J. DRABBE.

1. Terminologie et notations

Les notations et la terminologie non explicitées sont celles des notes "Une présentation topologique du calcul propositionnel intuitionniste".

Nous noterons toujours un espace topologique sous la forme E,\mathcal{C} où E désigne l'ensemble des "points" de l'espace considéré et \mathcal{C} l'ensemble des parties ouvertes (de E).

L'espace topologique usuel des réels est noté \mathbb{R} , \mathbb{Z}_{ω_s}

2. Nous nous proposons de montrer que si φ est une formule (du calcul propositionnel intuitionniste) qui n'est pas une tautologie intuitionniste, alors il existe un espace topologique <u>fini</u> E, $\mathcal E$ tel que φ n'est pas une E, $\mathcal E$ -tautologie.

Proposition 1 : Si φ n'est pas une tautologie intuitionniste, alors, il existe une topologie \mathcal{E} sur \mathcal{R} telle que :

$$\mathcal{E}$$
 est finie ; φ n'est pas une \mathcal{R}, \mathcal{E} - tautologie.

Démonstration :

si φ (p₁,..., p_n), (avec la notation usuelle qui prévoit que toutes les variables propositionnelles figurant dans φ sont dans la liste p₁,..., p_n) n'est pas une tautologie intuitionniste, alors, il existe des ouverts

A₁,..., A_n (de
$$R$$
, C_{us}) tels que
$$\varphi_{R,C_{us}}(A_1, \ldots, A_n) \neq R$$
 Soit G le plus petit ensemble de parties de R tel que G comprend \emptyset et R
$$G \supset \{ \psi_{R,C_{us}}(A_1, \ldots, A_n) \mid \psi \text{ est formule partie de } \varphi \}$$

Il est aisé de vérifier que \mathcal{C} est un ensemble fini (ceci résulte des propriétés de distributivité de U, Ω).

Trivialement \mathbb{R} , \mathbb{C} est un espace topologique et une induction régulière sur la complexité des sous-formules de φ permet de démontrer que pour toute sous-formule ψ de φ :

$$\psi_{\mathcal{R},\mathcal{R}_{us}}(A_1,\ldots,A_n) = \psi_{\mathcal{R},\mathcal{E}}(A_1,\ldots,A_n).$$

En particulier, $\varphi_{\mathcal{R},\mathcal{C}}$ (A₁, ..., A_n) n'est pas une \mathcal{R},\mathcal{C} -tautologie.

Proposition 2. Supposons que E, & soit un espace topologique tel que & soit fini. Alors, il existe un espace topologique fini E*, &* tel que les structures

$$(\mathcal{E}, \vee, \wedge, ', \rightarrow)$$
 et $(\mathcal{E}^*, \vee, \wedge, \wedge, ', \rightarrow)$

soient isomorphes (notations : voir page 13 de l'article cité précédemment).

 $\underline{\text{D\'emonstration}} : \text{D\'efinissons la relation d'\'equivalence} \equiv \text{sur}$ E par

 $x \equiv y$ <u>ssi</u> $\forall X \in \mathcal{C}$ $x \notin X \Leftrightarrow y \notin X$. Soit x la classe d'équivalence de $x \in E$ par \equiv .

Notons f la fonction de domaine \mathcal{E} telle que pour tout $X \in \mathcal{E}$, f $(X) = \{ \underline{x} \mid x \in X \}$.

Posons $E_{X}^{*} = f(E)$ $C_{X}^{*} = \{f(X) \mid X \in C\}.$

On vérifie aisément que Et, & a les propriétés souhaitées.

Corollaire 3: Pour toute formule φ telle que φ n'est pas une tautologie intuitionniste, il existe un espace topologique fini E, \mathcal{E} tel que φ n'est pas une Ξ , Ξ - tautologie.

3. Nous nous proposons d'établir une amélioration du corollaire 3.

Rappelons qu'à tout ordonné E, \leq on peut associer un espace topologique noté E, \mathcal{C}_{\leq} dont la topologie \mathcal{C}_{\leq} admet une base d'ouverts formée par toutes les æctions initiales de E, \leq (une section initiale de E, \leq est une partie A de E telle que

$$\forall x, y \in E \quad x \le y \in A \implies x \in A$$
).

<u>Définition</u>: <u>Un ouvert</u> A d'un espace topologique E. \overline{C} sera dit <u>irréductible</u> <u>ssi</u> $A \neq \emptyset$ et . $\overline{\forall} B, C \in \overline{C}$ $A = B U C \Rightarrow A = B \text{ ou } A = C.$

Propriété élémentaire : Si A, B, C sont des ouverts de E, $\mathcal C$ et si A est irréductible, alors

$$A \subset B \cup C \implies A \subset B \quad \text{ou} \quad A \subset C$$

Vérification :

A = (B U C) \cap A = (B \cap A) U (C \cap A).

Comme A est irréductible A = B \cap A ou A = C \cap A;

par conséquent A \subset B ou A \subset C.

Proposition 4:

Pour tout espace topologique fini E, & il existe un ordonné fini J, \leq et un morphisme 0 de (\mathcal{C} , \vee , \wedge , ', \rightarrow) dans (\mathcal{C}_{\leq} , \vee , \wedge , ', \rightarrow) tel que pour tout $A \in \mathcal{C}$

(La proposition pourrait être formulée de manière plus fine en exigeant que $m{\theta}$ soit un isomorphisme, mais nous n'aurons besoin que de la forme faible indiquée).

Démonstration : soit J, \leq l'ensemble des ouverts irréductibles de E, \mathcal{E} ordonné par l'inclusion ensembliste.

Posons (pour A $\in \mathcal{C}$)

$$\theta(A) = \{D \in J \mid D \subset A\}.$$

Les propriétés suivantes sont triviales :

Pour tout A, B ∈ 6.

. θ (A) est une section de J, \subset (et donc un ouvert de J, \mathcal{C}_{\subset});

.
$$\theta$$
 (A \cap B) = θ (A) \cap θ (B) :

.
$$\mathscr{G}(A)$$
 U $\mathscr{O}(B) \subset \mathscr{O}(A$ U B);

$$\theta(\emptyset) = \emptyset$$

On a également,

. θ (A U B) $\subset \Phi$ (A) U θ (B) car si D est irréductible et D \subset A U B, alors D \subset A ou D \subset B (propriété élémentaire, page 21).

D'autre part,

.
$$\emptyset$$
 (A \rightarrow B) = \emptyset (A) \rightarrow \emptyset (B).

En effet, il suffit de montrer que pour tout D irréductible,

D
$$\subset$$
 int (- A U B) \underline{ssi} D \in (Θ (A) \rightarrow Θ (B))

C'est-à-dire, pour tout D irréductible,

D
$$\subset$$
 int (-A U B) ssi \forall D' i méd \subset D D' \in - \mathfrak{D} (A) U \mathfrak{B} (B)

$$\Rightarrow$$
 : si D'_{irrêd'} \subset D et D' \in \emptyset (A)
alors D' \subset (- A U B) \cap A et donc D' \subset B.

⇐ : considérons l'ouvert D / A.

- (i) si $D \cap A = \emptyset$, alors $D \subset -A$ et donc $D \subset int (-A \cup B)$.
- (ii) si DNA est irréductible, alors DNA ⊂B et trivialement D ← int (-A U B).
- (iii) si D ∩ A n'est ni irréductible, ni vide, alors D ∩ A est une réunion finie d'ouverts irréductibles D₁ U... U DŊ.. Comme tous les D; ⊂B, on obtient D ∩ A ⊂ B et dès lors D ⊂ int (- A U B).

Il est trivial que

•
$$\Theta$$
 (A') = (Θ (A))' car $A' = A \rightarrow \emptyset$.

Finalement $\theta(A) = J$ entraîne que A = E car tout ouvert est réunion de tous les ouverts irréductibles qu'il contient.

Corollaire 5:

Pour toute formule φ telle que φ n'est pas une tautologie intuitionniste, il existe un ordonné fini J, ξ tel que φ n'est pas une J, \mathcal{C}_{ζ} - tautologie.

Un examen attentif des démonstrations des propositions 1, 2 et 4 permet d'obtenir récursivement une limitation supérieure sur le cardinal de J, à partir de φ .

Remarque 6 : la proposition 4 peut être améliorée en exigemnt que J, ≤ soit un ordonné maximé (si J, ≤ n'admet pas d'élément maximum, prolonger J, ≤ de manière naturelle en adjoignant un maximum; le calcul est régulier).

4. McKinsey et Tarski ont établi (Annals of Math. <u>47</u> (1946), pages 122-162) le résultat :

Théorème 7: Pour toute formule φ , si pour tout espace topologique fini E, G, φ est une E, G - tautologie, alors, φ est une tautologie intuitionniste.

On en déduit aisément (en utilisant une généralisation immédiate de la proposition 1) :

Théorème 8: pour toute formule φ , les propriétés suivantes sont équivalentes :

- (a) φ est une tautologie intuitionniste;
- (b) pour tout espace topologique E, \mathcal{C} φ est une E, \mathcal{C} -tautologie;
- (c) pour tout espace topologique fini Ε, ζ φest une Ε, ζ -tautologie
- (e) pour tout ordonné fini $J, \leq \varphi$ est une $J, \leq -$ tautologie.

5. Topologie des sections initiales et forcing.

Soient P, \leq un ordonné maximé et v une fonction de l'ensemble des variables propositionnelles dans l'ensemble des ouverts de P, \mathcal{E}_{\leq} . v détermine évidemment une valuation topologique (que nous notons encore v) de l'ensemble des formules du calcul propositionnel dans l'ensemble des ouverts de P, \mathcal{E}_{\leq} vérifiant :

Pour p ϵ P, ϕ formule du calcul propositionnel intuitionniste, définissons H_{\checkmark} (que nous noterons plus simplement H-) par

 $p \not \vdash \varphi$ ssi $p \in v(\varphi)$ (lire "p force φ " pour $p \not \vdash \varphi$).

Proposition 9:

Pour tout p, q \in P, pour toute formule φ, ψ :

- (i) (p $+\varphi$ et $q \le p$) $\Rightarrow q +\varphi$

- (ii) $p + \varphi v \psi \underline{ssi}$ $p + \varphi ou p + \psi$ (iii) $p + \varphi v \psi \underline{ssi}$ $p + \varphi et p + \psi$ (iv) $p + \varphi \psi \underline{ssi}$ $\forall q \leq p q + \varphi$ (v) $p + \varphi \psi \underline{ssi}$ $\forall q \leq p (q + \varphi \Rightarrow q + \psi)$
- (vi) On ne peut avoir p $\mu \varphi$ et p $\mu \sim \varphi$
- (vii) pour toute tautologie intuitionniste φ , p $\vdash\!\!\vdash \varphi$.

Vérification :

- (i) résulte du fait que v (φ) est un ouvert de P, \mathscr{C}_{\leq} .
- (ii) et (iii) sont triviales.
- (iv) $p \leftarrow \sim \varphi$ ssi $p \in v (\sim \varphi)$ ssi $p \in (\varphi(v))$. ssi p \in int $(-v(\varphi))$ ssi $\forall q \leq p \quad q \not\in v (\varphi)$ ssi $\forall q \leq p \quad q \# \varphi$.
- (v) $p \vdash \varphi \Rightarrow \psi$ ssi $p \in int(-v(\varphi) \cup v(\psi))$ ssi $\forall q \leq p \quad q \in -v(\varphi) \ \mathtt{U} \ v(\psi)$ ssi $\forall q \leq p \ (q \in v(\phi) \Rightarrow q \in v(\phi))$ ssi $\forall q \leq p \ (q + \psi \rightarrow q + \psi).$
- (vi) est alors triviale.
- (vii) est une conséquence immédiate du théorème 8.

Remarque : Notons 1 le maximum de P, ≤ . On a alors $(\forall p \in P \quad p \vdash \varphi) \underline{ssi} \quad \vdash \vdash \varphi$ (en vertu de la proposition e(i``. Notons p H^* φ pour p $H \sim \sim \varphi$.

Proposition 10:

pour tout $p \in P$, pour toute formule φ :

(i) $p \leftarrow \varphi \Rightarrow p \leftrightarrow \varphi$ (ii) $p \leftarrow \varphi \xrightarrow{ssi} p \leftrightarrow \varphi$ (iii) $p \leftrightarrow \varphi \land \psi \xrightarrow{ssi} p \leftrightarrow \varphi$ (iii) $p \leftrightarrow \varphi \land \psi \xrightarrow{ssi} p \leftrightarrow \varphi$ et $p \leftrightarrow \varphi$ (iv) $si \varphi \xrightarrow{est une tautologie classique, alors } 1 \leftrightarrow \varphi$

Vérification :

- (i), (ii) et (iii) : utiliser les propriétés de \bot décrites page 12, dans l'article "Une présentation topologique du calcul propositionnel intuitionniste".
- (iv) Gonséquence triviale du théorème de Glivenko et du théorème 8.

Remarque 11 :

en utilisant le théorème 8, il est aisé d'obtenir une caractérisation des tautologies intuitionnistes en termes de forcing.