes 〈〈α,β〉〉 is induced by the lexicographic order on triples
(max(α,β), min(α,β), i), where i = 0 if α > β and 1 otherwise. It is
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straightforward to demonstrate that 〈〈α,β〉〉 exists for each α and β: let
W be a well-ordering such that Wα and Wβ exist; then consider the order
R on dom(W ) × dom(W ) defined by considering first the maximum of
the projections of a pair, then its smaller projection, then the position
of the larger projection (as above): (Wα, Wβ) = R〈〈α,β〉〉 will hold. It
is straightforward to show that T {〈〈α,β〉〉} = 〈〈T {α}, T {β}〉〉, for any
ordinals α, β. It follows from this that pairs of Cantorian ordinals are
coded exactly by the Cantorian ordinals.

Replacement Theorem. If A is Cantorian and φ is a sentence such that
“for each x in A, there is exactly one Cantorian ordinal y such that
φ” holds, then {y | y is a Cantorian ordinal and for some x ∈ A,φ}
exists.

Proof. — Let f be a bijection from A to seg{α} for some Cantorian
ordinal α. Consider the collection of small ordinals {〈〈f(x), y〉〉 | x ∈ A, y
is a Cantorian ordinal, and φ}; there is a set B which contains exactly
these small ordinals. Now consider the set C = {y | for some x ∈ A, y
is the smallest ordinal such that 〈〈f(x), y〉〉 ∈ B}; this is the desired set
of ordinals. Any unwanted elements of the “image” of B are disposed
of by choosing the smallest y for each f(x), which must be the unique
Cantorian y. !

This theorem says that if we can “replace” each element of a “small” set
with a Cantorian ordinal, the replacements themselves make up a set. We
cannot have such a theorem about “replacement” with general objects: the
numbers 0,1,2. . . can be “replaced” with Ω, T {Ω}, T 2{Ω}, . . . which do not
make up a set. One consequence of the theorem is that no Cantorian set
can contain all of these objects.

Theorem. If A is a Cantorian set, and each element of A is a Cantorian
set,

⋃
[A] is Cantorian.

Proof. — Consider
∑

[A], the disjoint sum of A (indexed by A itself);
it is partitioned into disjoint sets, on each of which we know how to con-
struct the singleton map; the question is whether we can put all these
maps together uniformly. It is larger than P1{

⋃
[A]} (there is a natural

map from
∑

[A] onto P1{
⋃

[A]}), so if it is Cantorian P1{
⋃

[A]} and so⋃
[A] itself must be Cantorian. The trick is to use the coding of pairs of

ordinals by ordinals again: choose a bijection fB of B onto seg{β} for
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some ordinal β for each element B of A, and an embedding g of A onto
seg{α} for some ordinal α, then replace each element ({x}, B) of

∑
[A]

with 〈〈T {fB(x)}, g(B)〉〉 (the T is actually redundant, since fB(x) is a
Cantorian ordinal in each case) to get a set of ordinals of the same size;
this is a set of strongly Cantorian ordinals, so strongly Cantorian; it is
the same size as

∑
[A], so

∑
[A] is strongly Cantorian. The proof of the

theorem is complete. !

Theorem. A “class” {x | φ} of Cantorian ordinals fails to be realized by a
set of Cantorian ordinals exactly if there is a sentence which describes
a “one-to-one correspondence” between {x | φ} and the proper class
of Cantorian ordinals.

Proof. — By the Axiom of Small Ordinals, there is a set B whose “in-
tersection” with the small ordinals is {x | φ}. Define a function f on Ord
by transfinite recursion which takes each β to the smallest ordinal element
of B greater than all f(γ) for γ < β, or to { } if there is no such element. If
some Cantorian ordinal is sent to a non-Cantorian ordinal or to { }, there
is a smallest such ordinal α (the Axiom is applied here), and f [seg{α}]
is a Cantorian set of Cantorian ordinals, certainly not in one-to-one cor-
respondence with all Cantorian ordinals (smaller than the Cantorian set
P{seg{a}}). If a set of Cantorian ordinals could be placed in a “one-to-one
correspondence” defined by a sentence with all the Cantorian ordinals, the
class of Cantorian ordinals would be a set by the Replacement Theorem,
which is impossible. If each Cantorian ordinal is sent to a Cantorian or-
dinal, “f3 Cantorian ordinals” is the desired “one-to-one correspondence”
(observe that f(α) " α for any ordinal α, so a non-Cantorian ordinal will
not be mapped to a Cantorian ordinal); in this event, no set of Cantorian
ordinals can realize {x | φ}, because we could then define the set of all
Cantorian ordinals as f−1[{x | φ}]. !

19.2. Interpreting ZFC in the Cantorian
Ordinals

The theorems we have been proving above will look familiar if one has
experience with conventional set theory. We introduce the usual set theory
ZFC (Zermelo–Fraenkel set theory) by showing how to interpret it using
the Cantorian ordinals, and stating its axioms as theorems.
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Construction

Each Cantorian ordinal to be interpreted as a set of Cantorian ordinals
in such a way that every set of Cantorian ordinals is interpreted by some
ordinal.

We construct a relation E on the ordinals by recursion. We define a
sequence of ordinals ρβ indexed by the ordinals, by recursion: ρ0 = 0,
ρβ+1 = the first ordinal γ such that | seg{γ}| = exp(| seg{β}|), and ρlim B =
sup{ρβ | β ∈ B}, where B has no greatest element. When we have defined
the part Eβ of the relation E with domain seg{ρβ}, we want the following
conditions: rng(Eβ) = seg{ρβ+1} − {0}; for each subset A of seg{ρβ},
there is exactly one element α of seg{ρβ+1} such that βEα iff β ∈ A,
for all β. We prove by transfinite induction that this can be achieved.
It is certainly achievable for ρ0. Suppose it has been achieved for ρβ .
We show how to extend E so that it is achieved on ρβ+1. Let F be a
bijection between P1{seg{ρβ+2}} − P1{seg{ρβ+1}} and P{seg{ρβ+1}} −
P{seg{ρβ}} (it is straightforward to show that the cardinalities work out
correctly); now define E as obtaining between α ∈ seg{ρβ+1} and β ∈
seg{ρβ+2}−seg{ρβ+1} iff α ∈ F ({β}). Suppose it has been achieved for
all ργ for γ in a set B with no greatest element; let β = lim B; to achieve
it for ρβ, we need a bijection F between P1{seg{ρβ+1}} − P1{seg{ρβ}}
and P{seg{ρβ}}−

⋃
[{P{seg{ργ}} | γ ∈ B}], which we use just as in the

last case.

The relation E is certainly defined for all Cantorian ordinals, and deter-
mines a “one-to-one correspondence” between Cantorian ordinals and sets
of Cantorian ordinals: any Cantorian ordinal is associated with a set of
smaller ordinals, which must thus be Cantorian; any set of Cantorian or-
dinals is bounded by a Cantorian ordinal α, and its “code” is found below
the first ordinal β such that | seg{β}| = exp(| seg{α}|), which is certainly
Cantorian.

The following axioms are satisfied if E is interpreted as membership and
the class of Cantorian ordinals is interpreted as the universe of objects:

Extensionality: Sets with the same elements are the same.
Proof. — Obvious. !

Pairing: If a, b are sets, {a, b} is a set.
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Proof. — a and b are actually Cantorian ordinals; the actual set
{a, b} is coded by an ordinal. !

Union: If A is a set, the set
⋃

[A] = {x | for some B, x ∈ B and B ∈ A}
exists.
Proof. — If ∈ is replaced by E in the condition, we have a condi-
tion which defines a set of Cantorian ordinals, which will be coded
by an ordinal. !

Power Set: If A is a set, the power set P{A} = {x | x ⊆ A} exists.
Proof. — Same as for Union. !

Infinity: There is a set which contains { } and which contains x ∪ {x}
whenever it contains x.
Proof. — Same as for Union. !

These axioms allow us to build some specific sets.

Choice: Pairwise disjoint collections of nonempty sets have choice sets.
Proof. — An easy consequence of Choice in our theory. !

Foundation: For each property φ, (for all A, ((for all x ∈ A,φ) implies
φ[A/x])) implies for all x,φ. (i.e., if φ holding of all elements of a
set implies that it hold of the set as well then φ holds for all sets).
Proof. — All elements of the set coded by an ordinal are smaller
ordinals; this follows by transfinite induction. !

Choice and Foundation are “structural” axioms.

Now we get to the meat of the difference between conventional set theory
and the theory we have presented.

Separation: For any set A and sentence φ of the language of set theory,
{x ∈ A | φ} exists.
Proof. — The ordinals interpreting elements of {x ∈ A | φ} are
all less than the ordinal interpreting A. The ordinals less than the
ordinal interpreting A make up a Cantorian set, and any condition
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we can express on elements of a Cantorian set defines a set by a
theorem in the previous subsection. !

This is the particular restriction on the inconsistent axiom of unrestricted
comprehension which motivates this style of set theory. The intuitive idea
is “limitation of size”; the “illegitimate” classes , like Russell’s class, are
very large. The previous axioms give us the material for Separation to
work on (the particular sets A).

Note that an arbitrary sentence φ about our interpreted ZFC is usually
unstratified, even though E is a set relation, because it is likely to involve
quantification over all sets of ZFC, which is interpreted as quantification
over all Cantorian ordinals: the definition of “Cantorian ordinal” is un-
stratified. Thus, we cannot prove Separation in the simple way we proved
Power Set, Union and Infinity above. A sentence φ in which every quanti-
fier is restricted to a set does translate to a stratified sentence. The same
comments apply to the Axiom of Replacement discussed below.

Theorem. There is no universe.

Proof. — If the universe V existed, we could find {x ∈ V | not(x ∈ x)}
using the Axiom of Separation. !

The set theory with the axioms given so far is the set theory of Zermelo,
which is slightly stronger than our set theory without the Axiom of Small
Ordinals (or Counting). The full conventional set theory ZFC is completed
with the

Axiom of Replacement: If φ is a sentence and A is a set, and we have “for
each x ∈ A, for exactly one y, φ”, then {y | for some x ∈ A,φ}
exists.
Proof. — Use our Replacement Theorem above (p. 158). !

We have shown that our full set theory is at least as strong as the usual
set theory ZFC; in fact, it is much stronger. Preliminary results along
these lines will be established below; the full results are stated and their
proofs sketched, but they are really beyond the scope of this book. The
“universe” of ZFC is built in stages, like our model of it in the Canto-
rian ordinals: one starts with the empty set, then builds successive power
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sets indexed by the ordinals (the von Neumann ordinals are used; each
ordinal is identified with the set of smaller ordinals) to get larger and
larger sets as needed. Definitions of mathematical objects using equiva-
lence classes on “large” relations, such as we have used for various kinds
of numbers here, do not work in ZFC because the “large” sets do not
exist. This is sometimes evaded in ZFC by allowing “large” collections as
“classes” which have elements but are not elements. We believe that the
set theory we present here is better in its ability to work with intuitively
appealing “large” collections. The additional discipline of attention to
stratification (usually involving references to singletons, singleton images
or T operators) seems not to be that hard (in fact, it has been claimed
that stratification is the rule in mathematical practice, mod systematic
confusion of objects with their singletons) and to present the advantage of
permitting access to a larger mathematical world. A suitable redefinition
of the membership relation by permutation will actually cause the mem-
bership relation E of our model to coincide with the “real” membership
∈ in a corner of our universe which can then be taken to be the universe
of ZFC.

Exercises

(a) Verify the existence of the bijections whose existence is required for
the Construction in the chapter.

(b) (hard) The map F taking each ordinal α in Dom(E) ∩ T [Ord] (where
E is the simulated membership relation in the ordinals) to

{β | β E T−1{α}}

has a stratified definition. The use of T−1 is necessary to preserve
stratification; note that T−1 fixes all Cantorian ordinals, and that all
Cantorian ordinals are in the domain of F . Define a permutation
π as interchanging α and F (α) for all α ∈ Dom(E) ∩ T [Ord] and
fixing all other objects. Define a new “membership relation” x ∈π y
as x ∈ π(y). Demonstrate that all axioms of our theory hold if ∈π

replaces ∈, and that the axioms of ZFC hold on the original domain
of Cantorian ordinals with the new membership relation.
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Chapter 20

Well-Founded Extensional Relations
and Conventional Set Theory

20.1. Connected Well-Founded Extensional
Relations

In this chapter we will develop the theory of “connected well-founded
extensional relations”, and use this to develop an alternative interpretation
of the usual set theory ZFC. Some of the following definitions are repeated
from above.

Definition. The full domain of a relation R, denoted by Dom(R) is defined
as dom(R) ∪ rng(R), the union of the domain and range of R.

Definition. Let R be a relation and let S be a subset of Dom(R). An
element x of S is said to be a minimal element of S with respect to R
exactly when there is no y such that y R x.

Definition. A relation R is said to be well-founded if each nonempty subset
S of Dom(R) has a minimal element with respect to R.

Definition. A relation R is said to be extensional exactly when for all
x, y ∈ Dom(R), x = y if and only if for all z, z R x iff z R y, i.e.,
x = y if and only if R−1[{x}] = R−1[{y}].
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Definition. A well-founded relation R is said to have t as its top exactly
when for each element x of Dom(R), there is a finite sequence x =
x0, . . . , xn = t with xi R xi+1 for each appropriate value of i. A
well-founded relation with a top is called a connected well-founded
relation.

Note that the empty relation is a connected well-founded extensional re-
lation with any object t whatsoever as its top (vacuously).

Lemma. Let R be a nonempty connected well-founded relation. Then R
has a unique top.

Proof. — Observe that there can be no cycles in R, i.e., there can
be no finite sequence x = x0, . . . , xn = x with n " 1 and xi R xi+1

for each appropriate value of i. For the set C of elements of dom(R) ∪
rng(R) belonging to cycles would clearly have no minimal element. By
the definition of “top”, the existence of two distinct tops of R would allow
us to construct a cycle in R. !

The motivation for these definitions lies in the fact that the membership
relation of the usual set theory is a well-founded extensional relation (a
proper class, of course), and that the membership relation of the usual
set theory restricted to a set A, its elements, the elements of its elements,
and so forth, is a connected well-founded extensional relation. Sets in the
usual set theory are uniquely determined by the structure of the associated
connected well-founded extensional relation, which motivates our study of
connected well-founded extensional relations as representing the objects
of ZFC in our working set theory.

Definition. Relations R and S are said to be isomorphic exactly when
there is a bijection f from Dom(R) onto Dom(S) such that x R y iff
f(x) S f(y).

The relation of isomorphism is easily seen to be an equivalence relation.
It should also be clear that a relation isomorphic to a relation having
the properties of being (connected) well-founded or extensional is likewise
(connected) well-founded or extensional.

Definition. We define Z as the set of equivalence classes of connected well-
founded extensional relations under isomorphism. The existence of Z
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follows from stratified comprehension. The element of Z to which a
connected well-founded extensional relation belongs is called its iso-
morphism type.

Definition. Let R be a well-founded relation and let x be an element of
Dom(R). We define the component of R determined by x as the
maximal subrelation of R which is a connected well-founded relation
with x as top, and denote it by compR{x}. We call a component of
R an immediate component if its top stands in the relation R to the
top of R. Note that the component associated with an element x of
Dom(R) is at the relative type of R, one type higher than the relative
type of x.

Notice that the empty relation will be the component associated with a
minimal element of Dom(R) relative to R. The fact that any object is a
top of the empty relation makes this work out correctly.

The immediate components of the connected well-founded extensional re-
lation associated with each set of the usual set theory are the connected
well-founded extensional relations associated with its elements; thus this
relation will be used to define the analogue of membership in the inter-
pretation we are constructing:

Definition. We define a relation E ⊆ Z × Z: x E y exactly when x ∈ Z,
y ∈ Z, and x is the isomorphism type of an immediate component of
an element of y (thus of an immediate component of each element of
y). The existence of E as a set follows from stratified comprehension.

Induction Lemma. E is a well-founded relation.

Proof. — It is sufficient to show that each subset S of Z has a mini-
mal element with respect to E. Choose any element s of S, and choose
a connected well-founded extensional relation R from s. Consider the
intersection of S with the set of equivalence classes under isomorphism
of components of R. The set of elements of Dom(R) determining these
components has an R-minimal element, the isomorphism class of whose
component must be an E-minimal element of S. The proof is complete.

!
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We demonstrate that the set Z with the relation E has properties we
would expect of a sort of set theory with E as membership.

Extensionality Lemma. For all x, y ∈ Z, x = y if and only if for all z,
z E x iff z E y.

Proof. — If the lemma is false, there is R ∈ x ∈ Z and S ∈ y ∈ Z
with y #= x such that the immediate components of S represent the same
elements of Z as the immediate components of R. If each isomorphism
class has at most one representative among the immediate components
of each of R and S, then it would be easy to construct an isomorphism
between R and S, contradicting our hypothesis. Now choose an component
of R with R-minimal top t1 such that there is an isomorphic component
of R with a different top t2; each of the elements of the preimage under
R of t1 must have a corresponding element in the preimage under R of
t2 with an isomorphic component, which by minimality of t1 must be the
same object, implying equality of t1 and t2 by extensionality of R. The
same argument applies to S. We have a contradiction, establishing the
truth of the lemma. !

Corollary. E is a well-founded extensional relation.

The following Lemma allows us to associate extensional well-founded re-
lations with arbitrary well-founded relations:

Collapsing Lemma. For each well-founded relation R, there is an exten-
sional well-founded relation S and a map g from Dom(R) onto Dom(S)
such that for each element x of Dom(R), and element z of Dom(S),
z S g(x) iff z = g(y) for some y such that y R x (i.e., {z | z S
g(x)} = {g(y) | y R x}). Moreover, the relation S is determined up to
isomorphism by R.

Proof. — For any equivalence relation ∼ on Dom(R), we define an
equivalence relation ∼+ by “x ∼+ y iff for each z R x there is a w R y
such that w ∼ z and for each z R y there is a w R x such that w ∼ z”.
The effect of ∼+ is to identify elements of Dom(R) which have the same
“extension” relative to R up to the equivalence relation ∼.

We make the following additional observations: whenever [∼1] ⊆ [∼2],
we will have [∼+

1 ] ⊆ [∼+
2 ]. We call an equivalence relation ∼ nice iff
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[∼] ⊆ [∼+]; it follows from the previous observation that for any nice
∼, ∼+ is also nice. It is straightforward to establish that the union of
any nonempty collection of equivalence relations on Dom(R) is also an
equivalence relation on Dom(R); it follows from the previous observations
that the union of a nonempty set of nice equivalence relations will be a
nice equivalence relation.

We define a set Eq as the intersection of all sets A of equivalence relations
on Dom(R) such that [=]3Dom(R) ∈ A, for each [∼] ∈ A, [∼+] ∈ A,
and, for each nonempty B ⊆ A,

⋃
[B] ∈ A. We have already observed

that the union of a nonempty set of equivalence relations on Dom(R)
is an equivalence relation on Dom(R). It is clear from the observations
above and the fact that [=]3Dom(R) is a nice equivalence relation that all
relations in Eq are nice.

Now consider the relation
⋃

[Eq]. It must be an equivalence relation; we
denote it by ∼0. We must further have [∼+

0 ] = [∼0]; [∼0] is in Eq because
it is a union of relations in Eq (all of them); from this it follows that [∼+

0 ]
is also an element of Eq, and so a subset of [∼0]; [∼0] is a subset of [∼+

0 ]
because it is nice, so we have the desired equation.

Select a choice set for the partition of Dom(R) determined by ∼0. Let g
be the map sending each element of Dom(R) to the element of the choice
set belonging to its equivalence class. Let S be the relation {(g(x), g(y)) |
x R y}.

We verify that S is a well-founded relation. Let C be a nonempty subset of
Dom(S); the set g−1[C] will be nonempty and have an R-minimal element
x. We claim that g(x) is an R-minimal element of C. Suppose that g(x)
had a preimage z under S in C; this means that z = g(a) with a R b
and b ∼0 x for some a and b. We also have b ∼+

0 x, so each preimage
under R of b (including a) stands in the relation ∼0 to some preimage
under R of x. If we had c ∼0 a and c R x, we would have a contradiction,
because g(c) = g(a) = z ∈ C, and x was chosen R-minimal in g−1[C].
This establishes that S is well-founded.

Finally, if we have z S g(x), we have z = g(a) for some a such that a R b
and b ∼0 x for some b. Since we have b ∼0 x, we also have b ∼+

0 x;
each preimage of b under R (and so a) stands in the relation ∼0 to some
preimage under R of x. So we have z = g(a) = g(y) for some y R x, which
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is what we need to establish the desired property of g.

It should be clear that S is determined up to isomorphism by R. The
proof of the Collapsing Lemma is complete. !

It is worth noting that if the well-founded relation R happens to be exten-
sional, the relation S obtained from this construction will be isomorphic
to R.

A type-raising operation, denoted as usual by T , can be defined on Z.
Observe that SI{R} is a connected well-founded extensional relation if
and only if R is one.

Definition. If R ∈ x ∈ Z, we define T {x} as the uniquely determined
element of Z such that SI{R} ∈ T {x} ∈ Z.

Isomorphism Lemma. For all x, y ∈ Z, x E y iff T {x} E T {y}.

The truth of the Isomorphism Lemma is obvious, following from the par-
allelism of structure between relations R and SI{R}.

Comprehension Lemma. For each subset S of Z, there is an element s of
Z such that for all x, T {x} E s iff x ∈ S.

Proof. — Choose any element R of an element x of S. Define a new
relation

R′ =
{
({a}, R), ({b}, R) | a R b

}
.

It is easy to see that R′ exists by stratified comprehension and is iso-
morphic to SI{R}, so belongs to T {x}. For each pair of elements R1, R2

of the set S, R′
1 and R′

2 are disjoint. Choose one representative R of
each element of S, take the union of the corresponding relations R′ and
add a new object to the resulting relation which has as its preimage ex-
actly the set of tops of the relations R′. The resulting relation will be
well-founded and have immediate components representing exactly the el-
ements of T [S] = {T {x} | x ∈ S}. Apply the Collapsing Lemma to obtain
an well-founded extensional relation with the same properties (the iso-
morphism types of its proper components will not be affected by collapse,
because these components are all extensional), whose equivalence class in
Z will be the desired s. !
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The obstruction to a stronger Comprehension Lemma allowing us to con-
struct s with S as its preimage under E is that, while we can choose a
representative of each x ∈ S, we may not be able to choose representatives
of each x ∈ S which are compatible with one another in the sense that
taking the union of the representatives will not introduce unintended re-
lations between elements of their full domains, as we were able to do with
the T {x}’s by taking pairwise disjoint representatives and applying the
Collapsing Lemma. It is fortunate that there is such an obstruction, since
we would otherwise be able to find an r such that x E r iff not(x E x),
reproducing Russell’s paradox!

Applying the Comprehension Lemma, we see that there is an element v
of Z such that x ∈ v if and only if x = T {u} for some u; v has im-
mediate components covering all and exactly the isomorphism types of
singleton images of connected well-founded extensional relations. For ex-
ample, T {v} E v. But then, by repeated applications of the Isomorphism
Lemma, T n+1{v} E T n{v}, and there is an apparent “descending chain”
in the relation E. Of course, the collection of T n{v}’s is not a set (its defi-
nition is clearly unstratified) and so is not obligated to have an E-minimal
element. This is reminiscent of the way that the Burali-Forti paradox is
avoided in the ordinals.

20.2. A Hierarchy in Z

There is a close relationship between the structure of Z and the structure
of the ordinals. Each strict well-ordering with a maximum element is a
connected well-founded extensional relation; this sets up a natural cor-
respondence associating each ordinal α with the equivalence class of the
strict well-orderings obtained by rendering elements of α + 1 irreflexive.
We use the latter objects as ordinals in the rest of this chapter. With the
following definitions, we introduce a hierarchical structure on Z which can
be indexed by the ordinals:

Definition. If S is a subset of Z, we define P (S) as the collection of all
elements of Z which have preimages under E which are subsets of S.
Note that P (S) and S have the same relative type; P is a function
coded by a set. P codes a kind of “power set” operation on subsets
of Z.
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Definition. We define the set H ⊆ P{Z} as the intersection of all sets
H ⊆ P{Z} such that for each A ∈ H, P(A) ∈ H and for each A ⊆ H,⋃

[A] ∈ H. In other words, H is the smallest collection of subsets of Z
which is closed under P and under the operation of taking set unions
of subcollections.

Definition. A subset A of Z is said to be transitive if A ⊆ P (A), i.e., if
the preimages under E of elements of A are subsets of A.

Lemma. Each element of H is transitive.

Proof. — The result of applying P to a transitive subset of Z is transi-
tive, and so is the set union of a collection of transitive subsets of Z. By
the definition of H , H is a subset of the set of transitive subsets of Z. !

Lemma. The relation of set inclusion restricted to H is a well-ordering,
and each element of A is immediately succeeded by P (A) in this order.

Proof. — Consider the collection of elements A of H such that the
elements B ⊆ A of H are well-ordered by inclusion, and for each such B
either B = A or P (B) ⊆ A. Observe that for any such A, the collection
of elements of H which are either subsets of A or supersets of A will be
closed under P and under set unions of its subcollections, and so will
include all elements of H . Thus, the collection of such A’s is well-ordered
by inclusion. It is easy to see from the fact that it is ordered that the
collection of such A’s is closed under set unions of subcollections, and it
should be clear that P (A) belongs to this collection if A does, so this
collection includes all of H . From this it follows that H is well-ordered
by inclusion and that P (A) is the successor of A in this well-ordering for
each A ∈ H . !

The elements of H are subsets of Z constructed by a process of repeatedly
taking “power sets” and taking unions at limit stages. We are interested
in the question of when these “power sets” are genuine:

Definition. A rank A (an element of H) is called a complete rank when it
is the case that for each subset B of A, there is an element b of P (A)
such that the preimage under E of b is precisely B. A complete rank
is one whose full power set is represented in Z in the obvious sense.
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Lemma. There is an incomplete rank (a rank which is not complete).

Proof. — Since H is closed under unions,
⋃

[H ] is an element of H . This
implies that P (

⋃
[H ]) =

⋃
[H ], since H is closed under P and

⋃
[H ] must

be its maximal element in the inclusion order. This implies further that⋃
[H ] = Z. Suppose otherwise and consider an E-minimal element of Z

not in
⋃

[H ]; clearly this would be an element of P (
⋃

[H ]) =
⋃

[H ], which
is absurd. So Z itself is a rank, and an incomplete one, since Z itself is
clearly not represented by any element of P (Z) = Z (cycles cannot occur
in well-founded relations). !

Definition. We define Z0 as the first incomplete rank in the order deter-
mined by inclusion.

Lemma. For any rank X at or before Z0, T [X ] is also a rank.

Proof. — We define T [S], for any set S of subsets of Z, as the set of
all T [X ] for X in S.

Now consider H and T [H], where H is the set of ranks. If there is no X
in H such that T [X ] is not in H then we have the desired result. Suppose
on the contrary that X is the first rank such that T [X ] is not a rank, but
each T [Y ] for Y a rank below X is a rank. X is either a successor rank,
so X = P{Y }, but T [X ] is not T [P{Y }] (this can only be true if Y is
not a complete rank, which puts X above Z0 as desired) or a limit rank,
in which case X is the union of the Y ’s. This case is impossible, because
T [X ] would then be the union of the T [Y ]’s and itself a rank.

Since there is an incomplete rank, there is in fact an X in H (the suc-
cessor P{Z0} of the first incomplete rank Z0) such that T [X ] is not in H
(T [P{Z0}] is a proper subset of P{T [Z0]}). !

Remark. Z0 #= T [Z0]. For every rank of the form T [A] is complete by
the Comprehension Lemma. This implies that the sequence of iter-
ated images of Z0 under T forms an external descending chain in the
inclusion order on ranks, which cannot, of course, be a set.

Lemma. Each complete rank contains an ordinal; each complete successor
rank contains one “new” ordinal. (We remind the reader that by
“ordinal” we mean here “isomorphism class of strict well-orderings
with a largest element”).
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Proof. — Each ordinal has as its preimage under E the set of smaller
ordinals. The proof proceeds by induction: consider the minimal complete
rank for which this is not the case, and consider the element of this min-
imal rank which has as its preimage under E exactly the set of ordinals
occurring in previous ranks (this exists because the rank is complete); this
is clearly a new ordinal! The contradiction establishes that each complete
rank contains an ordinal. It should also be clear from the construction
that one new ordinal is added at each complete successor rank. !

Definition. To each complete rank in H , we can assign the ordinal which
first appears in its successor rank as an index (the first ordinal which
does not belong to the rank). If we want the index to have the same
relative type as the rank, we need to apply the T operation. Incom-
plete ranks can also be assigned indices in this way.

The set Z0 with the relation E interpreted as membership looks like a set
theory of the same general kind as ZFC. We will prove later that there are
ranks which are models of ZFC.

20.3. Interpreting ZFC in the
Cantorian part of Z0

Our aim here is to suggest that the study of the usual set theory can be
understood in the context of our set theory as the study of isomorphism
classes of strongly Cantorian connected well-founded extensional relations.
The hierarchy coded in the set H looks like the hierarchy usually seen in
ZFC, except for the fact that there is an external “isomorphism” T from
Z0 into itself sending very high levels of the hierarchy down to lower (but
still very high) levels. The universe of ZFC is usually understood as being
“constructed” in a sequence of stages indexed by the ordinals, with power
sets being taken at each successor ordinal and unions being taken at each
limit ordinal, just as the sequence H is constructed here.

We summarize the status of axioms of ZFC in an interpretation in the
strongly Cantorian elements of Z0:

Extensionality: The Extensionality Lemma establishes this.
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Pairing: Use the Comprehension Lemma on the condition defining a pair
of Cantorian elements of Z0. The two elements are fixed under the
T operation, so one gets the right extension.

Union: Use the Comprehension Lemma on the condition of being the iso-
morphism type of an immediate component of an immediate compo-
nent of an element of a fixed Cantorian element of Z0. Components
of Cantorian elements of Z0 are Cantorian, thus fixed by the T op-
eration, so one gets the right extension.

Power Set: Use the Comprehension Lemma on the condition of being the
isomorphism type of a relation having each immediate component
isomorphic to an immediate component of an element of a fixed
Cantorian element of Z0. A relation isomorphic to a subrelation of a
Cantorian relation will be Cantorian, so elements will be fixed under
the T operation.

Infinity: Obviously holds; use the Cantorian ordinal ω.

Separation: A full proof of Separation would require an appeal to the
Axiom of Small Ordinals. The difficulty is that quantifications over
all sets would translate to quantifications over the domain of all
Cantorian elements of Z0, which are unstratified. It is certainly
possible to use the Axiom of Small Ordinals to prove that Separation
holds, but we will not do it here. We will note that any condition
in which each quantifier is restricted to a set will translate to a
stratified condition defining a set, and we would then be able to
apply the Comprehension Lemma.

The subtheory of ZFC which omits the Axiom of Replacement and re-
stricts Separation to sentences in which each quantifier is restricted to a
set is called “bounded Zermelo set theory” or “Mac Lane set theory”; it
is adequate for most mathematical purposes. The restriction of quanti-
fiers to sets harmonizes with the restriction of the bound variables in set
definitions in the Axiom of Separation. The discussion here should show
that the Theorem of Counting is the only consequence of the Axiom of
Small Ordinals needed to show that the Cantorian part of Z0 provides an
interpretation of Mac Lane set theory (the Theorem of Counting is needed
for Infinity). The mathematical strength of our theory without the Axiom
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of Small Ordinals or the Axiom of Counting turns out to be the same as
that of Mac Lane set theory.

Replacement: Verification of this would require the Axiom of Small Or-
dinals. For the verification of both Separation and Replacement,
observe that the Cantorian elements of Z0 can be coded into the
Cantorian ordinals, producing essentially the same structure as the
Construction of the previous chapter.

Foundation and Choice: These axioms are easily seen to hold; Foundation
is immediate, while the construction of a choice set would require
the Comprehension Lemma.

20.4. Interpreting our own set theory in Z0.
The Axiom of Endomorphism

It is further possible to interpret our own set theory (rather than ZFC)
inside the structure of isomorphism classes, by defining membership in a
slightly different way. The “membership” E of Z or Z0 is a relation realized
as a set, so there are no stratification restrictions on “comprehension”
(instead, the restriction is a “size” restriction; collections of elements of Z
are not represented by elements of Z if they are too large).

Lemma. P (T [Z0]) is a complete rank.

Proof. — Since T [Z0] is a complete rank, we would otherwise have
P (T [Z0]) = Z0, the first incomplete rank. Now consider the set of elements
x of H such that Pn(x) = Z0 for some natural number n; this would
coincide with the set of iterated images of Z0 under T , which cannot be
a set. This can be argued directly using mathematical induction on an
unstratified condition, but this appeal to the Axiom of Small Ordinals can
be avoided at the price of making the argument more technical: roughly,
the set of ranks x such that Pn(x) = Z0 for some n must be finite, since it
is a descending sequence of ranks; it has either an odd or an even number
of elements. We then observe that the image under T of this sequence
clearly has the same parity (T preserves that kind of structure) and also
opposite parity (since it is obtained from the original sequence by deleting
just the largest element). This is impossible. !
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Definition. We define another pseudo-membership “relation” on Z0: x ε y
iff T {x} E y and y E P (T [Z0]) (i.e., each element of the preimage
under E of y is of the form T {x} for some x.)

Theorem. The theory with domain Z0 and membership “relation” ε sat-
isfies the axioms of our set theory.

Proof. — Elements of P (T [Z0]) are regarded as sets; other objects are
regarded as atoms. The axioms of extensionality and atoms are easily
seen to be satisfied. Stratified comprehension holds because the type dif-
ferential of the “relation” ε is the same as that for membership, so sets of
elements of Z0 defined by stratified sentences in ε instead of ∈ exist; the
element of Z0 coding such a set can be obtained by taking the image under
T of the set and using the fact that P (T [Z0]) is a complete rank. The Ax-
iom of Small Ordinals holds because the sets of ordinals which it requires
are all codable in the complete rank T [Z0]. Verification of Ordered Pairs
is technical; one could use the Kuratowski pair in the set theory with E
as membership if Z0 is known not to be a successor type; the existence of
a suitable pair is established in any case by the fact that Z0 is infinite and
the theorem κ.κ = κ (for infinite κ) of cardinal arithmetic. !

The way in which our set theory is coded into the “set theory” of Z
is exactly analogous to a way that it can be interpreted in ZFC; it is
sufficient to show that a nonstandard model of part of the hierarchy of ZFC
can be constructed with an external automorphism which moves a rank
downward. We find it very appealing that this set theory’s interpretation
of ZFC reveals how this set theory can in turn be interpreted inside ZFC.

The interpretation of our set theory inside Z satisfies the following addi-
tional axiom:

Axiom of Endomorphism. There is a one-to-one map Endo from P1{V }
(the set of singletons) into P{V } (the set of sets) such that for any
set B, Endo({B}) = {Endo({A}) | A ∈ B}.

Theorem. The Axiom of Endomorphism is satisfied in the interpretation
of set theory in Z0 outlined above.

Indication of proof. — Let Endo be interpreted as the restriction to
P (T [Z0]) of the map which takes each element of Z0 whose preimage under
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E has exactly one element to that one element (the inverse of the singleton
map in the set theory with membership E). Verification that the Axiom
holds is straightforward. !

The Axiom of Endomorphism has the appealing feature that it allows us to
assign set-theoretical structure to atoms (an atom a is associated with a set
Endo({a})). It also allows us to define a type-level “membership” relation
xE y by Endo({x}) ∈ y. A curious fact is that, while membership in our
set theory is certainly not well-founded, and the type-level membership E
externally parallels the usual membership relation ∈, it is possible (e.g.,
in the interpretation of our set theory in Z0) for the type level relation
E to be well-founded, an analogue for our set theory of the Axiom of
Foundation in ZFC.

Exercises

(a) We call a set A well-founded and transitive if every element of A is a
subset of A and every subset of A is disjoint from one of its elements
(i.e., every subset of A has an ∈-minimal element). We call a set
well-founded if it is an element of some well-founded transitive set.
Show that the class of all well-founded sets cannot be a set. You
need only Boolean operations on sets for the argument (if that much).
This is called Mirimanoff’s paradox (mod the exact definition of “well-
founded”). Why is this not a problem for our set theory?

(b) Verify that the following definition of an ordered pair on Z0 satisfies
the basic properties of an ordered pair and can be used to witness the
Axiom of Ordered Pairs in the interpretation of our set theory in Z0.
For purposes of this exercise, let numerals stand for the isomorphism
types of strict well-orderings of finite sets. For each isomorphism type
x, define x′ as the isomorphism type resulting if each immediate com-
ponent of an immediate component of an element of x which belongs
to a numeral n is replaced by an element of the numeral n + 1, while
x′′ results from the same operation with the additional step of adding
an element of the numeral 0 as an immediate component of each im-
mediate component of the element of x. The ordered pair 〈x, y〉 is
defined (locally to this exercise) as the isomorphism type “x′∪y′′ ” an
element of which has as immediate components the immediate com-
ponents of an element of x′ and an element of y′′. This definition of
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the ordered pair (cast in terms of membership rather than immediate
componenthood, of course) is due to Quine. Notice that the rank of
〈x, y〉 is no higher than the maximum of the ranks of x and y (if these
ranks are infinite); this is the technical advantage of this pair.
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Generalized Dedekind Cuts and
Surreal Numbers

We develop the surreal numbers of Conway. These numbers are defined by
Conway using induction on the membership relation, which is impossible
in our set theory, but the (von Neumann) ordinals are also defined in
this way in Zermelo–Fraenkel set theory, and we succeeded in defining the
ordinals using the theory of well-orderings, which is a more natural way
to define the ordinals in any case. The surreal numbers will be defined
using concepts from the theory of linear orderings in a way analogous to
the way in which the ordinals were defined.

This chapter is really only a sketch, not a full development of the surreal
numbers. For the reader who wants to get the full picture, we recommend
a reading of the zeroth part of John Conway’s On Numbers and Games,
followed by a re-reading of this chapter.

The intuitive idea behind the surreal numbers is a generalization of the
concept of “Dedekind cut” originally used to define the real numbers.

Definition. Let ! be a linear order. Then a cut (L, R) in ! is a partition
of dom(!) into two sets L and R such that for each x ∈ L and y ∈ R,
x < y. Let !∗ be a linear order which extends !; an element c of
dom(!∗) is said to realize a cut C of ! if {x ∈ dom(!) | x <∗ c} = L
and {x ∈ dom(!) | x >∗ c} = R. Note that c cannot be in dom(!) if
it realizes a cut in !.



182 Chapter 21. Surreal Numbers

The process of filling in linear orders by introducing objects which realize
“cuts” can be iterated. We formalize this idea in the following definition:

Definition. An iterated cut system is defined by a linear order ! and a
transitive relation S, (x S y is read “x is simpler than y”, or “x comes
before y”), with the following properties:

(a) In each nonempty subset A of dom(!) = dom(S), there is an
element a such that for no b ∈ A is b S A true (we call this a
simplest element of A).

(b) Let x be an element of dom(!); let ancestors{x} be the set {y ∈
dom(!) | ySx} (the set of objects simpler than x). x obviously
realizes a cut in the restriction of ! to ancestors{x}; we require
further that each cut in the restriction of ! to ancestors{x} is
realized.

Definitions. We define generation{x} as the collection of objects c such
that c is the simplest object realizing some cut C in ancestors{x}. It
is obvious that x itself belongs to generation{x}.

We define birthday(x) as the largest object in generation{x}, the sim-
plest object which realizes the cut (ancestors{x},{ }).

We define On as the set of birthdays.

Obervations. Observe that for each x, y in On, x S y exactly if x < y, so
a simplest object in a subset of On is the least object in the subset;
On is strictly well-ordered by !.

Observe further that for any object x and element a of On which is sim-
pler than x, there is a natural “approximation” xa in generation{a},
namely, the simplest object in generation{a} realizing the cut in ances-
tors{a} between objects less than x and objects greater than x.

Let’s look at the structure of an iterated cut system. There is at least
one simplest element in dom(!) (if it is nonempty); call it 0. 0 must be
defined by a cut in ancestors{0}, which is the empty set; there is only
one such cut, ({ },{ }). The next generation (made up of the simplest
objects different from 0) comprises two elements, which may be called
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−1 and 1, determined by the two possible cuts ({ },{0}) and ({0},{ }) of
generation{0}.

We expand the development of the previous paragraph into a detailed ex-
ample of an iterated cut system: the elements of its domain are the “dyadic
rationals” ± a

2b
, for natural numbers a and b. The generations are indexed

by the natural numbers. Each generation is finite and is constructed from
the finite union of all the preceding generations in the following way: the
cut at the top end is realized by adding one to the largest element of the
previous generation; the cut at the lower end is realized by subtracting one
from the smallest element of the previous generation. Each cut between
two successive elements of the union of all the preceding generations is
realized by their arithmetic mean.

We exhibit the first few stages in this process:

0: 0

1: −1, (0), 1

2: −2, (−1),−1
2
, (0),

1
2
, (1), 2

3: −3, (−2),−3
2
, (−1),−3

4
, (−1

2
),−1

4
, (0),

1
4
, (

1
2
),−3

4
, (1),

3
2
, (2), 3

In each list, elements of previous generations are enclosed in parentheses.

The order ! on this system is the usual order relation. The simplicity
relation is easily defined if we know how to compute the generation in
which a particular dyadic rational appears: the dyadic rational whose
simplest form is ± a

2b
appears in the same generation as the natural number

⌈ a

2b

⌉
+ b.

If we add one more generation to this iterated cut system, we add all the
real numbers (in the obvious way preserving the correspondence between
our relation ! and the relation of the same name on the reals) but we also
need to add new objects ±∞ as the largest and smallest elements of the
final generation and objects r+ and r− realizing the cuts immediately to
the left and right of each dyadic rational r.
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The structure of iterated cut systems is rigidly determined by the number
of generations:

Theorem. For any two iterated cut systems (!, S) and (!∗, S∗), the order
type of whose generations is the same, there is a uniquely determined
bijection f from dom(!) to dom(!∗) such that f(x) !∗ f(y) iff x ! y
and f(x) S∗ f(y) iff x S y. It follows from this that the structure
of iterated cut systems is entirely determined by the order type of !
restricted to On.

Proof. — Let (!, S) and (!∗, S∗) be two iterated cut systems as spec-
ified in the conditions of the theorem. We define a map f by transfinite
recursion on the well-ordering of generations, as follows: when f from
dom(!) to dom(!∗) is defined for members of each previous generation,
we match each element x of the current generation over ! with the ele-
ment of the corresponding generation over !∗ lying between (in the sense
of !∗) the image under f of the set of elements of ancestors{x} less than
x and the image under f of the set of elements of ancestors{x} greater
than x. This definition succeeds in defining a unique f(x) for each x in
dom(!) such that the corresponding generation exists for !∗. !

Note that iterated cut systems with different order types on their gen-
erations can still be compared using this result; the system with more
generations has a subsystem consisting of the union of the initial segment
of its generations similar to the generations of the other system which is
seen by this result to be isomorphic with the system with fewer genera-
tions.

This motivates the following

Definition. A surreal number is an equivalence class of triples (!, S, C),
where (!, S) is an iterated cut system and C is a cut on !, under
the equivalence relation of corresponding to one another via the map
defined above between the domains of iterated cut systems. The set
of surreal numbers is called No.

Definition. For surreal numbers r and s, we define r S s and r ! s as
follows: let (!′, S′, C′) be an element of r and let (!′′, S′′, C′′) be an
element of s. Without loss of generality, we may suppose that each
of the two iterated cut systems is included in the same iterated cut
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system, which we will call (!∗, S∗). We assert that r S s if there are
more generations in each element of s than there are in each element
of r in the obvious sense. Suppose that one of r and s is simpler than
the other; without loss of generality, let it be r. Then C′ is realized
by a simplest element with respect to !∗, which we will call r∗. We
have r∗ ∈ π1(C′′), in which case we say r < s, or r∗ ∈ π2(C′′), in
which case we say s < r. If neither r nor s is simpler than the other,
then r < s iff the intersection of π2(C′) and π1(C′′) is nonempty, and
similarly for s < r. The only remaining case is that in which r = s.
We have now defined relations S and ! (r ! s iff r < s in the sense
defined above or r = s) on the surreal numbers.

Theorem. (!, S) is an iterated cut system with domain the set No of
surreal numbers.

Proof. — A surreal number, which is an equivalence class of relations
on elements of domains of iterated cut systems, is two types higher than
the latter elements; there is a natural map, respecting ! and S, from No
into the domain of the generations indexed by the elements of T2[Ord] in
a large enough iterated cut system. All objects of No have corresponding
objects in an iterated cut system of “rank” lim[T2[Ord] = Ω (to verify the
evaluation of this limit, see the next chapter), and the local relations of
order and simplicity will parallel those of the surreal numbers exactly.

Observation. Conway constructed the surreal numbers in the usual set
theory using a recursion on membership; (L, R) being the simplest
surreal number between L and R whenever L and R were sets of
surreal numbers. This clearly will not work in our theory, since it is an
unstratified construction. It also has the consequence that the “class”
No of surreal numbers is not a set; otherwise, consider the “surreal
number” (No,{ }), seen to be greater than all surreal numbers! In our
set theory, we can define an analogue to Conway’s basic operation:
Let (L, R) be taken to be the surreal number containing (!, S, (L, R)),
where ! and S are the relations on the iterated cut system on No itself.
But (L, R) is not the simplest surreal number between the sets L and
R; it is the simplest surreal number between the images of L and R
under the T 2 operation on surreal numbers (the type-raising operation
induced by taking double singleton images of iterated cut systems).
Just as Ω does not sit “past the end” of the ordinals, but is smaller
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than the largest ordinals, so (No, { }) is indeed a surreal number — it
is the upper limit of the set of surreal numbers which are of the form
T 2{r}. Larger or more complex surreal numbers cannot be expressed
in the (L, R) form, but for any surreal r, we can express T 2{r} in this
form.

We close by defining arithmetic operations on No.

Definition. If r is a surreal number, we let L[r] be the set of surreal num-
bers less than r and simpler than r, and R[r] be the set of surreal
numbers greater than r and simpler than r.

We define r + s as the simplest number greater than all elements of
{r}+ L[s] and L[r] + {s} and less than all elements of {r}+ R[s] and
R[r] + {s}.

We define −r as the simplest number between −R[r] below and −L[r]
above (and r − s as r + (−s)).

We define rs as the simplest number between the sets L[r]{s} +
{r}L[s] − L[r]L[s] and R[r]{s} + {r}R[s] − R[r]R[s] below and the
sets L[r]{s} + {r}R[s] − L[r]R[s] and R[r]{s} + {r}L[s] − R[r]L[s]
above.

Observations. Sums and products of sets are interpreted as sets of all pos-
sible sums or products of a term or factor from one and a term or
factor from the other. These are definitions by transfinite recursion;
observe that degrees of simplicity are indexed by ordinals, or develop a
recursion theorem for definitions of functions on the surreals. Conway
shows in his book On Numbers and Games that No makes up a field
with these operations; a suitable subset of the surreals with birthday
on or before ω can be regarded as the real numbers (it turns out that
those with finite birthdays are the rational numbers with denomina-
tor a power of two, as in our example). No has a far more interesting
elementary arithmetic than the other systems of transfinite numbers.
As Conway points out, it is very interesting that we can get the real
numbers “all at once” without going through the usual intermediate
systems (a restriction on cuts used in iterated cut systems which gives
the reals exactly: “in any cut (L, R), L is nonempty with no great-
est element exactly if R is nonempty with no least element”). The
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definitions of arithmetic operations can be shown to be based on the
principle of “choosing the simplest answer compatible with the axioms
of an ordered field”.

Exercise

Read the zeroth part of Conway’s book On Numbers and Games. (There
really is a zeroth part!)
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The Structure of the Transfinite

22.1. Cardinals, Ordinals, and ℵ
We begin with some notions and results relating cardinal and ordinal
numbers.

It is an obvious observation that two similar well-order-
ings are well-orderings of a set of the same cardinality, since a similarity
between well-orderings induces a bijection on the underlying sets. Thus,
each ordinal is associated with a uniquely determined cardinal, and each
cardinal is associated with a class of ordinals which are order types of well-
orderings of sets of that cardinality. For any infinite cardinal, this class of
ordinals has many members. This discussion motivates the following

Definition. For each ordinal α, we use the notation card(α) to represent
the cardinal of sets well-orderable with order type α, and for each
cardinal κ, we use the notation init(κ) to denote the smallest ordinal
α such that card(α) = κ. Ordinals init(κ) are called initial ordinals.

There is a one-to-one correspondence between cardinals and initial ordi-
nals. In the usual set theory, initial (von Neumann) ordinals and cardinals
are identified. The notations introduced in the definition are not standard,
but something like them is necessary in the absence of the usual identifi-
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cation of cardinals with initial ordinals.

We have already encountered one (necessarily partial) function (the expo-
nential map) which sends each cardinal in its domain to a strictly larger
cardinal. We now introduce another natural such function.

Definition. For each cardinal κ, we define κ+ as the smallest cardinal
greater than κ, i.e., the successor of κ. That cardinals (other than
|V |) have successors is a consequence of the Axiom of Choice, which
implies that the natural order on cardinals is a well-ordering.

The assumption that this function is actually identical to the exponential
map, called the Generalized Continuum Hypothesis (GCH), is consistent
with our set theory, but not a consequence of our axioms. Cantor’s original
Continuum Hypothesis is the assertion ℵ0+ = 2ℵ0 . Although we cannot
prove that the successor operation on cardinals is equivalent to the ex-
ponential map, we can prove that it is equivalent (in the presence of the
Axiom of Choice) to a certain natural operation on cardinals.

Definition. Let κ be a cardinal. We define ℵ(κ) as the result of apply-
ing T−2 to the cardinality of the collection of ordinals α such that
card(α) ! κ. The use of T−2 ensures that ℵ is a function, known as
the Hartogs aleph function.

Theorem (Hartogs). For all cardinals κ, the cardinality of the collection
of ordinals α such that card(α) ! κ is T 2{κ}+.

Corollary. For all cardinals κ #= |V |, κ+ = ℵ(κ). The proof of the Corol-
lary requires nothing more than the observation that the successor and
Hartogs aleph operations commute with T .

Proof of the Theorem. — | seg{α}| = T 2{card(α)} (to see this, look
at the discussion of order types of segments of the ordinals above). It is
clear from this that the cardinality of the set of interest is " T 2{κ}. It is
also clear that the cardinality of every proper initial segment of the set of
interest (so every cardinal less than the cardinality of the set of interest)
is ! T 2{κ}.

The only thing that remains to be shown is that the cardinality of the
set of interest is not equal to T 2{κ}. Suppose it were. Let β be the first
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ordinal not in the set of interest. We are assuming that | seg{β}| = T 2{κ},
from which it follows that card(β) = κ, which implies that β is in the set
of interest, which is absurd. We need to consider the special case κ = |V |,
for which the ordinal β does not exist; note that Ω is the first ordinal
which is not the order type of a proper initial segment of the ordinals, and
that the order types of proper initial segments of the ordinals are exactly
the ordinals of the form T 2{α}; this is enough to establish that card(Ω)
must be the first cardinal greater than all cardinals of the form T 2{κ},
that is, T 2{|V |}+. The proof of the Theorem is complete. !

The Hartogs operation makes sense in the absence of the Axiom of Choice,
but no longer coincides with the notion of successor. Without the Axiom of
Choice, the argument above proves that ℵ(κ) is greater than any cardinal
of a well-orderable subset of a set of size κ; it cannot be ! κ, but it may
be incomparable with κ rather than > κ. It should be noted that ℵ(κ) is
certainly the cardinal of a well-orderable set!

We define the usual notation for cardinals, which also uses the letter ℵ:

Definition. We define ℵα as the cardinal κ such that the natural order
on infinite cardinal numbers restricted to the cardinals < κ has order
type α.

Note that the type of α is two types higher than the type of ℵα. If ℵ
were a symbol for the natural well-ordering on infinite cardinals (which
it is not) this would be an example of the definition of ordinal indexed
sequences.

The notation ℵ0 already introduced for |N | is a special case of this. We
see from Hartogs’s theorem that ℵ1 is the cardinality of the set of all
order types of well-orderings of countable sets (countable ordinals): ℵ1 =
ℵ0+ = the image under T−2 of the cardinality of the set of countable
ordinals; the latter set is Cantorian, so this is simply the cardinality of
the set of countable ordinals. For each natural number n, we have that
ℵn+1 is the cardinality of the set of order types of sets of cardinality
T−2{ℵn} = ℵT−2{n} (if this exists!). For each concrete natural number n,
we can establish without an appeal to the Axiom of Counting or the Axiom
of Small Ordinals that T−2{ℵn} = ℵn. Without at least the Axiom of
Counting we cannot conclude that ℵn exists for each n; it is consistent with
our other axioms that ℵn = |V | for some n, in which case the cardinality
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of the set of order types of well-orderings of sets of size |V | (card(Ω))
would be ℵT 2{n}+1, from which we would see clearly that T 2{n} < n.
This argument in the presence of the Axiom of Counting (or of the Axiom
of Small Ordinals) demonstrates that |V | is not of the form ℵn for any
natural number n, and incidentally demonstrates the existence of ℵω.

Although such pathologies are averted at low levels by the Axiom of Small
Ordinals, it is the case that |V | = ℵα for some ordinal α; card(Ω) =
ℵT 2{α}+1 for this ordinal α, which implies T 2{α} < α; this ordinal is a
non-Cantorian ordinal. The Axiom of Small Ordinals allows us to deduce
that for each Cantorian β, ℵβ exists, since we see that the index of the
last cardinal is non-Cantorian, and we know that all Cantorian ordinals
are less than any non-Cantorian ordinal.

We define another sequence of cardinals, which is identical with the se-
quence of alephs if the Generalized Continuum Hypothesis holds.

Definition. We define !α as Wα for W a certain well-ordering which we
now describe (this use of W is a nonce notation!). W is the restriction
of the natural well-ordering on cardinal numbers to the intersection of
all sets B of cardinal numbers which contain ℵ0 and are closed under
the function exp (if κ ∈ B, exp(κ) ∈ B) and the operation of taking
suprema of subsets (if A ⊂ B and A is bounded above in B, the least
upper bound of A in the natural order on the cardinals is an element
of B).

This sequence looks like the sequence of ℵα’s, except that the “successor”
operation is exp instead of the Hartogs aleph. As is the case for any
ordinal-indexed sequence, the type of !α is two types lower than the type
of α.

22.2. Classification of Cardinals and Solovay’s The-
orem on Inaccessibles

We classify cardinals. A cardinal of the form ℵα+1 is called a successor
cardinal. A cardinal of the form ℵλ, λ a limit ordinal, is called a limit
cardinal.
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The next step requires a

Definition. Let ! be a well-ordering. A subrelation !∗ of ! which is also a
well-ordering is said to be cofinal in ! iff for each element x of dom(!)
there is an element y of dom(!∗) such that x ! y. The cofinality of
! is the smallest order type of a subrelation cofinal in !.

If κ is a cardinal, we define the cofinality of κ, written cf(κ) as the
smallest cardinal µ which contains the domain of some well-ordering
cofinal in a well-ordering of order type init(κ).

We use the notion of cofinality to further classify cardinals:

Definition. A cardinal κ is said to be regular if cf(κ) = κ. Cardinals which
are not regular are said to be singular.

Theorem. Cofinalities of cardinals are regular cardinals.

Proof. — Any well-ordering of a set of size κ must contain a sub-well-
ordering of a set of size cf(κ) which must in turn contain a well-ordering
of a set of size cf(cf(κ)). Since a well-ordered set of size κ must contain
a well-ordered set of size cf(cf(κ)), it follows that cf(cf(κ)) " cf(κ), from
which it obviously follows that cf(cf(κ)) = cf(κ), i.e., that cf(κ) is regular.

Theorem. Successor cardinals are regular.

Proof. — Given Hartogs’s Theorem, it is sufficient to prove that for
any κ, any sequence cofinal in the natural well-ordering on ordinals α
with card(α) ! κ has the same cardinality as the set of such ordinals
α (that is, T 2{κ+}). Suppose otherwise. We would then have a well-
ordering with full domain of size ! T 2{κ} purportedly cofinal in this
sequence of ordinals. But this is impossible: the size of the set of ordinals
less than or equal to some element of this cofinal sequence is clearly !
T 2{κ}×T 2{κ} = T 2{κ}, which is incompatible with the assumption that
the sequence is cofinal in a segment of the ordinals of size T 2{κ+}. The
proof of the theorem is complete. !

An example of a singular limit cardinal is ℵω, which has cofinality ℵ0.

For our next definition, we need a stronger notion of “limit cardinal”.
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Definition. A cardinal κ such that for each µ < κ, 2µ < κ is said to be a
strong limit cardinal. It should be clear that a strong limit cardinal is
a limit cardinal.

Definition. An uncountable regular strong limit cardinal is called an inac-
cessible cardinal. (Of course ℵ0 is a regular strong limit cardinal!)

Theorem. A complete rank of Z0 indexed by init(κ), κ inaccessible, is a
model of ZFC (using the relation E to code membership as usual).

Proof. — The only axioms which require real attention are Power Set
and Replacement. Power Set holds because the ordinal init(κ) is a limit
ordinal (a set appearing at one stage has its power set appearing at the
next stage, and there is no last stage). We see that Replacement holds
by considering a set A of sets realized in the rank which can be placed in
one-to-one correspondence with a set B realized in the rank; the common
size of these sets will be less than κ, and the collection of ranks at which
elements of A appear cannot be cofinal in the ordering of ranks below rank
init(κ), because κ is regular; thus there is a rank below rank init(κ) at
which all the elements of A are present, and the set A is realized at that
rank. !

The rest of this section is devoted to the proof of the following theorem of
Robert Solovay:

Theorem (Solovay). There is an inaccessible cardinal.

The only consequence of the Axiom of Small Ordinals needed for the
proof of Solovay’s theorem is the assertion that each Cantorian set (resp.
ordinal, cardinal) is strongly Cantorian. Note that the Axiom of Counting
follows from this directly.

Proof of Solovay’s Theorem. — Fix a well-ordering !∗ of the set
of sub-well-orderings of the natural well-ordering on the cardinals. For
any sub-well-ordering !0 of the natural order on the cardinals, we define
T [!0] as {(T {κ}, T {λ}) | κ !0 λ}. We define T [!∗] as {(T [!0], T [!1]) |
[!0] !∗ [!1]}.

We define a function F with domain a subset of the set of pairs of cardinal
numbers as follows:
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(a) If α0 and β0 are distinct cardinals which are not strong limit, then
F (α0,β0) = (α1,β1), where α1 and β1 are the least cardinals such
that exp(α1) " α0 and exp(β1) " β0.

(b) If α0 and β0 are distinct singular strong limit cardinals, and cf(α0) #=
cf(β0), define F (α0,β0) as (cf(α1), cf(β1)).

(c) If α0 and β0 are distinct singular strong limit cardinals, and cf(α0) =
cf(β0), we proceed as follows. Let !0 be the first well-ordering of
minimum possible length cofinal in the natural order on the cardi-
nals less than α0, where “first” is in the sense of the order !∗ fixed
above. Let !1 be the first well-ordering of minimum possible length
cofinal in the natural order on the cardinals less than β0, where “first”
is in the sense of the order T [!∗] defined above (if β0 is not of the
form T {γ} for some cardinal γ, this clause of the definition does not
succeed, and F (α0,β0) is undefined; this will not occur in cases of
interest to us). These two well-orderings will be of the same order
type T 2{init(cf(α0))} = T 2{init(cf(β0))} (the T 2 operator appears
because cardinals and ordinals are two types higher than the objects
they “count”), and will be distinct, since they are cofinal in the nat-
ural order on different initial segments of the cardinals. Let δ be the
smallest ordinal such that [!0]δ #= [!1]δ (there must be such a δ by
the preceding considerations); define F (α0,β0) as ([!0]δ, [!1]δ).

(d) In any other case, (α0,β0) is excluded from the domain of F . This
includes in particular the case where α0 and β0 are inaccessible cardi-
nals.

The function F has a stratified definition, and so is a set. By a slight
modification of the Recursion Theorem for natural numbers, we can define
a (possibly finite) sequence p of pairs of cardinals which has any desired
pair of cardinals as p0 and satisfies the condition that for each i ∈ N we
have pi+1 = F (pi) if pi ∈ dom(F ) and undefined otherwise. We write pi

as (αi,βi).

To completely determine p, we need to choose its starting point p0 =
(α0,β0). Let α0 be any non-Cantorian cardinal α, and let β0 be T {α}.

We want to argue by induction that the conditions βi = T {αi} #= αi hold
for each i in the domain of p. This condition is unstratified: however, an
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appeal to the Axiom of Counting shows that it is equivalent to the strat-
ified condition βT{i} = T {αi} #= αT{i}, on which induction is permitted
(strictly speaking, this condition is still not stratified; it is a substitution
instance of a stratified sentence in which the same object α = π1 ◦ p re-
places two parameters of different relative type; but this does not prevent
it from defining a set).

The step that requires particular care is the step handling a pair of singular
strong limit cardinals of the same cofinality.

(a) The condition clearly holds in the basis case.

(b) If αi and βi are cardinals which are not strong limit, and βi = T {αi} #=
αi, it is clear that βi+1 = T {αi+1} #= αi+1; the operation described
clearly commutes with T , and so if the cardinals αi+1 and βi+1 chosen
were equal, they would have to be Cantorian, so the images under exp
of the cardinals would be Cantorian and dominate the non-Cantorian
αi and βi, which is absurd.

(c) If αi and βi are singular strong limit cardinals, cf(αi) #= cf(βi), and
βi = T {αi} #= αi, it is clear that βi+1 = T {αi+1} #= αi+1; all that is
required is to note that cf commutes with T (i.e., T {cf(κ)} = cf(T {κ})
for any cardinal κ).

(d) If αi and βi are singular strong limit cardinals, cf(αi) = cf(βi), and
βi = T {αi} #= αi, we choose the first well-orderings of shortest length
cofinal in the natural order on cardinals below αi and βi respectively
with respect to the orders !∗, T [!∗], respectively; the operation de-
scribed “commutes with T” in a suitable sense by the definition of
T [!∗]. The common cofinality of αi and βi must be Cantorian, since
the cf operator commutes with T , and init(cf(αi)) = init(cf(βi)) will
be the common length of the chosen well-orderings of the cardinals be-
low αi and βi (the fact that the cofinality and thus its initial ordinal
are seen to be Cantorian allows us to omit applying the T 2 operator
to the order types as we had to do in the discussion in the corre-
sponding case of the recursive definition). αi+1 and βi+1 are chosen
to be the first pair of corresponding elements of the domain of these
well-orderings that differ; suppose that they are the δth elements of
these well-orderings (i.e., δ is the order type of the segments they
determine). T {αi+1} will be the T {δ}th element of the cofinal well-
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ordering associated with βi, because the cofinal well-ordering associ-
ated with βi = T {αi} is the image under T of the cofinal well-ordering
associated with αi (in the sense of image under T defined above for
well-orderings); but T {δ} = δ, because δ is less than the initial ordinal
associated with the Cantorian common cofinality of the two original
cardinals and so is Cantorian. Thus T {αi+1} = βi+1 as desired.

(e) In any other case, αi+1 and βi+1 will be undefined, which poses no
problem for our induction.

It is an immediate consequence of this result that each pair of cardinals
(αi,βi) is a pair of cardinals of the same kind (both not strong limit, both
singular strong limit, or both inaccessible), since the T operation preserves
each of these properties of cardinals.

Since corresponding projections of the pairs of cardinals strictly decrease
as the index increases, the sequence p must be finite. The only way it can
terminate is with a pair of distinct non-Cantorian inaccessible cardinals.
The proof of Solovay’s theorem is complete. !

The theorem establishes that our set theory proves the existence of many
inaccessible cardinals, and so is considerably stronger than ZFC.

22.3. Stronger Results. The Axiom of Large
Ordinals

Solovay has proved more than this. We introduce some new concepts:

Definition. A subset of the domain of a well-ordering is said to be closed
if it contains the least upper bound of each of its non-cofinal subsets.
A subset of the domain of a well-ordering is said to be a club if it
is closed and cofinal in the well-ordering. A subset of the domain of
a well-ordering is said to be stationary if it meets every club in the
domain of the well-ordering.

Definition. A cardinal κ is said to be Mahlo if the set of inaccessible cardi-
nals less than κ is stationary in the natural well-ordering of cardinals
< κ. A Mahlo cardinal is also said to be 1-Mahlo; we define an (n+1)-



198 Chapter 22. The Structure of the Transfinite

Mahlo cardinal (for each natural number n, by induction) as a cardinal
κ such that the set of n-Mahlo cardinals less than κ is stationary in
the natural well-ordering of the cardinals < κ.

Theorem (Solovay). The strength of the set theory whose axioms are Ex-
tensionality, Ordered Pairs, Stratified Comprehension, Choice, and
“each Cantorian set is strongly Cantorian” is exactly the same as the
strength of ZFC + “there is an n-Mahlo cardinal” for each n (notice
that this is a list of axioms for each concrete n; the assertion “for each
n, there is an n-Mahlo cardinal” is not a consequence of this theory).
This means that each of these theories can interpret the other. It is
also the case that the subset of our set theory described proves the
existence of n-Mahlo cardinals for each concrete n.

The proof of the Theorem is not given here.

We close by introducing and motivating a final axiom.

Definition. A T-sequence is a finite sequence s of ordinals such that for
each i, si+1 = T {si} iff si+1 is defined. We define T n{α} for any
n ∈ N as the value of sn for any T-sequence s such that s0 = α.

This definition is needed because we have no guarantee that the natural
numbers of our theory correspond to the concrete natural numbers (for
which we already know how to define T n{α}, of course). The existence
and uniqueness of T n{α} is easily proved using mathematical induction
(on horribly unstratified conditions).

Axiom of Large Ordinals. For each non-Cantorian ordinal α, there is a
natural number n such that T n{Ω} < α.

The Axiom of Large Ordinals asserts that the structure of the “large”
ordinals is as simple and clean as we can manage. It clearly implies the
assertion “each Cantorian ordinal is strongly Cantorian” and it turns out
that it has exactly the same strength as this assertion in combination with
our other axioms (exclusive of the Axiom of Small Ordinals).

An immediate corollary of the Axiom of Large Ordinals is

Corollary. T {α} ! α for all ordinals α.
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The reason that we introduce this final axiom is that it allows a very nice
treatment of proper classes of small ordinals.

Definition. A natural set is a set of ordinals A with the property that
α ∈ A iff T {α} ∈ A for all ordinals α.

Theorem. Two natural sets have the same elements iff they have the same
Cantorian elements.

Proof. — Let A #= B be natural sets. Let α be the smallest element of
A ∆ B (the symmetric difference of the two sets). Suppose that α is non-
Cantorian. This implies that T {α} < α is not in A ∆ B, i.e., it is either in
both sets or in neither. It follows by naturality of A and B that α is either
in both sets or in neither, contrary to assumption. (the assumption that
T {α} < α, a consequence of the Axiom of Large Ordinals, is not necessary
for this proof; if we did not assume Large Ordinals and had T {α} > α, we
would then consider the status of T−1{α}; it would exist and cause the
same problem). !

Theorem. For any sentence φ, there is a natural set A of ordinals such that
the Cantorian ordinals x belonging to A are exactly the Cantorian
ordinals x such that φ.

Proof. — By the Axiom of Small Ordinals, there is a set B satisfying all
the required conditions except possibly naturality. Consider the smallest
element x of the set B ∆ T [B]; x is obviously non-Cantorian. Let n be a
natural number such that T−n{x} does not exist (the existence of such an
n is a consequence of the Axiom of Large Ordinals). T−n[B] is the desired
natural set. !

The effect of the two preceding Theorems is that there is a precise one-to-
one correspondence between natural sets (which are objects of our theory)
and definable proper classes of Cantorian ordinals, which are not objects of
our theory! This means that we can define proper classes of small ordinals
(and corresponding natural sets) in ways which involve quantification over
all proper classes of small ordinals, by replacing the quantifications over
proper classes with quantifications over the corresponding natural sets.
Conditions involving quantification over all natural sets will of course be
unstratified. This suggests that our set theory has considerable strength;
the set theory QM (Quine–Morse set theory, also known as Morse–Kelley
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set theory ) which adds quantification over proper classes to the machinery
of ZFC is stronger than ZFC, for example.

We describe an interpretation of a version of ZFC with proper classes which
turns out to have the precise strength of our set theory. The interpretation
of the sets of ZFC will be the interpretation in the Cantorian ordinals
which we gave above. Proper classes of ZFC will be interpreted using the
natural sets extending the corresponding classes of Cantorian ordinals of
our set theory. A technical point is that a set of the interpreted ZFC
will be coded by a certain Cantorian ordinal, while the class with the
same elements will be coded by a natural set which is actually a different
object. It is convenient and harmless to pass over this distinction in the
subsequent discussion.

There are von Neumann ordinals in the interpreted ZFC corresponding to
each Cantorian ordinal of our set theory. There is in addition one proper
class ordinal, the collection of all ordinals (which is implemented as the
natural set of all ordinals coding von Neumann ordinals of ZFC). Let us
refer to this “ordinal”, the order type of the Cantorian ordinals of our
theory, as κ. The universe of sets of our interpreted ZFC is the stage of
the construction of the cumulative hierarchy of sets indexed by κ; call this
Vκ. The classes which we admit in addition may be interpreted as adding
one more stage to the cumulative hierarchy; we can view the universe of
classes (including sets and proper classes) as representing Vκ+1. We do
not have any objects constructed at later stages available to us.

Observe that we can define proper classes and sets in our interpreted
ZFC using sentences which involve quantifiers not only over sets, but over
proper classes. This is a consequence of our ability to code proper classes
of Cantorian ordinals in our set theory as natural sets, which are objects
in our theory; sentences involving quantification over natural sets can be
used to define sets implementing classes of Cantorian ordinals (an appli-
cation of the Axiom of Small Ordinals, since such sentences are clearly
unstratified!). The axioms of Separation and Replacement, which concern
sets rather than classes, are valid for sentences involving quantification
over classes, because any class of Cantorian ordinals which is a subclass
of a set or which can be placed in an external one-to-one correspondence
with the elements of a set of Cantorian ordinals, however defined, is a set
(this was shown above). An extension of ZFC which admits proper classes
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and allows quantification over proper classes in definitions of classes and
of sets strengthens ZFC significantly.

Though we do not admit elements of the stage Vκ+2 into our interpreted
ZFC, it is possible to code “sequences” of classes indexed by set ordinals
as single classes. The trick is to code a sequence A of classes indexed by
ordinals β less than some α ! κ as {〈〈β, x〉〉 | x ∈ Aβ}, where the brackets
signify the coding of pairs of ordinals into the ordinals introduced earlier.
This trick can be carried out in our set theory to implement sequences
of natural sets indexed by Cantorian ordinals as natural sets. It is useful
to recall that our coding of pairs of ordinals into the ordinals “commutes
with T ”, so will behave nicely in the context of reasoning about natural
sets.

There is a further strengthening of ZFC possible. Consider the proper class
Υ of natural sets which contain Ω as an element. We cannot introduce
Υ as an object of our interpreted ZFC with classes, but we can introduce
membership in Υ as a predicate of classes of ordinals. The “superclass”
Υ over our interpreted ZFC will have the following properties:

(a) Any superclass of an element of Υ is an element of Υ (a natural set
which includes a natural subset containing Ω contains Ω).

(b) Any element of Υ is of size κ (a natural set containing Ω, or any non-
Cantorian element, has a proper class of Cantorian ordinal elements
which can be placed in an external one-to-one correspondence with
the class of all Cantorian ordinals).

(c) Any intersection of fewer than κ elements of Υ belongs to Υ (collec-
tions of fewer than κ elements of Υ are coded as described above;
the intersection of natural sets implemented as “rows” in a Cartesian
product with “rows” indexed by a Cantorian initial segment of the
ordinals will be natural and contain Ω if each of the “rows” contains
Ω).

(d) Each class of ordinals or its complement belongs to Υ. (Each natural
set either contains Ω or has a natural complement (relative to the set
of all ordinals) which contains Ω).

(e) Membership of classes in Υ may be used freely in definitions of sets
and classes.
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Such a “superclass” Υ is called a κ-complete nonprincipal ultrafilter over
κ. The existence of a κ-complete nonprincipal ultrafilter over an uncount-
able set ordinal κ is a very strong condition in ZFC (the existence of a
measurable cardinal); the strength of the situation we describe here is not
as great, because κ is not a set ordinal and we do not have access to levels
of the hierarchy of sets above Vκ+1, but it is still considerable. It turns out
that the extension of ZFC with proper classes and a nonprincipal ultra-
filter over the proper class ordinal is sufficient to describe our set theory
as well as to be described by it; there is an exact equivalence in strength.
Since the existence of a measurable κ and the corresponding ultrafilter is
a stronger condition, this implies that our theory can be interpreted in
the presence of a measurable cardinal, but this is almost certainly more
strength than is needed.

Some further technical observations for the non-naive reader: the construc-
tion of the constructible universe L can be carried out in Z0; a subset of
our set theory can be interpreted in L as defined in Z0 in the same way
we interpret our set theory in Z0. We say “a subset” because there is no
apparent reason why the full Axiom of Small Ordinals would be satisfied
in the interpretation via L, though many of its consequences would be.
Forcing can be carried out in this theory: we think the best way to do
this is to build a structure analogous to Z0 for well-founded relations in
which each item is paired with an element of a fixed Cantorian partial
order indicating the conditions under which it is to be an element of the
set being constructed; the resulting structure would have a T operation
which could be used to interpret our set theory as we interpreted it in Z0.
Neither constructibility nor forcing are showcases for the independence of
our approach from that of the usual set theory; this is hardly surprising, as
both are closely bound up with the cumulative hierarchy of sets in ZFC.
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Chapter 23

Taking “Function” Rather than
“Set” as Primitive:
a Stratified λ-Calculus

23.1. Axioms, Abstraction, and Stratified
Comprehension

In this section, we introduce an approach to the foundations of mathemat-
ics based on different primitives. We will take the notions of function and
application to be primitive, rather than the notions of set and membership.

For any two objects x and y we introduce the notation x(y) for the ap-
plication of x to y. Just as in our set theory, where we did not expect all
objects to be sets, we regard some of our objects as functions and some
of our objects as atoms.

We had a default extension to assign to a non-set; it is less clear what to
do about defining the extension of a non-function. We commit ourselves
to the proposition that any extension which is realized by any object is
realized by some function:

Axiom of Functionality. Fn is a specific object of our theory. For all x,
Fn(a)(x) = a(x), and for all a, Fn(Fn(a)) = Fn(a).

Definition. An object a is said to be a function if Fn(a) = a. An object
which is not a function is said to be an atom.
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Notice that the axiom of functionality allows us to assert that Fn(a) is a
function with the same extension as a for all a.

We have an

Axiom of Extensionality. If f and g are functions, then f = g iff for all x,
f(x) = g(x).

Just as a set is completely determined by its elements, a function is com-
pletely determined by its values.

Just as in our set theory, we have a primitive ordered pair construction:
if x and y are objects, we have a pair (x, y). We also have a primitive
construction which gives us a constant function K[x] for each object x;
note that we do not introduce a function K. We state some axioms.

Axiom of Projections. π1 and π2 are distinct functions such that for all
x1, x2, πi(x1, x2) = xi (where i stands for either 1 or 2).

Axiom of Products. For all x, y, z, (x, y)(z) = (x(z), y(z)) and Fn(x, y) =
(Fn(x), Fn(y)).

Axiom of Identity. Id is a function and for all x, Id(x) = x.

Axiom of Constant Functions. For each x, K[x] is a function and for all
y, K[x](y) = x.

Axiom of Abstraction. Abst is an object of our theory. For all x, y, z,
Abst(x)(y) is a function and Abst(x)(y)(z) = x(K[z])(y(z)).

Axiom of Equality. Eq is a function and for all x, y, if x = y, Eq(x, y) = π1

and if x #= y, Eq(x, y) = π2.

We would like to be able to define functions using the function-builder
notation (x 0→ T ), where T is an arbitrary expression. Unfortunately, this
is not possible in general.

Let us consider the “function” R = (x 0→Eq(x(x),π2)). It would follow
from the existence of R that R(R) = Eq(R(R),π2), so R(R) = π1 iff
R(R) = π2 and R(R) = π2 iff R(R) #= π2 (by the axiom characterizing
Eq). This is absurd, of course. This contradiction, a version of Curry’s
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paradox, is the result of a natural coding of Russell’s paradox into a theory
with functions as primitive.

Just as in our set theory, it turns out that we can make sense of (x 0→ T )
for a large class of expressions T . The expressions T for which we can
do this are called “stratified” expressions, and the notion of stratification
we use is quite analogous to that found above, except that we work with
expressions rather than sentences.

The usual notation for functions in a theory of the kind we are developing
is not (x 0→ T ) but (λx.T ); such theories are usually called “λ-calculi”.
Another notational deviation traditional in this field is the use of (fx)
rather than the more usual f(x) to represent function application. How-
ever, we will continue to use the notation we have used in the rest of the
book, which is probably familiar to more potential readers.

Definition. Let T be an expression. We assign an integer to each occur-
rence of a subexpression of T which we call its relative type. The
definition is inductive.

(a) The relative type of the occurrence of T is 0.

(b) If the relative type of an occurrence of (x, y) is n, the relative types
of the obvious occurrences of x and y are also n.

(c) If the relative type of an occurrence of x(y) is n, the relative types
of the obvious occurrences of x and y are n+1 and n, respectively.

(d) If the relative type of an occurrence of K[x] is n, the relative type
of the obvious occurrence of x is n− 1.

Relative typing in the stratified λ-calculus appears more rigid than in the
set theory presented in the rest of the book; assigning a type to a whole
expression forces the assignment of types to all of its subexpressions. We
will introduce devices below which allow typing of subexpressions to have
more freedom. The use of type 0 as the top type, with the attendant
likelihood of using negative types, is merely a technical convenience: we
could rephrase all the results in the chapter in such a way as to allow only
non-negative types.



206 Chapter 23. Stratified Lambda-Calculus

Definition. Let T be an expression. We say that T is stratified relative to
x iff x does not occur in T with any type other than 0.

Abstraction Theorem. Let T be an expression which is stratified relative
to x. It follows that (x 0→ T ) exists, i.e., there is a function f such
that “for all x, f(x) = T ” is a theorem.

Proof. — The proof is by induction on the structure of T .

We can assume without loss of generality that any subexpression K[A] of
T is of the form Kn[z], with z an atomic expression (variable or atomic
constant). K[(U, V )] = (K[U ], K[V ]) and K[U(V )] = Abst(K[U ])(K[V ])
follow immediately from the Axioms of Products or Abstraction, respec-
tively, and Extensionality. These theorems can be used to eliminate any
application of the K operator to a pair or application expression.

(a) If T is the variable x, we can let (x 0→ T ) = Id. Note that (x 0→ T ) is
a function.

(b) If T is an atomic expression a distinct from x (or any expression in
which x does not occur), we can let (x 0→ T ) = K[a]. Note that
(x 0→ T ) is a function.

(c) If T is of the form (U, V ), it should be clear that U and V are stratified
with respect to x, so we can let (x 0→ T ) = ((x 0→ U), (x 0→ V ))
(applying the Axiom of Products). Note that (x 0→ T ) is a function.

(d) If T is of the form Kn[z], z an atomic expression, n > 0, z must
be distinct from x, because its relative type is wrong, so we can let
(x 0→ T ) = Kn+1[z]. Note that (x 0→ T ) is a function.

(e) If T is of the form U(V ), it should be clear that V is stratified with
respect to x. It should also be clear that all occurrences of x in U
must be in the context K[x], since the relative type of x in U is −1,
the K construction is the only type-lowering construction, and it is
only applied (possibly repeatedly) to atoms in T . The type of any
occurrence of K[x] in U must be 0; thus, if we replace K[x] with
a new variable u in U , the resulting expression U ′ will be stratified
relative to u. We can then let (x 0→ T ) = Abst(u 0→ U ′)(x 0→ V ).
Note that (x 0→ T ) is a function.
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The proof of the Abstraction Theorem is complete. !

Definition. We define (x 0→ T ) as the expression whose construction is
outlined in the proof of the Abstraction Theorem.

Observation. We observe that each occurrence of an atomic subexpression
y (other than x) of T with type n corresponds to an occurrence of the
same atomic subexpression y with type n− 1 in (x 0→ T ). x does not
occur in (x 0→ T ). It is straightforward to verify this.

The observation allows us to add the following clause to the definition of
relative type (and thus of stratification):

Definition. If (x 0→ U) occurs in T with relative type n, we assign relative
type n− 1 to the obvious occurrence of U .

This extension of the definition of stratification is safe because the notion
of stratification depends only on the typing of atomic subexpressions.

A further theorem vital to the usefulness of the notation (x 0→ T ) is

Theorem. If S = T is a theorem, so is (x 0→ S) = (x 0→ T ), if the functions
exist.

Proof. — Since (x 0→ S)(x) = S = T = (x 0→ T )(x) will hold for any x,
and since any object (u 0→ U) is a function, we have the desired equality
by extensionality. !

This theorem allows substitutions of equals for equals in function abstrac-
tion expressions, for example.

Another refinement:

Definition. We define ((x, y) 0→ T ) as (u 0→ T ′), where u is a variable not
occurring in T and T ′ is obtained from T by replacing each occurrence
of x with π1(u) and each occurrence of y with π2(u). It should be clear
that ((x, y) 0→ T )(x, y) = T is true for all x and y. Similar extensions
of notation to more complex finite structures are defined in the obvious
way.

It would be possible to take the function abstraction construction as primi-
tive (in which case the constant function construction would not be needed
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as a primitive). Function abstraction expressions would then be well-
formed iff they were stratified, and the notion of stratification would have
to be defined by a mutual recursion with the notion of well-formedness for
function expressions. Such a system would properly be called “stratified
λ-calculus”; a system like the one presented here in which the “λ-terms”
(functional abstraction expressions (x 0→ T ), which would traditionally be
written (λx.T )) are built from a finite set of basic constructions is called
a “(synthetic) combinatory logic”. We believe that the present approach
is easier to motivate, and leaves one in the end with the same freedom to
reason about abstraction expressions. It is also closely analogous to the
way that we developed Stratified Comprehension from a finite set of basic
constructions in the rest of the book.

In a development based upon the primitive notions of set and membership,
we eventually found it necessary to define the notions of function and
application; an analogous condition holds here! We will now define the
notions of set and membership:

Definition. A set is a function f such that for all x, f(x) = π1 or
f(x) = π2.

Definition. For any objects x and y, we understand the sentence x ∈ y to
mean “ y is a set and y(x) = π1”.

Definition. For φ any sentence in the language of set theory, we understand
{x | φ} to be the set A such that for all x, x ∈ A iff φ (φ cannot mention
A).

The basic idea is that we are using projection operators to represent truth
values and representing a set as a function from the universe to truth
values (a kind of characteristic function).

We make a crucial observation allowing us to relax our definition of strat-
ification for expressions coding sentences:

Lemma. The relative type of any occurrence of an expression T such that
the value of T must be either π1 or π2 can be raised and lowered freely.

Proof. — πi = πi(π1,π2), so T = T (π1,π2); this raises the type of T .
πi = Eq(K[πi], K[π1]), so T = Eq(K[T ], K[π1]) ; this lowers the type of
T . !
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Note that an application of the Lemma raises or lowers the types of all
subexpressions of the expression T by the same amount.

We now show that we have the same facility for constructing sets that we
have in the theory of the rest of this book:

Stratified Comprehension Theorem. For each stratified sentence φ, the
set {x | φ} exists.

Proof. — Our argument is inductive. We first describe a coding of
stratified sentences of our set theory as expressions of value either π1 or
π2. We assume that we are given a fixed assignment of types to variables
witnessing the stratification of the sentence φ (in the sense of our set
theory).

(a) We initially code x πi y as Eq(πi(x), y) for i = 1,2. We code x = y
as Eq(x, y). We then use the Lemma to raise or lower relative types
of x and y in these expressions to the types assigned to them in the
stratified sentence φ being coded. This is possible because x and y
have the same relative types in these expressions.

(b) If we have coded ψ and ξ by T and U , we code “ψ and ξ” by

Eq((T, U), (π1,π1))

and “not φ” by Eq(T,π2). This construction does not perturb relative
types of variables.

(c) We initially code x ∈ y by the code of

“y(x) = π1 and y = (u 0→ Eq(y(u),π1))”.

We have already seen how to code equations and conjunctions; the
second clause of the conjunction codes “y is a set”. We then use the
Lemma to raise or lower the types of x and y to the types assigned to
them in the stratified sentence being coded. This is possible because
x has type one lower than the type of y in the one (code of a) conjunct
in which they occur together; the type of y in the other conjunct can
be manipulated freely.

(d) If we have coded ψ by T , an expression in which y appears with the
same relative type everywhere (not necessarily 0), then we can apply
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the Lemma (since T will have only projection operators as values) to
change the expression T to an expression T ′ with the same value in
which y has type 0 everywhere, and code “for all y, ψ” by

Eq((y 0→ T ′), K[π1]).

The existential quantifier can be defined in terms of the universal
quantifier. Then use the Lemma to reset relative types of variables in
the resulting expression to the types assigned them in the stratification
of the sentence φ being coded.

It is straightforward to verify that the coding scheme described succeeds
in coding true sentences by π1 and false sentences by π2. Now consider
any stratified sentence φ. It will be coded by an expression T in which
the variable x will appear with exactly one type, not necessarily 0. This
expression will have only projection operators as values, so it is equivalent
by the Lemma to an expression T ′ in which the types of all variables have
been uniformly raised or lowered in such a way that the type of x becomes
0. (x 0→ T ′) is the desired function {x | φ}. The proof of the Stratified
Comprehension Theorem is complete. !

Because we have now coded the basic concepts of the rest of the book into
our theory of functions, we can now see that the development here is an
alternative foundation for the entire book.

We state a final axiom for this subsection which is technically useful, does
not follow from our axioms, but does not strengthen the theory essentially:

Axiom of Definite Description. If φ is any stratified sentence in which x
and y can be assigned the same type such that for each x there is
exactly one y such that φ, then there is a function f such that for all
x, φ[f(x)/y].

If we replace “there is exactly one y” with “there is some y”, we obtain
a form of the Axiom of Choice appropriate to this theory, but we do not
officially adopt this axiom.

23.2. Strongly Cantorian Sets as Types

We redefine the notion of “strongly Cantorian” from above:
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Definition. Let A be a set. We say that A is strongly Cantorian if there
is a function (K3A) such that for all a ∈ A, (K3A)(a) = K[a].

It should be clear that this definition is essentially equivalent to the def-
inition in the set theory of the previous chapters; the constant function
construction, like the singleton construction, raises type by one.

Theorem. The relative type of an occurrence of an expression whose value
must belong to a fixed strongly Cantorian set A can be raised or
lowered freely.

Proof. — Such an expression T may be replaced by the expression
(K3A)(T )(Id), in which it appears with type raised by one; this can
be iterated as needed. The Axiom of Definite Descriptions can be used
to prove that there is a function (K3A)−1 such that for each a ∈ A,
(K3A)−1(K[a]) = a. The expression T may be replaced by (K3A)−1(K[T ]),
in which it appears with type lowered by one, and this may be iterated as
needed. !

We pause to develop a version of the natural numbers appropriate to a
theory of functions (the Church numerals).

Definition. We define 0 as K[Id] and Inc (the successor operation) as (n 0→
(f 0→ (x 0→ f(n(f)(x))))). We then develop the definition of the set
N exactly as we did earlier (it is the intersection of all sets containing
0 and closed under Inc).

The effect is to define each concrete natural number n as (f 0→ (x 0→
fn(x))) (just as in the main part of the book we defined each concrete
natural number n as the set of all sets with n elements).

We introduce the familiar (though differently phrased)

Axiom of Counting. N is a strongly Cantorian set.

The introduction of the Axiom of Counting essentially extends the system
of the previous section; we introduce it here so that we will have nontrivial
strongly cantorian sets to work with.

We now develop an alternative representation of sets, which we will use
only for strongly Cantorian sets.
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Definition. A function τ such that τ(τ(x)) = τ(x) is called a retraction.

Theorem. Every nonempty set A is the range of some retraction σ.

Proof. — Choose an element a of A: σ sends each element of A to itself
and each non-element of A to a. It is easy to see that σ must exist (it
is possible to write a function abstraction expression representing it), and
also that σ is a retraction. !

We adopt a special notation in connection with retractions with strongly
Cantorian range:

Definition. If τ is a retraction with strongly Cantorian range, we define
τ : x as τ(x).

We interpret the retraction τ written in this way as a “type label”. Ob-
serve that an expression τ : x, since its value must belong to the strongly
Cantorian set rng(τ), can have its type freely raised or lowered as desired
for purposes of stratification. This allows us to regard a wider class of
expressions as stratified.

Strongly Cantorian sets are closed under certain basic constructions; we
exhibit these constructions, expressed in terms of retractions.

Definition. If σ and τ are retractions with strongly Cantorian range, we
define σ × τ as ((x, y) 0→ (σ : x, τ : y)).

Observation. σ × τ is a retraction and its range is the Cartesian product
of the ranges of σ and τ , and is strongly Cantorian, so the notation
(σ × τ) : (x, y) is justified.

Definition. If σ and τ are retractions with strongly Cantorian range, we
define [σ → τ ] as (f 0→ (x 0→ (τ : f(σ : x)))).

Observation. [σ → τ ] is a retraction and its range is the set of all functions
from the range of σ to the range of τ , which is strongly Cantorian, so
the notation [σ → τ ] : f is justified.

Definition. We define ((τ : x) 0→ T ) as (x 0→ T [(τ : x)/x]).
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Observation. It should be clear that an expression of the form ((τ : x) 0→
σ : T ) is in the range of [σ → τ ]. It should also be clear that the forma-
tion of a function ((τ : x) 0→ T ) will not be restricted by stratification;
all occurrences of x are in the context τ : x, whose type can be freely
raised or lowered as desired. Note that this is only true if τ itself is
a constant, or at least does not contain any variable parameter whose
relative type needs to be taken into account; K[x], for example, is a
retraction with strongly Cantorian range, and so K[x] : x is a sensible
piece of notation, but it would be disastrous to allow the type of this
expression (whose value is just x) to be freely raised and lowered!

If we provide ourselves (as we easily can) with retractions β and ν onto
the two-element set of projection operators (which we view as “truth val-
ues”) and the set of natural numbers, respectively, then we have provided
ourselves with a system of data types which is adequate for most pur-
poses of theoretical computer science. The Axiom of Counting is needed
to ensure that the range of ν is strongly Cantorian. The subset of our
system in which all expressions are decorated with type labels looks like
the “typed λ-calculus” used in theoretical computer science. More refined
type systems can be constructed, including recursive and polymorphic
type systems, but this seems like an adequate sample of the possibilities.

We close with a warning: before attempting to investigate more advanced
type theories which involve abstraction over types, notice that expressions
of the form (τ 0→ T ) where τ is a type label (retraction onto a strongly
Cantorian set) are not justified by the development so far, because the
class of retractions onto strongly Cantorian sets which would be the do-
main of such a “function” is not a set! One way one can go in this direction
is to restrict the type labels used to be elements of sets of retractions closed
under suitable operations; for example, one might postulate the existence
of a set of “types” containing ν and β and closed under the product and
power constructions. The existence of such a set of retractions does follow
from the Axiom of Counting, but further strength is needed to ensure that
all retractions in such a set have strongly Cantorian range. The strong
axioms we adjoin to our set theory provide more than enough strength to
justify such constructions!

We have designed and implemented an automated reasoning system whose
higher-order logic is based on stratified function abstraction, with built-in
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support for subversion of stratification for expressions decorated with type
labels standing for retractions with strongly Cantorian range.

23.3. Programming and Our Metaphor

In an earlier chapter, we developed a metaphor for set theory in an at-
tempt to motivate stratified comprehension. Here, we will briefly develop
a metaphor for a theory of functions with the applications to computer
science suggested in the last subsection in mind.

We develop an extremely abstract model of programming. We have a
set D of objects which we view as data or addresses (indifferently). An
abstract program in our model is a function sending data to data (or,
equivalently addresses to addresses), i.e., an element of [D → D].

A state of our machine is a way of storing abstract programs in addresses:
a state is a function σ : D → [D → D]; for each d ∈ D, σ(d) is the program
stored in d. To complete the analogy with our system of this chapter, we
suppose that we have an association of pairs of addresses with addresses:
with each pair of addresses d, e, we associate another address 〈d, e〉 from
which d and e can be uniquely determined.

An operation of application on addresses can be defined: d(e) means “the
result of applying the program stored in d to e”, more briefly σ(d)(e),
where σ is the state of our machine.

The “data type security” motivation suggested above for stratification in
set theory manifests itself now as the observation that an operation on
the data type “program” should not use details of the implementation of
abstract programs (functions in [D → D]) as concrete programs (functions
in [D → D] associated with specific elements of D).

For example, a program which we might denote as (d → d(d)), which
would send each address d to the result σ(d)(d) of applying the program
stored in d to d itself, should not be regarded as legitimate (although
it is not paradoxical). This is clearly intended as an operation on the
program represented by d, but the actual address d is not a feature of
the abstract program implemented by d and should not be accessed by
an operation on programs. The same stricture against self-application in
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function definitions rules out the paradoxical function of Curry’s paradox.

A hierarchy of ways of viewing addresses is seen: an address can be inter-
preted as a bare object, as a function from objects to objects (an abstract
program), but also as a function from abstract programs to abstract pro-
grams, and so on through a hierarchy of levels indexed by the natural
numbers, in which level n + 1 is the set of functions from level n to level
n. This is precisely analogous to the hierarchy of “roles” seen in our mo-
tivation of stratified comprehension in set theory. A reasonable criterion
for “type safety” of function definitions is that each object mentioned in a
specification should appear at a unique level, and this leads to the criterion
of stratification expressed by the Abstraction Theorem.

The subversion of stratification requirements on strongly Cantorian do-
mains has an interesting interpretation in terms of this metaphor. The
function K3A can be viewed as allowing us to get access to the restriction
of the state σ to A. Knowledge of the details of σ (how abstract pro-
grams are assigned to addresses) is exactly what stratification is designed
to prevent. The function K3A gives us this information on the domain
A; in terms of our metaphor, we know how programs in A are “stored in
memory”, and this seems a reasonable description on this level of abstrac-
tion of what it means for A to be a “data type”. Our suggestion is that
“strongly Cantorian set” translates to “data type” via our metaphor; this
appears reasonable, given the results of the previous subsection.

Finally, it seems striking that two notions of type, both historically related
to Russell’s original notion of type, the “relative types” of stratification
and the “data types” of computer science, turn out to be orthogonal in
this interpretation: a data type is a domain on which relative types can
be ignored!
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Chapter 2

The introduction of a distinction between sets and atoms as a primitive
notion in the context of NFU is due to Quine himself in his note accom-
panying Jensen’s original paper [17] on NFU (of course this distinction
has been made in other set theories!). Jensen himself simply restricted
extensionality to nonempty sets. This approach leaves us with no way to
distinguish the empty set from the atoms.

Chapters 3–7

In these chapters, the aim is to develop a finite axiomatization of NFU +
Infinity and prove that the full Stratified Comprehension Theorem follows
from it. The first finite axiomatization of NF, which can be adapted to
NFU, was due to Hailperin in [5]; it is quite difficult to understand and use,
because Hailperin uses the Kuratowski ordered pair, whose projections
have type two lower than the type of the pair. In NF, one can define a type-
level pair (Quine did this). This cannot be done in NFU, both because of
the lack of structure on atoms and because the Axiom of Infinity is not a
theorem in NFU as it is in NF (the existence of a type-level ordered pair
implies that the universe is infinite).

We do know how to define a pair one type higher than its projections in
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NFU without infinity: define 〈x, y〉 as

{{x′, 0, 1}, {x′, 2, 3}, {y′, 4, 5}, {y′, 6, 7} | x′ ∈ x, y′ ∈ y},

where the objects denoted by 0–7 are any eight distinct objects (iterated
singletons of the empty set would serve). So far as we know, this definition
is ours, but we would not be surprised if such pairs had been defined earlier.

The approach of taking the type-level ordered pair as a primitive is orig-
inal with us, so far as we know. We presented the finite axiomatization
described here in [13]. The use of relation algebra and an ordered pair to
give the expressive power of first order logic is inspired by the book [27]
of Tarski and Givant.

A finite axiomatization of NFU + Infinity of an entirely different nature,
also due to us, is described in the last chapter of the book.

For the work of Bertrand Russell (the theory of descriptions and his famous
paradox) we refer the reader to [25].

The proof of the Stratified Comprehension Theorem given here follows
ideas of Grishin found in [4].

Chapter 8

We are entirely to blame for the speculations found in Chapter 8. It has
come to our attention that David Lewis’s approach to set theory in his
book [19] is very similar in important respects.

Chapters 9–11

The content of these chapters is motivated by Halmos’s development in
[6]. This is somewhat masked by the fact that the constructions here in-
volve stratification considerations that Halmos did not have to deal with.
The natural introduction of the Axiom of Choice to deal with the type
differential between elements of partitions and representatives of the ele-
ments seems serendipitous. I use f−1 in its usual sense, not in the sense
in which Halmos uses it.
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We have been criticized for our eccentric use of parentheses, braces and
brackets, but those who live in glass houses should not throw stones. The
notation used by current workers in set theory with stratified compre-
hension is peculiar (and inconsistent from one worker to another). Tra-
ditional notation derived from Russell’s Principia Mathematica ([25]) or
from Rosser’s Logic for Mathematicians can be quite confusing to a new-
comer to this area. Our aim has been to adopt a notation somewhat more
similar to that usually found in set theory; of course, the actual effect may
be only to multiply confusion!

Whether our particular notational conventions are adopted or not, we do
support the development of a common notation to be used by all who
work with this kind of set theory!

Chapter 12

The approach to the natural numbers found here is ultimately due to
Frege, and may be found (adorned with types) in Russell’s [25]. The
special feature that Infinity is deduced from the type-level nature of the
ordered pair is original with us (if not especially laudable).

The Axiom of Counting was first introduced by Rosser in [24], in the form
of the theorem |{1, . . . , n}| = n. It has been shown in by Orey in [20]
to be independent of NF (if NF is consistent). It is known to strengthen
NFU essentially.

Chapter 13

The development of the reals here is very similar to that of Quine in [22].

Chapter 14

The specific equivalents of the Axiom of Choice proven here are motivated
by Halmos’s development. Of course, it is only because we are in NFU
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that we can well-order the universe (the alternatives being NF, with no
well-ordering, or ZFC, with no universe)!

Chapters 15–16

The development of the ordinal and cardinal numbers in this kind of set
theory is entirely different from that in the usual set theory. The basic
ideas are ultimately due to Frege and are found (typed) in [25]. The
description of how NF avoids the Burali-Forti paradox is found in the
original paper [21] of Quine.

The Axiom of Small Ordinals is an extravagance due to the author. The
weaker but still very strong axiom that all Cantorian sets are strongly
Cantorian is due to C. Ward Henson in [7]. The precise determination
of the strength of Henson’s axiom (which also applies as a lower bound
to the strength of NF with Henson’s axiom) was made very recently by
Robert Solovay (unpublished). The precise consistency strength of the full
system of this book has not been determined; its consistency follows from
the existence of a measurable cardinal.

The theorems about cardinal numbers in chapter 16 are classical; the
development follows Halmos.

Chapter 17

The definition of exponentiation is extended from the original proposal of
Specker in [26] following a suggestion of Marcel Crabbé. The definitions
of infinite sums and products of cardinals are the trickiest exercises in
stratification in the whole book; we hope that the reader enjoys them
(and their application in the proof of the classical theorem of König).

The original discussion of the resolution of Cantor’s Paradox in this kind
of set theory is found in [21]. Specker’s disproof of the Axiom of Choice
in NF (originally given in [26]) converts itself in the context of NFU with
Choice to a proof of the existence of atoms. It loses none of its surprising
character. The proof of the theorem is simplified by using the Axiom
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of Counting; we do not know whether this form of the proof has been
published by earlier workers.

The comments on Cantorian and strongly Cantorian sets are standard in
this field.

Chapter 18

The topological section is closely parallel to the discussion of this subject
in Hrbacek and Jech’s excellent [16] (except for any defects, of course).

The very abstract definition of filter and related notions is cribbed from
Kunen’s development of forcing in [18]. The implementation of the reals
as ultrafilters over the closed intervals in the rationals is not standard, but
surely not novel.

The treatment of ultrapowers is standard, except for the remarks about
stratification restrictions.

For nonstandard analysis one can see Abraham Robinson’s [23].

Chapter 19

All results in this section are due to the author. Of course, the idea of
coding set theory into the ordinals is not original!

Chapter 20

All results in this section can be found in the work of Roland Hinnion,
except for the discussion of the Axiom of Endomorphism, originally found
in our [12], and any discussion of the consequences of our Axiom of Small
Ordinals. See Hinnion’s Ph. D. thesis, [8], and, for the use of relations
[∼+] in the construction of extensional relations, [9]. What we call a “nice
relation” in the proof of the Collapsing Lemma is called a “bisimulation”
elsewhere.
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Chapter 21

This section is shamelessly parasitic on John Horton Conway’s wonderful
On Numbers and Games ([1]). It was motivated by the desire to tackle
a mathematical structure whose original definition was clearly horribly
unstratified!

Chapter 22

For the discussion of the Hartogs operation, I am indebted to Forster ([3]).
All results are classical, except the major recent result of Solovay (un-
published) that there are inaccessible cardinals, which he has graciously
allowed us to present here. Solovay’s original argument is given entirely in
terms of ZFC with an external automorphism, rather than being framed in
NFU terms as we have essayed to do here. This result is in a sense super-
seded by the stronger result of Solovay that there are n-Mahlo cardinals
for each concrete n. The Axiom of Large Ordinals and the discussion of
the coding of proper classes of small ordinals into our theory and the cod-
ings between our theory and second order ZFC with a measure on classes
are due to us (and any errors are our responsibility!)

Chapter 23

Any work in combinatory logic should cite H. B. Curry’s masterful [2].

This section is based on our Ph. D. thesis [10] and the subsequent paper
[11] of the same title. It is further discussed in our more recent [14]. The
interpretation of strongly Cantorian sets as data types is a perhaps silly
idea of ours; it appeared in our [13]. The adaptation of our “metaphor”
to functions is also discussed there.

For more about the Mark2 automated reasoning system, see [15].



224 Chapter 24. Acknowledgements and Notes



Cahiers du Centre de logique
Volume 10

Appendix

Axioms and Selected Theorems by
Chapter

Chapter 2

Axiom of Extensionality. If A and B are sets, and for each x, x is an
element of A if and only if x is an element of B, then A = B.

Axiom of Atoms. If x is an atom, then for all y, y #∈ x. (read “y is not an
element of x”)

Chapter 3

Axiom of the Universal Set. {x | x = x}, also called V , exists.

Axiom of Complements. For each set A, the set Ac = {x | x #∈ A}, called
the complement of A, exists.

Axiom of (Boolean) Unions. if A and B are sets, the set A∪B = {x | x ∈
A or x ∈ B or both}, called the (Boolean) union of A and B, exists.
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Axiom of Set Union. If A is a set all of whose elements are sets, the set⋃
[A] = {x | for some B, x ∈ B and B ∈ A}, called the (set) union of

A, exists.

Chapter 4

Axiom of Singletons. For every object x, the set {x} = {y | y = x} exists,
and is called the singleton of x.

Axiom of Ordered Pairs. For each a, b, the ordered pair of a and b, (a, b),
exists; (a, b) = (c, d) exactly if a = c and b = d.

Axiom of Cartesian Products. For any sets A, B, the set A × B = {x |
for some a and b, a ∈ A, b ∈ B, and x = (a, b)}, briefly written
{(a, b) | a ∈ A and b ∈ B}, called the Cartesian product of A and B,
exists.

Chapter 5

Axiom of Converses. For each relation R, the set R−1 = {(x, y) | yRx}
exists; observe that xR−1 y exactly if yRx.

Axiom of Relative Products. If R, S are relations, the set

(R|S) = {(x, y) | for some z, x R z and z S y},

called the relative product of R and S, exists.

Axiom of Domains. If R is a relation, the set

dom(R) = {x | for some y, x R y},

called the domain of R, exists.

Axiom of Singleton Images. For any relation R, the set

SI{R} = {({x}, {y}) | x R y},

called the singleton image of R, exists.
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Axiom of the Diagonal. The set [=] = {(x, x) | x ∈ V } exists (this is the
equality relation).

Axiom of Projections. The sets π1 = {((x, y), x) | x, y ∈ V } and
π2 = {((x, y), y) | x, y ∈ V } exist.

Chapter 6

Representation Theorem. For any sentence φ in which all predicates men-
tioned in atomic sentences are realized, the set {x | φ} exists.

Chapter 7

Axiom of Inclusion. The set [⊆] = {(x, y) | x ⊆ y} exists.

Stratified Comprehension Theorem. For each stratified sentence φ, the set
{x | φ} exists.

Chapter 9

Axiom of Choice. For each set P of pairwise disjoint non-empty sets, there
is a set C, called a choice set from P , which contains exactly one
element of each element of P .

Chapter 12

Theorem of Infinity. { } is not a natural number.

Axiom of Counting. For all natural numbers n, T {n} = n.

Restricted Subversion Theorem. If a variable x in a sentence φ is restricted
to N , then its type can be freely raised and lowered; i.e., such a variable
can safely be ignored in making type assignments for stratification.
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Chapter 14 (equivalents of the axiom of choice)

Theorem. The Cartesian product of any family of non-empty sets is
non-empty.

Zorn’s Lemma. If ! is a partial order such that each chain in ! has an
upper bound relative to !, then the domain of ! has a maximal
element relative to !.

Theorem. There is a well-ordering of V .

Chapter 15

Transfinite Recursion Theorem. Let W be the domain of a well-ordering
!. Let F be a function from the collection of functions with domains
segments of ! to the collection of singletons. Then there is a unique
function f such that {f(a)} = F (f3seg{a}) for each a ∈ W .

Theorem. T 2{Ω} < Ω; i.e, ! on seg!{Ω} is not similar to ! on all
ordinals.

Axiom of Small Ordinals. For any sentence φ in the language of set theory,
there is a set A such that for all x, x is a small ordinal such that φ iff
(x ∈ A and x is a small ordinal).

Chapter 16

Theorem (Dedekind). A set is infinite exactly if it is equivalent to one of
its proper subsets.

Schröder–Bernstein Theorem. If X and Y are sets, and f is a one-to-one
map from X into Y and g is a one-to-one map from Y into X , then
X and Y are equivalent.
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Chapter 17

Theorem (Cantor). T {κ} < exp(T {κ}).

König’s Theorem. Let F and G be functions with the same nonempty
domain I all of whose values are cardinal numbers. Suppose further
that F (x) < G(x) for all x ∈ I, where the order is the natural order
on cardinals. It follows that

∑
[F ] <

∏
[G].

Theorem (Specker). |P{V }| < |V |, and thus there are atoms.

Subversion Theorem. If a variable x in a sentence φ is restricted to a
strongly Cantorian set A, then its type can be freely raised and low-
ered; i.e., such a variable can safely be ignored in making type assign-
ments for stratification.

Chapter 20

Axiom of Endomorphism. There is a one-to-one map Endo from P1{V }
(the set of singletons) into P{V } (the set of sets) such that for any
set B, Endo({B}) = {Endo({A}) | A ∈ B}.

The Axiom of Endomorphism is not an axiom of our theory, but it is
shown to be consistent with our theory in chapter 20.

Chapter 23

Theorem (Solovay). There is an inaccessible cardinal.

Axiom of Large Ordinals. For each non-Cantorian ordinal α, there is a
natural number n such that T n{Ω} < α.
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T operation
on natural numbers, 88

T operation
on ordinals, 111

T operation
on cardinals, 136
on isomorphism types of well-

founded relations, 170
on cardinals, 127, 128, 130, 131,

133, 229
on isomorphism types of well-

founded relations, 170
on isomorphism types of well-

founded relations, 177
on isomorphism types of well-

founded relations, 170
on isomorphism types of well-

founded relations, 170
on natural numbers, 114
on natural numbers, 87, 89, 97,

136, 227
on ordinals, 110–112, 114, 118,

129, 158, 198, 199

abstraction
axiom of, 204
see function, 66

addition
closure property of, 85, 86
commutative property of, 125
of cardinals, 124
of fractions, 92
of magnitudes, 95
of natural numbers, 83, 85, 89
of ordinals, 108, 118
of rational numbers, 94
of real numbers, 98

antisymmetric relation, 59
atoms, 16, 26, 45, 47, 50, 54,

99, 132–136, 177, 178, 203,
218, 221, 229

axiom, 16, 225
Axiom of Small Ordinals, 175
Axiom of Small Ordinals, 118
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axiom of choice, 11, 53, 59, 59,
65, 72, 73, 92, 99, 100, 102,
103, 121, 123, 127, 132–
134, 136, 142, 161, 176,
190, 191, 198, 210, 219–
221, 227

introduced, 59, 227
Axiom of Counting, 88, 89, 92, 96,

97, 112, 118, 124, 134–136,
144, 145, 150, 162, 175,
191, 194, 211, 213, 220,
222, 227

proved as a theorem, 114
Axiom of Large Ordinals, 198
Axiom of Small Ordinals, 176
Axiom of Small Ordinals, 12, 13,

42, 88, 112, 113, 113, 134,
135, 155, 156, 159, 162,
175–177, 191, 192, 194,
198–200, 202, 221, 222, 228

introduced, 113, 228

Baire category theorem, 153
bijection, 64, 65, 81, 82, 84–87,

89, 104, 106, 110, 112, 113,
121–126, 128, 132, 135,
138, 139

proper class, 131
Boolean algebra, operations, 178
Boolean algebra, operations, 12,

19, 20, 23–25, 30, 33, 38,
41, 70–72, 77, 86, 151, 225

Borel sets, 153
bound

greatest lower, 60, 97, 139
least upper, 197
least upper, 60, 96, 97, 139, 149
lower, 60, 97, 139
upper, 96, 97, 100–102, 139, 228

Cantor’s Theorem, 130–132, 134,
136, 229

Cantorian
cardinal, 196, 197
element of Z, 174, 175
non-, cardinal, 195, 197
ordinal, 111, 112–114, 117, 135,

155, 156, 158, 160–163,
175, 176, 192, 198–201

partial order, 202
set, 134, 135, 155, 158–161, 191,

194
transfinite induction theorem,

114
Cantorian, strongly

set, 136
Cantorian, strongly

set, 134, 213
Cantorian, strongly

cardinal, 134
element of Z, 174
ordinal, 134, 135
set, 135, 150, 155, 198, 211, 212,

213, 215, 221–223, 229
sets, 135

cardinal numbers, 196
cardinal numbers, 155, 229

definition of, 123
cardinal numbers, 12, 13, 107,

121, 123, 124–126, 128–
134, 136, 144, 146, 147,
156, 160, 177, 189–196,
198, 202, 221, 223, 229

Cartesian power, 27, 31
Cartesian product, 27, 27, 30, 32,

65, 70, 72–74, 89, 99, 100,
103, 125, 128, 132, 201,
212, 226, 228
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axiom, 27, 226
indexed, defined, 71, 74
related to the axiom of choice,

72, 73
chain, 100–102

authentic, 101, 102
Church numerals, 211
club, 197
cofinality, 193, 196
cofinite, 150, 151
combinatory logic, 208
complement, 12, 19, 21, 23, 24, 41,

52, 70, 71, 141, 143, 149,
151, 201

axiom of, 19, 225
of a relation, 30
relative, 21

composition, 69, 81, 106, 122, 156
comprehension, 12, 13, 42–44, 47,

51, 66, 156, 162, 167, 170,
171, 173, 175, 176, 203,
214, 215

constant functions, axiom of, 204
Continuum Hypothesis, 131, 146
converse (of a relation), 22, 30, 31,

60, 69, 226
axiom, 30, 226

countable, 124, 125, 126, 129,
131, 139, 140, 142, 144–
147, 153, 191

cut (generalized), 181

data types
safety of abstract, 51, 214
strongly Cantorian sets as, 213,

215
de Morgan’s laws, 23
Dedekind cut, 98
Dedekind criterion for infinity, 122

Dedekind cut, 95, 95, 181
definite description, axiom of, 210
diagonal, axiom of the, 32, 227
disjoint, 22, 48, 49, 57–59, 72,

73, 82, 84, 89, 99, 102–104,
132, 142, 147, 161, 170,
171, 178, 227

disjoint sum, 128
disjoint sum, 73, 86, 125, 158
disjoint sum, definition of, 73
disjoint sum, indexed, definition

of, 73
intervals, 144–146
pairwise, 23

disjoint sum, 77
domain, 31, 40, 41, 59, 60, 63–65,

72, 76, 97, 100, 103–107,
110, 113, 125, 131, 132,
134, 138, 139, 146, 160,
163, 175, 184, 185, 190,
213, 226, 228, 229, 242

axiom, 31, 226
full, 57, 129, 171, 193
full, defined, 31
full, definition repeated, 165

empty set, 38
empty set, 17, 19, 20, 22, 48, 82,

86, 87, 96, 106, 107, 162,
166, 167, 182, 218, 219

as default object, 38
Endomorphism, axiom of, 177,

229
equality, axiom of, 204
equivalence (of cardinality), 123

defined, 81
equivalence (of cardinality), 12,

81, 87, 121–126, 131, 134,
228
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equivalence relations, equivalence
classes, 81, 91, 93, 107, 150,
166

equivalence relations, equivalence
classes, 106

equivalence relations, equivalence
classes, 12, 57, 58, 59,
65, 76, 82, 92, 93, 96,
106, 107, 121, 139, 150–
152, 163, 166, 167, 170,
171, 184, 185

equivalence class defined, 58
equivalence relation defined, 57

exponentiation
cardinal, 127, 128, 129, 221
ordinal, 108, 118, 128

extensionality, 15–17, 47, 54, 134,
135, 160, 177, 198, 206,
207, 218

axiom, 16, 225
axiom for λ-calculus, 204
lemma (for well-founded rela-

tions), 168, 174

filter, 147
finite

axiomatization, 218
birthday, 186
cardinal, 123, 124
cardinal number, 12
collections, union or intersection

of, 24
ordinal, 107, 108, 110–113, 115
segment, initial, 145
sequence, 97, 145, 166, 198
set, 87–89, 104, 112, 118, 121,

122, 125, 127, 141, 145–
147, 150, 176, 178, 183

sets, definition of, 80

sets, notation for, 25
sets, standard, 135
size of universe?, 82
structures, 25–27, 91, 96, 207
subcover, 143
sum, 97
von Neumann ordinal, 115, 119

Foundation (axiom of ZFC), 161,
176, 178

fractions, 91, 92, 93–98
function, 59, 63, 64–67, 69–74, 76,

80, 81, 83, 85, 89, 92, 93,
96, 97, 99, 101, 102, 106–
108, 110, 111, 125, 127–
129, 131, 132, 134, 146,
150–152, 159, 171, 186,
190, 192, 203–208, 211–215,
223, 228, 229

abstraction, 66, 203, 204, 206–
208, 212, 213, 215

characteristic, 131, 208
characteristic, of a set, 65
choice, 100, 104
proper class, 66, 113
used for indexing, 70

function-builder notation, 50, 66,
204

Generalized Continuum Hypothe-
sis, 131, 190, 192

Hartogs aleph function, 190
Hartogs Theorem, 190

identity map
defined, 64

identity, axiom of, 204
image

defined, 64
inaccessible cardinals, 195
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inaccessible cardinals, 194
inaccessible cardinals, 13, 192,

197, 223, 229
definition, 194

inclusion, 15, 21–23, 49, 59–61,
96, 102, 110, 117, 122, 125,
148–150, 172, 173

axiom of, 44, 227
map, 64

indexed family of sets, 70
induction

axiom, 85
mathematical, 81, 82, 84–88,

105, 143
mathematical, on an unstrati-

fied condition, 81, 113, 114,
133, 134, 176, 198

structural, 151, 206
transfinite, see transfinite

inductive set, 80
inductive set, 82, 114
infinite

cardinal, 124–126, 189, 191
limits (of an interval), 138
ordinal, 107, 111
product, 127, 128, 131, 221
rank, 179
sequence, 97, 145
set, 104, 121, 122, 156, 177, 228
size of the universe, 218
sum, 97, 127, 128, 131, 221
von Neumann ordinal, 118

infinitesimals, 152
infinity, 12, 79, 82, 161, 162, 175,

218–220
theorem of, 82, 227

initial ordinal, 189
initial ordinal, 196, 197
injection, see one-to-one map

intersection
Boolean, 20, 22, 24, 40, 41, 71,

116, 117, 151, 185
Boolean, definition of, 20
of classes, 113, 114, 159, 201
of nested intervals, 142, 143, 145
set, 24, 46, 71, 71, 83, 96, 97,

141, 146, 153, 172, 192, 211
set, definition of, 71

inverse function, 69, 81, 106
inverse image, 65, 70, 71, 77, 123

defined, 64
isomorphism types, 173
isomorphism types, 13, 167, 168,

171, 174–176, 178
iterated cut system, 182

König’s Theorem, 131, 132, 136,
221, 229

Least Upper Bound Property, 96,
142, 149

limit cardinal, 192
Los’s Theorem, 151

Mac Lane set theory, see
Zermelo–Fraenkel set the-
ory (bounded)

magnitudes, 95, 96–98
Mahlo cardinals, 197
membership, 15, 22, 42–44, 48, 49,

51, 53, 115, 117, 118, 160,
163, 166–168, 174, 176–179,
181, 185, 194, 201, 203, 208

Morse–Kelley set theory, 200
multiplication

of natural numbers, 85
of fractions, 92
of cardinals, 124
of natural numbers, 84, 89
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of ordinals, 108, 118, 129
of rational numbers, 94
of real numbers, 98

natural number, 80
natural number, 39
natural number, 26, 27, 29, 31, 38,

44, 52, 59, 82, 83, 85–89,
91–94, 98, 100, 105, 107,
108, 112, 113, 115, 118,
121, 123–127, 129, 131,
133, 136, 152, 153, 176,
191, 198, 199, 211, 213,
215, 220, 227, 229

natural set, 199
New Foundations, 11, 133, 217
NFU, 11, 217–221

one-to-one and onto map, see bi-
jection

one-to-one correspondence, see bi-
jection

one-to-one map, 64, 65, 69, 73,
122, 130, 144, 177, 228, 229

onto map, 64, 123, 158, 168, 213
order type, 118
order (linear), 139
order (partial), 59
order type, 107
order (linear), 60, 60, 92, 94, 96,

100, 108, 116, 117, 123,
137–140, 181, 182, 185

complete, 139
dense, 137, 139

order (partial), 60, 100, 122, 125,
147, 148, 202, 228

order (strict), 60, 100, 116, 117,
171, 173

order (total), see order (linear)

order type, 12, 108, 110, 114, 115,
118, 129, 184, 189, 190,
193, 196, 200

definition of, 107
ordered pair, 178

another alternative definition,
27

Kuratowski, 27
ordered pair, 95
ordered pair, 15, 27, 29, 30, 32, 39,

41, 43, 47, 54, 82, 89, 91–
93, 125, 129, 133–135, 177,
198, 204, 206, 214, 219, 220

another alternative definition,
218

axiom, 26, 226
Kuratowski, 26, 54, 55, 177, 218
of ordinals, coded as an ordinal,

157, 201
ordinal numbers, 107, 111
ordinal numbers, 12, 108–113, 118,

128, 156–163, 171, 174,
176, 177, 181, 185, 186,
189–192, 197–201, 221–223,
228, 229

definition of, 107

paradoxes, 12, 52, 130, 214
Burali-Forti, 109, 111, 171, 221
Cantor, 130, 131, 221
Curry, 205
Mirimanoff, 178
Russell, 13, 43, 44, 51, 171, 205,

219
partition, 57, 58, 65, 72, 73, 81,

82, 103, 107, 140, 147, 150,
158, 181, 219

power set, 65, 71, 72, 76, 87, 134,
163, 171, 172, 174, 194
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axiom of ZFC, 161, 175
preimage

defined, 64
product, Cartesian, see Cartesian

product
product, relative, see relative

product
products, axiom of, 204
projections, 32, 65, 82, 93, 108,

158, 197
axiom of, 12, 32, 204, 227
of sets, 65
relative type of, 54, 55, 157, 218

properties, 17, 29, 35, 39, 41, 45,
51, 80, 81, 106, 111

of functions, 64
of relations, 57, 165

Quine–Morse set theory, see
Morse–Kelley set theory

rational numbers, 92, 93, 148
rational numbers, 91–96, 126, 131,

137, 142, 144, 147, 149, 222
dyadic, 183, 186
sets of, 139
the order on, 138–140

real numbers
as a line, 153

real numbers, 235
real numbers, 186
real numbers, 60, 91, 95, 95–

97, 100, 131, 135, 139–141,
144, 148, 152, 181, 183,
220, 222

alternative definition outlined,
147, 148

as a line, 32, 140
extended, 95

sets of, 137, 143, 146, 153
the order on, 139

recursion, 83, 89, 143
transfinite, see transfinite

reflexive relation, 57, 59, 61
regular cardinal, 193
relation, 13, 26, 29, 30–32, 39–41,

44, 57, 59, 61, 64, 65, 69,
92, 93, 110, 160, 182, 185,
226

algebra of relations, 33
algebra of relations, 33
as predicate, 44
as predicate, 35, 39, 41, 45
definition, 29
empty, 30, 107, 167
equivalence, see equivalence re-

lations, equivalence classes
kind of, 63
kinds of, 57, 59
of part to whole, 16, 48–50
power of a, 31
properties of relations, see prop-

erties
universal, 30
well-founded extensional rela-

tions, 168
well-founded extensional rela-

tions, 13, 165–168, 170,
171, 174

relative product, 31, 33, 69, 226
axiom, 31, 226

Replacement(axiom of ZFC), 158,
159, 162, 175, 176, 194, 200

Representation Theorem, 42, 227
Restricted Subversion Theorem,

88, 227

Schröder–Bernstein theorem, 122,
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126, 228
segment, 60, 96, 97, 101, 102,

105–111, 113, 114, 116–118,
124, 145, 155, 156, 158–
160, 184, 190, 191, 193,
196, 201, 228

weak, 60, 61, 106
Separation (axiom of ZFC), 175
Separation (axiom of ZFC), 161,

162, 175, 200
sequence, 97, 118, 135, 138, 142–

144, 147, 152, 173, 176,
195, 197

transfinite, 100, 111, 129, 146,
160, 174, 191–193, 201

set, 11–13, 15, 39, 47, 50
similarity, 12, 106, 107, 109, 110,

112, 123, 155, 184, 189, 228
definition of, 106

singleton, 25, 26, 48, 49, 54, 65,
71, 73, 74, 76, 80, 84, 100,
106, 110, 112, 123, 132,
142, 155, 156, 163, 177,
211, 226, 228, 229

as a “name”, 49, 50
axiom, 25, 226
iterated, 44, 45, 219
related to T operations, 110

singleton “map”, 134, 135, 156,
158, 178

singleton image, 32, 45, 55, 87, 89,
112, 163, 171, 185, 226

axiom, 32, 226
iterated, 45
of a set, 32
related to T operations, 110

singular cardinal, 193
Solovay’s Theorem, 198, 229
Specker’s Theorem, 133, 136, 221,

229
stationary set, 197
stratification, 13, 17, 42–47, 51–

54, 59, 61, 63, 65–67, 71,
73, 77, 79, 81, 83, 85, 87–
89, 92, 93, 96, 97, 100, 109,
110, 113–115, 127, 133–
136, 142, 144, 151, 152,
155, 156, 162, 163, 167,
171, 175, 176, 185, 198–
200, 203, 205–210, 212–215,
219, 221–223, 227, 229

and equivalence classes, 58
extended example, 74

Stratified Comprehension Theo-
rem, 123

stratified λ-calculus, 208
Stratified Comprehension Theo-

rem, 44–47, 49, 53, 54,
58, 61, 63, 66, 67, 71,
81, 99, 103, 108, 134, 135,
170, 177, 198, 203, 208–
210, 218–220, 227

strong limit cardinal, 194, 195
strong limit cardinals, 196
subset, 15, 21, 22, 45, 46, 49, 57,

60, 65, 86, 87, 95–97, 100,
102, 113, 123, 124, 131,
138, 149, 160, 167, 170–
172, 178, 182, 186, 192

closed, of the domain of a well-
ordering, 197

countable dense, 140
countable dense, 142
dense, 139
nowhere dense, 153
open dense, 153, 165
proper, 21, 97, 121
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subversion of stratification, 213,
215

Subversion Theorem, 135, 136,
229

successor
cardinal, 190–193
natural number, 80, 211
of a von Neumann natural num-

ber, 79
ordinal, 109, 110, 114, 174
rank, 173, 174, 177

successor cardinal, 192
surjection, see onto map
surreal numbers, 181, 184, 186
symmetric difference, 21, 24, 199
symmetric relation, 57, 61

T-sequence, 198
transfinite

induction, 105, 107, 109, 114,
160, 161

numbers, 186
recursion, 106, 108, 118, 129,

146, 155, 157, 159, 184,
186, 228

transitive relation, 61
transitive relation, 57, 59, 182
type safety, 51
type-level operation, 178, 218–220
type-lowering operation, 72, 206
type-raising operation, 72, 76, 170,

185
types (relative), 206
types (relative), 136
types (relative), 65, 135, 210, 212

definition of, 44
types (relative), 12, 44, 45, 52,

54, 55, 58, 60, 63, 65, 66,
72–74, 76, 77, 79, 82, 87,

88, 92, 97, 109, 111, 118,
123, 127, 128, 132, 145,
150, 157, 167, 171, 174,
177, 185, 191, 192, 205–
211, 215, 218–221, 227, 229

definition in λ-calculus, 205

ultrafilter, 148, 149, 150, 152, 202,
222

uncountable, 131, 135, 146, 194,
202

cardinal, the first, 131
union

Boolean, 24, 72
axiom, 20, 225

set, 38, 45, 49, 55, 70–72, 76, 81,
86, 89, 102, 103, 140, 161,
162, 170–175, 184

axiom, 24, 226
universe, universal set, 11, 12, 17,

21, 30, 50, 64, 82, 103, 134,
160, 162, 163, 174, 200,
208, 218, 221

axiom, 19, 225
definition, 19

usual set theory, the, see Zermelo–
Fraenkel set theory

Venn diagrams, 24, 33
von Neumann ordinal, 119
von Neumann numeral, 26, 53, 79,

80, 115
von Neumann ordinal, 115, 117,

118, 135, 163, 181, 189, 200

well-orderings, 12, 100, 103, 105–
118, 123, 129, 131, 133,
134, 146, 155, 158, 172,
173, 178, 181, 182, 184,
189–193, 196, 197, 221, 228
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definition of, 100

Zermelo–Fraenkel set theory, 185
Zermelo–Fraenkel set theory, 194
Zermelo–Fraenkel set theory, 11–

13, 17, 19, 20, 25, 26, 58,
79, 115, 131, 134, 159, 162,
163, 165–167, 174, 176–178,

181, 189, 197, 198, 200–
202, 221, 223

axioms of, 162
bounded, 175

ZFC, see Zermelo–Fraenkel set
theory

Zorn’s Lemma, 100, 102–104, 122,
125, 148, 149, 228


